Skip to main content

Macular Degeneration: Ultrastructural Age-Related Changes

  • Chapter
Age-Related Changes of the Human Eye

Part of the book series: Aging Medicine ((AGME))

  • 1848 Accesses

Abstract

The aim of this chapter is to reveal the contribution of mitochondria and peroxisomes to the turnover of the photoreceptor outer segment and to describe the subsequent alteration of the retinal pigment epithelium and Bruch's membrane in normal aging and in age-related macular degeneration (AMD). Fifty-two surgically removed human eyes were involved in these histo-pathologic studies (25 female and 27 male, aged 56 to 87 years—mean age 68 years). Twenty-six of them were affected by early AMD, and 26 eyes were used as age-matched normal controls. For better visualization of lipids, osmium tetroxid postfixation was added to the standard electron microscopic technique. Polarization microscopy was also applied for the study of extracellular matrix components. Age-related changes of anisotropy were statistically analyzed using linear regression, and Fisher's transformation in both control and early AMD groups. Electron microscopy of retinal pigment epithelium both aged and early AMD showed a) accumulation of lipofuscin in the cytoplasm, b) focal or rarely diffuse alterations of mitochondrial cristae and matrix, and (c) accumulation of peroxisomes of variable size and electron density distributed throughout the cytoplasm. Electron and polarization microscopy of extracellular matrix showed a) an accumulation of amorphous, vacuolated and granular material in the collageneous layers of Bruch's membrane, b) the appearance of soft (rarely hard) Drusens, and c) a thickening of the basement membrane of retinal pigment epithelium (RPE) and choriocapillaries due to addition of axiparallel-oriented glycated fibrils and transversally oriented lipids. Although these processes were observed in both normal aging and early AMD, statistical analysis of anisotropy suggested that deposition of lipids and glycated fibrils was significantly different in AMD compared to normal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klaver ED, Wolfs RC, Vingerling JR, Hoffman A, de Jong PT (1998) Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 116:653–8

    PubMed  CAS  Google Scholar 

  2. Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch's membrane. Amer J Ophthalmol. 100:686–97

    CAS  Google Scholar 

  3. Hageman GS, Mullins RF (1999) Molecular composition of drusens as related to substructural phenotype. Mol Vis.5:28

    PubMed  CAS  Google Scholar 

  4. van der Shaft TL, Mooy CM, de Bruijn WC, Oron FG, Mulder PGH, de Jong PTVM (1992) Histologic features of the early stages of age-related macular degeneration. Ophthalmology. 99:278–286

    Google Scholar 

  5. Bird AC (1992) Pathophysiology of AMD. In CR Hampton and PT Nelson (eds) Age-Related Macular degeneration: Principles and Practice. Raven Press, New York, p 63–83

    Google Scholar 

  6. Starita C, Hussein AA, Patmore A, Marshall J (1997) Localization of the site of major resistence to fluid transport in Bruch's membrane. Invest Ophthamol Vis Sci.38:762–7

    CAS  Google Scholar 

  7. Holz FG, Sheraidah G, Pauleikhoff D et al. (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch's membrane. Arch Ophthalmol. 112:402–6

    PubMed  CAS  Google Scholar 

  8. Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of lipids in Bruch's membrane. Retina 19:141–7

    Article  PubMed  CAS  Google Scholar 

  9. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch's membrane. Invest Ophthalmol Vis Sci. 42:263–74

    Google Scholar 

  10. Robison WG Jr, Kuwabara T (1975) Microperoxisomes in the retinal pigment epithelium. Invest Ophthalmol. 14; 866–72

    PubMed  Google Scholar 

  11. Barreau E, Brossas, JY, Courtois Y, Treton JA (1996) Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci. 37:384–91

    PubMed  CAS  Google Scholar 

  12. Vingerling JR, Dielemams I, Bots ML, Hof nan A, Grobbee DE, de Jong PTVM (1996) Age-related macular degeneration is associated with atherosclerosis: The Rotterdam Study. Am J Epidemiology, 142:404–9

    Google Scholar 

  13. Klein R, Clegg L, Cooper LS, et al. (1999) Prevalence of age-related maculopathy in the Atherosclerosis Risk Communities Study. Arch Ophthalmol. 117:1203–10

    PubMed  CAS  Google Scholar 

  14. van der Schaft TL, Mooy CM,de Bruijn WC, Bosman FT, de Jong PTVM (1994) Immunohistochemical light and electron microscopy of basal laminar deposits. Graefe's Arch Clin Exp Opthalmol.232:40–6

    Article  Google Scholar 

  15. Romhanyi G, Deak G, Fisher J (1975) Aldehyde Bisulfite-Toluidine Blue (ABT) staining as a topooptical reaction for demonstration of linear order of vicinal OH groups in biological structures. Histochemistry 43:333–48

    Article  PubMed  CAS  Google Scholar 

  16. Missmahl H P (1957) Doppelbrechung der retikularen Faser and sich hieraus ergebender Nachweis von genchtet eingelagerten Lipoiden in die Faser. Z Zellforsh.45:612–7

    CAS  Google Scholar 

  17. Feher J, Valu L (1969) Structure of the Descemets membrane (German). Graefe's Arch Ophthalmol 179:65–73

    CAS  Google Scholar 

  18. Kroemer G. Redd JC (2000) Mitochondrial control of cell death. Natare Medicine. 6:513–9

    Article  CAS  Google Scholar 

  19. Modis L (1974) Topo-optical invesstipbons of mucopolysaccharidm In: Gm mlann W & Neumann (eds): Handbuch der Histochemie, vol II, Part 4. G. Fisher, Stuttgart, p 3–35

    Google Scholar 

  20. Zingsheim HP, Plattner H (1976) Electron microscopic methods in membrane biology. In: Korn ED; (eds) Methods in Membrane Biology. Plenum Press, New York, p 1–146

    Google Scholar 

  21. Young RW (1967) The renewal of rod and cone outer segments. J Cell Biol 33:61–72

    Article  PubMed  CAS  Google Scholar 

  22. Ryeom SW, Sparrow JR, Silverstein RL (1996) CD36 partecipates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 109:387–395

    PubMed  CAS  Google Scholar 

  23. Rodriguez de Turco EB, Parkins N, Ershov AV, Bazan NG (1999) Selective retinal pigment epithelial cell lipid metabolism and remodelling conserves photoreceptor decosahexaenoic acid following phagocytosis. J Neurosci Res 57:479–86

    Article  PubMed  CAS  Google Scholar 

  24. Noske UM, Schmidt-Erfurth U, Meyer C, Diddens H (1998) Lipid metabolism in retinal pigment epithelium. Possible significance of lipoprotein receptors. Ophthalmologie 95:814–9

    Article  CAS  Google Scholar 

  25. Wang N, Anderson R (1993) Transport of 22:6n-3 in the plasma and uptake into retinal pigment epithelium and retina. Exp Eye Res 57:225–3

    Article  PubMed  CAS  Google Scholar 

  26. Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: A review. Eye 9:763–71

    PubMed  Google Scholar 

  27. Feeney-Burns L, Hilderbrand ES (1984) Eldridge S Aging human RPE: morphometric analysis of macular, equatorial and peripheral cells. Invest Ophthalmol Vis Sci 25;195–200

    PubMed  CAS  Google Scholar 

  28. Katz ML, Rice LM, Gao CL (1999) Reversible accumulation of lipofuscin-like inclusions in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 40:175–81

    PubMed  CAS  Google Scholar 

  29. Sundelin S, Wihlmark U, Nilsson SE, Brunk UT (1998) Lipofuscin accumulation in cultured retinal pigment epithelial cells reduces their phogocitic capacity. Curr Eye Res 17:851–7

    Article  PubMed  CAS  Google Scholar 

  30. Schraermeyer U, Heiman K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12:219–36

    Article  PubMed  CAS  Google Scholar 

  31. Thumann G, Bartz-Schmidt KU, Kociok N, Heilmamm K, Schraermeyer U (1999) Ultimate fate of rod outer segments in the retinal pigment epithelium. Pigment Cell Res 12:311–7

    Article  PubMed  CAS  Google Scholar 

  32. Hiltunen J K, Qin YM (2000) Beta-oxidation-strategies for the metabolism of a wide variety of acyl-CoA esters. Reviwe. Biochem Biophys Acta 1484:117–28

    CAS  Google Scholar 

  33. Andrews RM, Griffiths PG, Johnson MA, Turnbull DM (1999) Histochemical localization of mitochondrial enzyme activity in human optic nerve and retina.Br J Ophthalmol 83:231–5

    Article  PubMed  CAS  Google Scholar 

  34. Hruszkewycz AM (1988) Evidence for mitochondrial DNA damage by lipid peroxidation. Biochem Biophys Res Com 153:191–7

    Article  PubMed  CAS  Google Scholar 

  35. Winkler BS, Boulton ME, Gottsch JD, Stemberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    PubMed  CAS  Google Scholar 

  36. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in heath and disease. Nature 405:4214

    Google Scholar 

  37. Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-gamma. Cell 93:22940

    Article  Google Scholar 

  38. Ershov AV, Bazan NG (2000) Photoreceptor phagocytosis selectively activates PPAR-gamma expression in retinal pigment epithelial cells. J Neurosci Res 60:328–37

    Article  PubMed  CAS  Google Scholar 

  39. Young RW (1987) Pathophysiology of age-related macular degeneration. Sury Ophthalmol 31:291–306

    Article  CAS  Google Scholar 

  40. François J, Feher J (1973) Arcus senilis. Doc. Ophthalmol 34:165–82

    Article  PubMed  Google Scholar 

  41. Tokura T, Ito S, Nishikawa M, Yamane A, Miki H. (1999) Changes in Bruch's membrane in experimental hypercholesteremia in rats. Nippon Ganka Gakkai Zasshi 203:85–91

    Google Scholar 

  42. Miceli M V, Newsome DA, Tate DJ, Sarohie TG (2000) Pathologic changes in the retinal pigment epithelium and Bruch's membrane of fat-fed atherogenic mice. Current Eye Res. 20:8–16

    CAS  Google Scholar 

  43. Olsson U, Bondjers G, Camejo G (1999) Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle cells by altering the expression of genes for proteoglycan core proteins. Diabetes 48:616–22

    Article  PubMed  CAS  Google Scholar 

  44. Nerlich AG, Schleicher ED (1999) N(epsilon)-(carboxymethyl)lysine in atherosclerotic vascular lesion as a marker for local oxidative stress. Atherosclerosis 144:41–7

    Article  PubMed  CAS  Google Scholar 

  45. Oak J, Nakagawa K, Miyazawa T (2000) Synthetically prepared Amadori-glycated phosphatidylethanol-amine can trigger lipid peroxidation via free radical resction. FEBS Lett 481:26–30

    Article  PubMed  CAS  Google Scholar 

  46. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1996) The advanced glycation end product, Nepsilon-(carboxymethyl)lysisne, is a product of both lipid peroxidation and glycoxidation reaction. J Biol Chem 27:9982–6

    Google Scholar 

  47. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–32

    PubMed  CAS  Google Scholar 

  48. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, Koeppele JM, Miyata T, Hjelmeland LM (1999) Increase in advanced glycation end product pentosidine in Bruch's membrane with age. Invest Ophthalmol Vis Sci 40:755–9

    Google Scholar 

  49. Hammes HP, Hoerauf H, Alt A, Schleicher E, Clausen JT, Bretzel RG, Laqua H (1999) N(ep silon)(carboxymethyl)lysin and AGE receptor RAGE colonize in age-related macular degeneration. Invest Ophthalmol Vis S6 40:1855–9

    CAS  Google Scholar 

  50. Hagemann GS, Mullins RF, Russell SR, Johnson LV, Anderson DH (1999) Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FESEB J. 13:477–84

    Google Scholar 

  51. Hammes HP, Weiss A, Hess S, Araki N, Horiuchi S, Brownlee M, Preissner KT (1998) Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab Invest. 75:325–38

    Google Scholar 

  52. Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev. 77: 425–64

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgements The authors thank Ida Bozso for her excellent technical assistance, and Livia Feher and Alessandro Mariani for their contribution to this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kovacs, I., Feher, J., Cavallotti, C.A.P. (2008). Macular Degeneration: Ultrastructural Age-Related Changes . In: Cavallotti, C.A.P., Cerulli, L. (eds) Age-Related Changes of the Human Eye. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-507-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-507-7_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-55-8

  • Online ISBN: 978-1-59745-507-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics