Skip to main content

Iron Deficiency and Neuropharmacology

  • Chapter
  • First Online:
Iron Deficiency and Overload

Part of the book series: Nutrition and Health ((NH))

Summary

• Iron deficiency alters functioning of the dopaminergic system with effects on both receptors and transporters.

• Early developmental iron deficiency may produce persistent alterations in neural functioning.

• The metabolism of a number of drugs whose target of action is reuptake of monoamines may be dramatically altered by existing brain iron deficiency.

• The expansion of the list of neurotransmitters altered by iron deficiency is likely to grow as new investigations explore adenosine, glutamate, and GABA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, K. N. (2001). Iron and the brain: Neurotransmitter receptors and magnetic resonance spectroscopy. British Journal of Nutrition, 85(Suppl. 2), S147–S150.

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association. (1994). Diagnostic criteria from DSM-IV. Washington, DC: The Association.

    Google Scholar 

  • Anderson, J. G., Cooney, P. T., & Erikson, K. M. (2007). Brain manganese accumulation is inversely related to gamma-amino butyric acid uptake in male and female rats. Toxicological Sciences, 95, 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi, R., Ben-Shachar, D., & Youdim, M. B. (1982). Nutritional iron and dopamine binding sites in the rat brain. Pharmacology Biochemistry and Behavior, 17(Suppl. 1), 43–47.

    Article  CAS  Google Scholar 

  • Axelrod, J. (1972). Dopamine-P-hydroxylase: Regulation of its synthesis and release from nerve terminals. Pharmacological Reviews, 24, 233–243.

    PubMed  CAS  Google Scholar 

  • Beard, J. (2003). Iron deficiency alters brain development and functioning. Journal of Nutrition, 133, 1468S–1472S.

    PubMed  CAS  Google Scholar 

  • Beard, J., Erikson, K. M., & Jones, B. C. (2003). Neonatal iron deficiency results in irreversible changes in dopamine function in rats. Journal of Nutrition, 133, 1174–1179.

    PubMed  CAS  Google Scholar 

  • Beard, J. L., Chen, Q., Connor, J., & Jones, B. C. (1994). Altered monamine metabolism in caudate-putamen of iron-deficient rats. Pharmacology Biochemistry and Behavior, 48, 621–624.

    Article  CAS  Google Scholar 

  • Beard, J. L., & Connor, J. R. (2003). Iron status and neural functioning. Annual Review of Nutrition, 23, 41–58.

    Article  PubMed  CAS  Google Scholar 

  • Beard, J. L., Felt, B., Schallert, T., Burhans, M., Connor, J. R., Georgieff, M. K. (2006). Moderate iron deficiency in infancy: biology and behavior in young rats. Behavioral Brain Research, 170, 224–232.

    Article  CAS  Google Scholar 

  • Beard, J. L., Unger, E. L., Bianco, L. E., Paul, T., Rundle, S. E., Jones, B. C. (2007). Early postnatal iron repletion overcomes lasting effects of gestational iron deficiency in rats. Journal of Nutrition, 137, 1176–1182.

    PubMed  CAS  Google Scholar 

  • Beard, J. L., Wiesinger, J. A., & Connor, J. R. (2003). Pre- and post-weaning iron deficiency alters myelination in Sprague-Dawley rats. Developmental Neuroscience, 25, 308–315.

    Article  PubMed  CAS  Google Scholar 

  • Beard, J. L., Wiesinger, J. A., & Jones, B. C. (2006). Cellular iron concentrations directly affect the expression levels of norepinephrine transporter in PC12 cells and rat brain tissue. Brain Research, 1092(1), 47–58.

    Google Scholar 

  • Becker, J. B. (1990a). Direct effect of 17 beta-estradiol on striatum: Sex differences in dopamine release. Synapse, 5, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Becker, J. B. (1990b). Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neuroscience Letters, 118, 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Becker, P. M., Jamieson, A. O., & Brown, W. D. (1993). Dopaminergic agents in restless legs syndrome and periodic limb movements of sleep: Response and complications of extended treatment in 49 cases. Sleep 16, 713–716.

    PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O., & Gaiarsa, J. L. (1997). GABAA, NMDA and AMPA receptors: A developmentally regulated ‘menage a trois’. Trends in Neuroscience, 20, 523–529.

    Article  CAS  Google Scholar 

  • Ben-Shachar, D., Ashkenazi, R., & Youdim, M. B. (1986). Long-term consequence of early iron-deficiency on dopaminergic neurotransmission in rats. International Journal of Developmental Neuroscience, 4, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar, D., Finberg, J. P., & Youdim, M. B. (1985). Effect of iron chelators on dopamine D2 receptors. Journal of Neurochemistry, 45, 999–1005.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar, D., Yehuda, S., Finberg, J. P., Spanier, I., & Youdim, M. B. (1988). Selective alteration in blood-brain barrier and insulin transport in iron-deficient rats. Journal of Neurochemistry, 50, 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  • Bianco, L. E., Wiesinger, J. A., Earley, C. J., Jones, B. C., & Beard, J. (2008, in press). Iron deficiency alters dopamine uptake and response to L-DOPA injection in Sprague Dawley rats. Journal of Neurochemistry, 106(1), 205–15.

    Google Scholar 

  • Biederman, J. (2005). Attention-deficit/hyperactivity disorder: A selective overview. Biological Psychiatry, 57, 1215–1220.

    Article  PubMed  Google Scholar 

  • Blakely, R. D., De Felice, L. J., & Hartzell, H. C. (1994). Molecular physiology of norepinephrine and serotonin transporters. Journal of Experimental Biology, 196, 263–281.

    PubMed  CAS  Google Scholar 

  • Bolan, E. A., Kivell, B., Jaligam, V., Oz, M., Jayanthi, L. D., Han, Y., et al. (2007). D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Molecular Pharmacology, 71, 1222–1232.

    Article  PubMed  CAS  Google Scholar 

  • Borel, M. J., Smith, S. H., Brigham, D. E., & Beard, J. L. (1991). The impact of varying degrees of iron nutriture on several functional consequences of iron deficiency in rats. Journal of Nutrition, 121, 729–736.

    PubMed  CAS  Google Scholar 

  • Burhans, M. S., Dailey, C., Beard, Z., Wiesinger, J., Murray-Kolb, L., Jones, B. C., et al. (2005). Iron deficiency: Differential effects on monoamine transporters. Nutritional Neuroscience, 8, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Burhans, M. S., Dailey, C., Wiesinger, J., Murray-Kolb, L. E., Jones, B. C., & Beard, J. L. (2006). Iron deficiency affects acoustic startle response and latency, but not prepulse inhibition in young adult rats. Physiology and Behavior, 87, 917–924.

    Article  PubMed  CAS  Google Scholar 

  • Bylund, D. B. (1992). Subtypes of alpha 1- and alpha 2-adrenergic receptors. FASEB Journal, 6, 832–839.

    PubMed  CAS  Google Scholar 

  • Cass, W. A., & Gerhardt, G. A. (1994). Direct in vivo evidence that D2 dopamine receptors can modulate dopamine uptake. Neuroscience Letters, 176, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Beard, J., & Jones, B. (1995). Abnormal rat brain monoamine metabolism in iron deficiency anemia. Nutritional Biochemistry, 6, 486–493.

    Article  CAS  Google Scholar 

  • Chen, Q., Connor, J. R., & Beard, J. L. (1995). Brain iron, transferrin and ferritin concentrations are altered in developing iron-deficient rats. Journal of Nutrition 125, 1529–1535.

    PubMed  CAS  Google Scholar 

  • Ciliax, B. J., Heilman, C., Demchyshyn, L. L., Pristupa, Z. B., Ince, E., Hersch, S. M., et al. (1995). The dopamine transporter: Immunochemical characterization and localization in brain. Journal of Neuroscience 15, 1714–1723.

    PubMed  CAS  Google Scholar 

  • Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105, 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Clardy, S. L., Wang, X., Zhal, W., Liu, W., Chase, G. A., Beard, J. L., et al. (2006). Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. Journal of Neural Transmission Supplementation, 71, 173–196.

    Article  CAS  Google Scholar 

  • Cooper, J. R., Bloom, F. E., & Roth, R. H. (Eds.). (2003a). Serotonin, histamine, and adenosine. In The biochemical basis of neuropharmacology (pp. 271–320). Oxford: Oxford Press.

    Google Scholar 

  • Cooper, J. R., Bloom, F. E., & Roth, R. H. (Eds.). (2003b). Dopamine. In The biochemical basis of neuropharmacology (pp. 225–270). Oxford: Oxford Press.

    Google Scholar 

  • Cooper, J. R., Bloom, F. E., & Roth, R. H. (Eds.). (2003c). Norepinephrine and Epinephrine. In The biochemical basis of neuropharmacology (pp. 181–224). Oxford: Oxford Press.

    Google Scholar 

  • Dancheck, B., Tang, A. M., Thomas, A. M., Smit, E., Vlahov, D., & Semba, R. D. (2005). Injection drug use is an independent risk factor for iron deficiency and iron deficiency anemia among HIV-seropositive and HIV-seronegative women. Journal of Acquired Immune Deficiency Syndrome, 40, 198–201.

    Article  Google Scholar 

  • Dedek, J., Baumes, R., Tien-Duc, N., Gomeni, R., & Korf, J. (1979). Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum. Journal of Neurochemistry, 33, 687–695.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, S. D., Sabeti, J., Larson, G. A., Giardina, K., Rubinstein, M., Kelly, M. A., et al. (1999). Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. Journal of Neurochemistry, 72, 148–156.

    Article  PubMed  CAS  Google Scholar 

  • Dunkley, P. R., Bobrovskaya, L., Graham, M. E., von Nagy-Felsobuki, E. I., & Dickson, P. W. (2004). Tyrosine hydroxylase phosphorylation: Regulation and consequences. Journal of Neurochemistry, 91, 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  • Erikson, K. M., Jones, B. C., & Beard, J. L. (2000). Iron deficiency alters dopamine transporter functioning in rat striatum. Journal of Nutrition, 130, 2831–2837.

    PubMed  CAS  Google Scholar 

  • Erikson, K. M., Jones, B. C., Hess, E. J., Zhang, Q., & Beard, J. L. (2001). Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacology Biochemistry and Behavior, 69, 409–418.

    Article  CAS  Google Scholar 

  • Erikson, K. M., Shihabi, Z. K., Aschner, J. L., & Aschner, M. (2002). Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biological Trace Element Research, 87, 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., Perry, K. W., & Molloy, B. B. (1975). Effect of 3-(p-trifluoromethylphenoxy). N. N. methyl-3-phenylpropylamine on the depletion of brain serotonin by 4-chloroamphetamine. Journal of Pharmacology and Experimental Therapeutics, 193, 793–803.

    PubMed  CAS  Google Scholar 

  • Georgieff, M. K., Mills, M. M., Gordon, K., & Wobken, J. D. (1995). Reduced neonatal liver iron concentrations after uteroplacental insufficiency. Journal of Pediatrics, 127, 308–314.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, A., & Lowery, P. J. (1975). Effect of the opiate antagonist naloxone on body temperature in rats. Life Science, 17, 927–931.

    Article  CAS  Google Scholar 

  • Green, A. R., & Youdim, M. B. (1977). The effect of iron deficiency on brain monoamine metabolism and the behavioural responses to increased brain 5-hydroxytryptamine and dopamine synthesis [proceedings]. British Journal of Pharmacology, 59, 470P–471P.

    Article  PubMed  CAS  Google Scholar 

  • Guiang, S. F., III, Georgieff, M. K., Lambert, D. J., Schmidt, R. L., & Widness, J. A. (1997). Intravenous iron supplementation effect on tissue iron and hemoproteins in chronically phlebotomized lambs. American Journal of Physiology, 273, R2124–R2131.

    PubMed  CAS  Google Scholar 

  • Hasegawa, H., Oguro, K., Naito, Y., & Ichiyama, A. (1999). Iron dependence of tryptophan hydroxylase activity in RBL2H3 cells and its manipulation by chelators. European Journal of Biochemistry, 261, 734–739.

    Article  PubMed  CAS  Google Scholar 

  • Hu, R., Wei, M., & Ding, X. (1996). Changes in brain monoamine neurotransmitter in iron deficiency nonanemic rats. Zhonghua Yu Fang Yi Xue Za Zhi (Article in Chinese), 30, 351–353.

    CAS  Google Scholar 

  • Humphrey, P. P., Buell, G., Kennedy, I., Khakh, B. S., Michel, A. D., Surprenant, A., et al. (1995). New insights on P2X purinoceptors. Naunyn-Schmiedeberg’s Archive of Pharmacology, 352, 585–596.

    CAS  Google Scholar 

  • Ill, A. M., Mitchell, T. R., Neely, E. B., & Connor, J. R. (2006). Metabolic analysis of mouse brains that have compromised iron storage. Metabolic Brain Disease, 21, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Jhanwar-Uniyal, M., Roland, C. R., & Leibowitz, S. F. (1986). Diurnal rhythm of alpha 2-noradrenergic receptors in the paraventricular nucleus and other brain areas: Relation to circulating corticosterone and feeding behavior. Life Science, 38, 473–482.

    Article  CAS  Google Scholar 

  • Johansen, P. A., Jennings, I., Cotton, R. G., & Kuhn, D. M. (1996). Phosphorylation and activation of tryptophan hydroxylase by exogenous protein kinase A. Journal of Neurochemistry, 66, 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. C., Wheeler, D. S., Beard, J. L., & Grigson, P. S. (2002). Iron deficiency in rats decreases acquisition of and suppresses responding for cocaine. Pharmacology Biochemistry and Behavior, 73, 813–819.

    Article  CAS  Google Scholar 

  • Jones, S. R., Gainetdinov, R. R., Hu, X. T., Cooper, D. C., Wightman, R. M., White, F. J., et al. (1999). Loss of autoreceptor functions in mice lacking the dopamine transporter. Nature Neuroscience, 2, 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Kabbani, N., & Levenson, R. (2007). A proteomic approach to receptor signaling: Molecular mechanisms and therapeutic implications derived from discovery of the dopamine D2 receptor signalplex. European Journal of Pharmacology, 572, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Kaladhar, M., & Narasinga Rao, B. S. (1982). Effects of iron deficiency on serotonin uptake in vitro by rat brain synaptic vesicles. Journal of Neurochemistry, 38, 1576–1581.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, D., Peng, J., Chinta, S. J., Rajagopalan, S., Di Monte, D. A., Cherny, R. A., et al. (2006). Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiology of Aging, 106(1), 205–15.

    Google Scholar 

  • Keller, M. B. (1999). The long-term treatment of depression. Journal of Clinical Psychiatry, 60(Suppl. 17), 41–45; discussion 46–48.

    PubMed  Google Scholar 

  • Konofal, E., Lecendreux, M., Deron, J., Marchand, M., Cortese, S., Zaim, M., et al. (2008). Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatric Neurology, 38, 20–26.

    Article  PubMed  Google Scholar 

  • Kramer-Stickland, K., Edmonds, A., Bair, W. B., III, & Bowden, G. T. (1999). Inhibitory effects of deferoxamine on UVB-induced AP-1 transactivation. Carcinogenesis, 20, 2137–2142.

    Article  PubMed  CAS  Google Scholar 

  • Kretchmer, N., Beard, J. L., & Carlson, S. (1996). The role of nutrition in the development of normal cognition. American Journal of Clinical Nutrition, 63, 997S–1001S.

    PubMed  CAS  Google Scholar 

  • Kuhn, D. M., Ruskin, B., & Lovenberg, W. (1980). Tryptophan hydroxylase. The role of oxygen, iron, and sulfydryl groups as determinants of stability and catalytic activity. Journal of Biological Chemistry, 255, 4137–4143.

    PubMed  CAS  Google Scholar 

  • Kwik-Uribe, C. L., Golub, M. S., & Keen, C. L. (2000). Chronic marginal iron intakes during early development in mice alter brain iron concentrations and behavior despite postnatal iron supplementation. Journal of Nutrition, 130, 2040–2048.

    PubMed  CAS  Google Scholar 

  • Le Saux, M., & Di Paolo, T. (2006). Influence of oestrogenic compounds on monoamine transporters in rat striatum. Journal of Neuroendocrinology, 18, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. C., McKnight, G. S., & Palmiter, R. D. (1978). The action of estrogen and progesterone on the expression of the transferrin gene. A comparison of the response in chick liver and oviduct. Journal of Biological Chemistry, 253, 3494–3503.

    PubMed  CAS  Google Scholar 

  • Levesque, D., & Di Paolo, T. (1990). Effect of the rat estrous cycle at ovariectomy on striatal D-1 dopamine receptors. Brain Research Bulletin, 24, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Li, D. (1998). Effects of iron deficiency on iron distribution and gamma-aminobutyric acid (GABA) metabolism in young rat brain tissues. Hokkaido Igaku Zasshi, 73, 215–225.

    PubMed  CAS  Google Scholar 

  • Lipschitz, D. A., Cook, J. D., & Finch, C. A. (1974). A clinical evaluation of serum ferritin as an index of iron stores. New England Journal of Medicine, 290, 1213–1216.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46, 703–713.

    Article  PubMed  CAS  Google Scholar 

  • Lozoff, B. (1989). Iron and learning potential in childhood. Bulletin of the New York Academy of Medicine, 65, 1050–1066; discussion 1085–1058.

    PubMed  Google Scholar 

  • Lozoff, B., Beard, J., Connor, J., Barbara, F., Georgieff, M., & Schallert, T. (2006). Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutritional Reviews, 64, S34–S43; discussion S72–S91.

    Google Scholar 

  • Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., & Wolf, A. W. (2000). Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics, 105, E51.

    Article  PubMed  CAS  Google Scholar 

  • Mackler, B., Person, R., Miller, L. R., & Finch, C. A. (1979). Iron deficiency in the rat: Effects on phenylalanine metabolism. Pediatric Research, 13, 1010–1011.

    Article  PubMed  CAS  Google Scholar 

  • Mayfield, R. D., & Zahniser, N. R. (2001). Dopamine D2 receptor regulation of the dopamine transporter expressed in Xenopus laevis oocytes is voltage-independent. Molecular Pharmacology, 59, 113–121.

    PubMed  CAS  Google Scholar 

  • McArdle, H. J., Andersen, H. S., Jones, H., & Gambling, L. (2006). Fetal programming: Causes and consequences as revealed by studies of dietary manipulation in rats – A review. Placenta, 27(Suppl. A), S56–S60.

    Article  PubMed  CAS  Google Scholar 

  • Meiergerd, S. M., Patterson, T. A., & Schenk, J. O. (1993). D2 receptors may modulate the function of the striatal transporter for dopamine: Kinetic evidence from studies in vitro and in vivo. Journal of Neurochemistry, 61, 764–767.

    Article  PubMed  CAS  Google Scholar 

  • Merens, W., Willem Van der Does, A. J., & Spinhoven, P. (2007). The effects of serotonin manipulations on emotional information processing and mood. Journal of Affective Disorders, 103, 43–62.

    Article  PubMed  CAS  Google Scholar 

  • Minneman, K. P., Dibner, M. D., Wolfe, B. B., & Molinoff, P. B. (1979). beta1- and beta2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science, 204, 866–868.

    Article  PubMed  CAS  Google Scholar 

  • Molinoff, P. B., Brimijoin, S., & Axelrod, J. (1972). Induction of dopamine hydroxylase and tyrosine hydroxylase in rat hearts and sympathetic ganglia. Journal of Pharmacology and Experimental Therapeutics, 182, 116–129.

    PubMed  CAS  Google Scholar 

  • Nelson, C., Erikson, K., Pinero, D. J., & Beard, J. L. (1997). In vivo dopamine metabolism is altered in iron-deficient anemic rats. Journal of Nutrition, 127, 2282–2288.

    PubMed  CAS  Google Scholar 

  • Oner, O., Alkar, O. Y., & Oner, P. (2008). Relation of ferritin levels with symptom ratings and cognitive performance in children with attention deficit-hyperactivity disorder. Pediatrics International, 50, 40–44.

    Article  PubMed  CAS  Google Scholar 

  • Oner, P., & Oner, O. (2007). Relationship of ferritin to symptom ratings children with attention deficit hyperactivity disorder: Effect of comorbidity. Child Psychiatry and Human Development, 39(3), 323–330.

    Google Scholar 

  • Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., & Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proceedings of the National Academy of Science USA, 95, 10734–10739.

    Article  CAS  Google Scholar 

  • Patiroglu, T., & Dogan, P. (1991). Iron deficiency anemia and catecholamine metabolism. Indian Pediatrics, 28, 51–56.

    PubMed  CAS  Google Scholar 

  • Pinero, D., Jones, B., & Beard, J. (2001). Variations in dietary iron alter behavior in developing rats. Journal of Nutrition, 131, 311–318.

    PubMed  CAS  Google Scholar 

  • Pinero, D. J., Li, N. Q., Connor, J. R., & Beard, J. L. (2000). Variations in dietary iron alter brain iron metabolism in developing rats. Journal of Nutrition, 130, 254–263.

    PubMed  CAS  Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., et al. (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proceedings of the National Academy of Sciences USA, 95, 14476–14481.

    Article  CAS  Google Scholar 

  • Ramsey, A. J., & Fitzpatrick, P. F. (1998). Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: Evidence for a novel regulatory mechanism. Biochemistry, 37, 8980–8986.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R., Tkac, I., Townsend, E. L., Gruetter, R., & Georgieff, M. K. (2003). Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. Journal of Nutrition, 133, 3215–3221.

    PubMed  CAS  Google Scholar 

  • Roncagliolo, M., Garrido, M., Walter, T., Peirano, P., & Lozoff, B. (1998). Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: Delayed maturation of auditory brainstem responses. American Journal of Clinical Nutrition, 68, 683–690.

    PubMed  CAS  Google Scholar 

  • Ruiz, I. G., de la Torre, P., Diaz, T., Esteban, E., Morillas, J. D., Munoz-Yague, T., et al. (2000). Sp family of transcription factors is involved in iron-induced collagen alpha1(I) gene expression. DNA and Cell Biology, 19, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Sharman, D. F. (1973). The catabolism of catecholamines. Recent studies. British Medical Bulletin, 29, 110–115.

    PubMed  CAS  Google Scholar 

  • Shukla, A., Agarwal, K. N., Chansuria, J. P., & Taneja, V. (1989). Effect of latent iron deficiency on 5-hydroxytryptamine metabolism in rat brain. Journal of Neurochemistry, 52, 730–735.

    Article  PubMed  CAS  Google Scholar 

  • Siddappa, A. J., Rao, R. B., Wobken, J. D., Leibold, E. A., Connor, J. R., & Georgieff, M. K. (2002). Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. Journal of Neuroscience Research, 68, 761–775.

    Article  PubMed  CAS  Google Scholar 

  • Siddappa, A. M., Georgieff, M. K., Wewerka, S., Worwa, C., Nelson, C. A., & Deregnier, R. A. (2004). Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatric Research, 55, 1034–1041.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. D., & Justice, J. B. (1994). The effect of inhibition of synthesis, release, metabolism and uptake on the microdialysis extraction fraction of dopamine. Journal of Neuroscience Methods, 54, 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M., & Beard, J. L. (1989). Norepinephrine turnover in iron deficiency: Effect of two semi-purified diets. Life Science, 45, 341–347.

    Article  CAS  Google Scholar 

  • Taneja, V., Mishra, K., & Agarwal, K. N. (1986). Effect of early iron deficiency in rat on the gamma-aminobutyric acid shunt in brain. Journal of Neurochemistry, 46, 1670–1674.

    Article  PubMed  CAS  Google Scholar 

  • Teng, C. (1995). Mouse lactoferrin gene: A marker for estrogen and epidermal growth factor. Environmental Health Perspectives, 103(Suppl. 7), 17–20.

    PubMed  CAS  Google Scholar 

  • Tobin, B. W., & Beard, J. L. (1990). Interactions of iron deficiency and exercise training relative to tissue norepinephrine turnover, triiodothyronine production and metabolic rate in rats. Journal of Nutrition, 120, 900–908.

    PubMed  CAS  Google Scholar 

  • Unger, E. L., Paul, T., Murray-Kolb, L. E., Felt, B., Jones, B. C., & Beard, J. L. (2007). Early iron deficiency alters sensorimotor development and brain monoamines in rats. Journal of Nutrition, 137, 118–124.

    PubMed  CAS  Google Scholar 

  • Voorhess, M. L., Stuart, M. J., Stockman, J. A., & Oski, F. A. (1975). Iron deficiency anemia and increased urinary norepinephrine excretion. Journal of Pediatrics, 86, 542–547.

    Article  PubMed  CAS  Google Scholar 

  • Walker, S. P., Wachs, T. D., Gardner, J. M., Lozoff, B., Wasserman, G. A., Pollitt, E., et al. (2007). Child development: risk factors for adverse outcomes in developing countries. Lancet, 369, 145–157.

    Article  PubMed  Google Scholar 

  • Ward, K. L., Tkac, I., Jing, Y., Felt, B., Beard, J., Connor, J., et al. (2007). Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. Journal of Nutrition, 137, 1043–1049.

    PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M., Thoa, N. B., Johnson, D. G., Kopin, I. J., & Axelrod, J. (1971). Proportional release of norepinephrine and dopamine- -hydroxylase from sympathetic nerves. Science, 174, 1349–1351.

    Article  PubMed  CAS  Google Scholar 

  • Wiesinger, J. A., Buwen, J. P., Cifelli, C. J., Unger, E. L., Jones, B. C., & Beard, J. L. (2007). Down-regulation of dopamine transporter by iron chelation in vitro is mediated by altered trafficking, not synthesis. Journal of Neurochemistry, 100, 167–179.

    Article  PubMed  CAS  Google Scholar 

  • Winkelman, J. W., Allen, R. P., Tenzer, P., & Hening, W. (2007). Restless legs syndrome: Nonpharmacologic and pharmacologic treatments. Geriatrics, 62, 13–16.

    PubMed  Google Scholar 

  • Yajima, S., Lee, S. H., Minowa, T., & Mouradian, M. M. (1998). Sp family transcription factors regulate expression of rat D2 dopamine receptor gene. DNA and Cell Biology, 17, 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Yehdua, S. (1990). Neurochemical basis of behavioral effects of brain iron deficiency in animals. In J. Dobbing (Ed.), Brain, behavior, and iron in the infant diet (pp. 83–106). London: Springer Verlag.

    Google Scholar 

  • Yehuda, S., & Youdim, M. B. (1984). The increased opiate action of beta-endorphin in iron-deficient rats: the possible involvement of dopamine. European Journal of Pharmacology, 17, 104(3–4), 245–251.

    Google Scholar 

  • Yehuda, S., & Youdim, M. B. (1989). Brain iron: A lesson from animal models. American Journal of Clinical Nutrition, 50, 618–625; discussion 625–619.

    PubMed  Google Scholar 

  • Youdim, M. B. (2000). Nutrient deprivation and brain function: Iron. Nutrition, 16, 504–508.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, M. B., Ben-Shachar, D., & Yehuda, S. (1989). Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. American Journal of Clinical Nutrition, 50, 607–615; discussion 615–607.

    PubMed  Google Scholar 

  • Youdim, M. B., Ben-Shachar, D., Yehuda, S., & Ashkenazi, R. (1983). Brain iron and dopamine receptor function. In P. Mandel & F. DeFeudis (Eds.), CNS receptors from molecular pharmacology to behavior (pp. 309–322). New York: Raven Press.

    Google Scholar 

  • Youdim, M. B., & Green, A. R. (1978). Iron deficiency and neurotransmitter synthesis and function. Proceedings of the Nutrition Society, 37, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Yu, G. S., Steinkirchner, T. M., Rao, G. A., & Larkin, E. C. (1986). Effect of prenatal iron deficiency on myelination in rat pups. American Journal of Pathology, 125, 620–624.

    PubMed  CAS  Google Scholar 

  • Yu, J. S. (1998). Activation of protein phosphatase 2A by the Fe2+/ascorbate system. Journal of Biochemistry (Tokyo), 124, 225–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bianco, L., Unger, E., Beard, J. (2009). Iron Deficiency and Neuropharmacology. In: Yehuda, S., Mostofsky, D. (eds) Iron Deficiency and Overload. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-462-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-462-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-22-0

  • Online ISBN: 978-1-59745-462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics