Skip to main content

Fluorochromes and Fluorescence

  • Chapter
Flow Cytometry

Abstract

To facilitate flow cytometry, there is a need for cells to be labeled with fluorochromes. However, because of the spectral properties of fluorochromes, the fluorescence associated with one fluorochrome may be detected by more than one detector, producing spectral overlap which requires compensation. However, the number of useful fluorochromes has increased steadily over the years, and more recently there have been significant advances in techniques for compensating for spectral overlap between several fluorescent signals, so it is likely that the number of fluorochromes used in analysis will increase further. The basic principles of how light and matter interact, the nature of fluorescence, and the properties of various fluorochromes that are used for different purposes are described in this chapter. Some examples of the many parameters that can be measured using fluorescence and the fluorescent probes that can be used are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mason, W. T. (ed.) (1999) Fluorescent and Luminescent Probes for Biological Activity, 2nd edit. Academic Press, New York.

    Google Scholar 

  2. Haugland, R. P. (2002) Handbook of Fluorescent Probes and Research Chemicals, 8th edit. Molecular Probes, Eugene, OR.

    Google Scholar 

  3. Shapiro, H. M. (2003) Practical Flow Cytometry, 4th edit. Wiley-Liss, New York.

    Google Scholar 

  4. Cantor, C. R., and Schimmel, P. R. (1980) Biophysical Chemistry, Part 2, Freeman, London, pp. 433–465.

    Google Scholar 

  5. Monici, M., Pratesi, R., Bernabei, P.A., et al. (1995) Natural fluorescence of white blood cells: spectroscopic and imaging study. J. Photochem. Photobiol. B. 30, 29–37.

    Article  PubMed  CAS  Google Scholar 

  6. Forster, T. (1959) Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 27, 7–17.

    Article  Google Scholar 

  7. Sebestyén, Z., Nagy, P., Horvath, G., et al. (2002) Long wavelength fluophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48, 124–135.

    Article  PubMed  Google Scholar 

  8. Nguyen, D. C., Keller, R.A., Jett, J. H., and Martin, J. C. (1987) Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser induced fluorescence. Anal. Chem. 59, 2158–2202.

    Article  Google Scholar 

  9. McGrath, J. C., Arribas, S., and Daly, C. J. (1996) Fluorescent ligands for the study of receptors. Trends Pharmacol. Sci. 17, 393–399.

    Article  PubMed  CAS  Google Scholar 

  10. Haugland, R. P. (1995) Coupling of monoclonal antibodies with fluophores, in Methods in Molecular Biology, Vol. 45, Monoclonal Antibody Protocols (Davis, W.C., ed.), Humana Press, Totowa, NJ, pp. 205–211.

    Chapter  Google Scholar 

  11. Roederer, M. (2004) Conjugation of monoclonal antibodies, http://www.drmr. com/abcon/

  12. Haugland, R. P., and You, W. W. (1995) Coupling of monoclonal antibodies with biotin, in Methods in Molecular Biology, Vol. 45, Monoclonal Antibody Protocols (Davis, W.C., ed.), Humana Press, Totowa, NJ, pp. 223–233.

    Google Scholar 

  13. Latt, S. A., and Langlois, R. G. (1990) Fluorescent probes of DNA microstructure and DNA synthesis In: Melamed, M.R., Lindmo, T., Mendelsohn, M.I. (eds.) Flow Cytometry and Sorting, 2nd edit. Wiley-Liss, New York, pp. 249–290.

    Google Scholar 

  14. Waggoner, A. S. (1990) Fluorescent probes for cytometry, in Flow Cytometry and Sorting, 2nd edit. (Melamed, M.R., Lindmo, T., Mendelsohn, M.L., eds.), Wiley-Liss, New York, pp. 209–215.

    Google Scholar 

  15. Goolsby, C. L. (2001) Nucleic acids, in Cytometric Analysis of Cell Phenotype and Function, McCarthy, D. A., and Macey, M. G. (eds.), Cambridge University Press, Cambridge, UK, pp. 271–291.

    Google Scholar 

  16. Kapoor, V. and Telford, W. G. (2004) Telomere length measurement by fluorescence in situ hybridization and flow cytometry. Methods Mol. Biol. 263, 385–398.

    PubMed  CAS  Google Scholar 

  17. Smith, P J., Wiltshire, M., Davies, S., Patterson, L. H., and Hoy, T. (1999) A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry. J. Immunol. Methods 229, 131–139.

    Article  PubMed  CAS  Google Scholar 

  18. Lanier, L. L., and Recktenwald, D. J. (1991) Multicolor immunofluorescence and flow cytometry methods. A Companion to Methods in Enzymology 2, 192–199.

    Article  CAS  Google Scholar 

  19. Defrancesco, L. (1997) The death of a cell: a profile of apoptosis kits and reagents. Scientist 11, 22–26.

    Google Scholar 

  20. Defrancesco, L. (1999) Dead again: adventures in apoptosis. Scientist 13, 17–21.

    Google Scholar 

  21. Steensma, D. P., Timm, M., and Witzig, T. E. (2003) How cytometric methods for detection and quantification of apoptosis. Methods Mol. Med. 85, 323–332.

    PubMed  CAS  Google Scholar 

  22. Haugland, R. P. (1994) Spectra of fluorescent dyes used in flow cytometry. In: Methods in Cell Biology, Vol. 42, Part B, 2nd edit. Academic Press, New York, pp. 641–663.

    Google Scholar 

  23. Levelt, C. N., and Eichmann, K. (1994) Streptavidin-Tri-Color is a reliable marker for nonviable cells subjected to permeabilization or fixation. Cytometry 15, 84–86.

    Article  PubMed  CAS  Google Scholar 

  24. Tanner, M. K., and Wellhausen, S. R. (1998) How cytometric detection of fluorescent redistributional dyes for measurement of cell transmembrane potential. In: Jaroszeski, M. J., Heller, R. (eds.) Methods in Molecular Biology, Vol. 91, Humana Press, Totowa, NJ, pp. 85–95.

    Google Scholar 

  25. Ferlini, C., Di Cesare, S., Rainaldi, G., et al. (1996) How cytometric analysis of the early phases of apoptosis by cellular and nuclear techniques. Cytometry 24, 106–115.

    Article  PubMed  CAS  Google Scholar 

  26. Plested, J. S., and Coull, P. A. (2003) Opsonophagocytosis assay using flow cytometry. Methods Mol. Med. 71, 263–275.

    PubMed  CAS  Google Scholar 

  27. Bagwell, C. B., and Adams, E. G. (1993) Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. N. Y. Acad. Sci. 677, 167–184.

    Article  PubMed  CAS  Google Scholar 

  28. Ortolani, C. (1997) A multiparameter approach to immunophenotyping. Originally published in the Purdue Cytometry CD-ROM Series,volume 3; but also available at http://www.cyto.purdue.edu/flowcyt/research/cytotech/amfc/data/page9.html

  29. Roederer, M. (2000) Compensation: an informal perspective, http://www.drmr.com/ compensation/

  30. Roederer, M. (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45, 194–205.

    Article  PubMed  CAS  Google Scholar 

  31. Bagwell, C. B. (2005) Hyperlog-a flexible log-like transform for negative, zero, and positive valued data. Cytometry A 64, 34–42.

    PubMed  Google Scholar 

  32. Tang, J. W., Parks, D. R., Moore, W. A., Herzenberg, L. A., and Herzenberg, L. A. (2004) New approaches to fluorescence compensation and visualization of FACS data. Clinical Immunology 10, 277–283.

    Article  Google Scholar 

  33. Maecker, H. T., Frey, T., Nomura, L. E., and Trotter, J. (2004) Selecting fluorochromes for maximum sensitivity. Cytometry A 62, 169–173.

    Article  PubMed  Google Scholar 

  34. Baumgarth, N., and Roederer, M. (2000) A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods 243, 77–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

McCarthy, D.A. (2007). Fluorochromes and Fluorescence. In: Macey, M.G. (eds) Flow Cytometry. Humana Press. https://doi.org/10.1007/978-1-59745-451-3_3

Download citation

Publish with us

Policies and ethics