Skip to main content

Nutritional Models of Type 2 Diabetes Mellitus

  • Protocol
  • First Online:
Type 2 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 560))

Summary

In order to better understand the events which precede and precipitate the onset of type 2 diabetes (T2DM) several nutritional animal models have been developed. These models are generated by manipulating the diet of either the animal itself or its mother during her pregnancy and, in comparison to traditional genetic and knock out models, have the advantage that they more accurately reflect the aetiology of human T2DM. This chapter will discuss some of the most widely used nutritional models of T2DM: Diet-induced obesity (DIO) in adult rodents, and studies of prenatal and postnatal nutrition in offspring of mothers fed a low-protein diet or overnourished during pregnancy. Several common mechanisms have been identified through which these nutritional manipulations can lead to metabolic disease, including pancreatic beta-cell dysfunction, impaired insulin signalling in skeletal muscle and the excess accumulation of visceral adipose tissue and consequent deposition of non-esterified fatty acids in peripheral tissues resulting in peripheral insulin resistance. The following chapter will discuss each of these nutritional models, their application and relationship to human aetiology, and will highlight the important insights these models have provided into the pathogenesis of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buettner, R., Scholmerich, J., and Bollheimer, L. C. (2007). High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15, 798–808

    Article  PubMed  CAS  Google Scholar 

  2. Portha, B., Blondel, O., Serradas, P., McEvoy, R., Giroix, M. H., Kergoat, M., and Bailbe, D. (1989),. The rat models of non-insulin dependent diabetes induced by neonatal streptozotocin. Diabetes Metab 15, 61–75

    Google Scholar 

  3. Bray, G. A. (2004). Medical consequences of obesity. J Clin Endocrinol Metab 89, 2583–2589

    Article  PubMed  CAS  Google Scholar 

  4. Goralski, K. B. and Sinal, C. J. (2007). Type 2 diabetes and cardiovascular disease: getting to the fat of the matter. Can J Physiol Pharmacol 85, 113–132

    Article  PubMed  CAS  Google Scholar 

  5. Smith, S. R., Lovejoy, J. C., Greenway, F., Ryan, D., deJonge, L., de la Bretonne, J., Volafova, J., and Bray, G. A. (2001). Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50, 425–435

    Article  PubMed  CAS  Google Scholar 

  6. Ravussin, E. and Smith, S. R. (2002). Increased fat uptake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes. Ann N Y Acad Sci 967, 363–378

    Article  PubMed  CAS  Google Scholar 

  7. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A., and Feinglos, M. N. (1988). Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167

    Article  PubMed  CAS  Google Scholar 

  8. Roberts, C. K., Berger, J. J., and Barnard, R. J. (2002). Long-term effects of diet on leptin, energy intake, and activity in a model of diet-induced obesity. J Appl Physiol 93, 887–893

    PubMed  CAS  Google Scholar 

  9. Bayol, S. A., Farrington, S. J., and Stickland, N. C. (2007). A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr 98, 843–851

    Article  PubMed  CAS  Google Scholar 

  10. Taylor, P. D., McConnell, J., Khan, I. Y., Holemans, K., Lawrence, K. M., Asare-Anane, H., Persaud, S. J., Jones, P. M., Petrie, L., Hanson, M. A., and Poston, L. (2005). Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol 288, R134–R139

    Article  PubMed  Google Scholar 

  11. Woods, S. C., Seeley, R. J., Rushing, P. A., D’Alessio, D., and Tso, P. (2003). A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133, 1081–1087

    PubMed  CAS  Google Scholar 

  12. Qiu, L., List, E. O., and Kopchick, J. J. (2005). Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol Cell Proteomics 4, 1311–1318

    Article  PubMed  Google Scholar 

  13. Corbett, S. W., Stern, J. S., and Keesey, R. E. (1986), Energy expenditure in rats with diet-induced obesity. Am J Clin Nutr 44, 173–180

    PubMed  Google Scholar 

  14. Yaqoob, P., Sherrington, E. J., Jeffery, N. M., Sanderson, P., Harvey, D. J., Newsholme, E. A., and Calder, P. C. (1995), Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol 27, 297–310

    Article  PubMed  CAS  Google Scholar 

  15. Levin, B. E., Hogan, S., and Sullivan, A. C. (1989), Initiation and perpetuation of obesity and obesity resistance in rats. Am J Physiol Regul Integr Comp Physiol 256, R766–R771

    CAS  Google Scholar 

  16. Clegg, D. J., Benoit, S. C., Reed, J. A., Woods, S. C., Dunn-Meynell, A., and Levin, B. E. (2005). Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288, R981–R986

    Article  PubMed  CAS  Google Scholar 

  17. Levin, B. E., Dunn-Meynell, A. A., Balkan, B., and Keesey, R. E. (1997). Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 273, R725–R730

    CAS  Google Scholar 

  18. Tkacs, N. C. and Levin, B. E. (2004). Obesity-prone rats have preexisting defects in their counterregulatory response to insulin-induced hypoglycemia. Am J Physiol Regul Integr Comp Physiol 287, R1110–R1115

    Article  PubMed  CAS  Google Scholar 

  19. Wassink, A. M., Olijhoek, J. K., and Visseren, F. L. (2007), The metabolic syndrome: metabolic changes with vascular consequences. Eur J Clin Invest 37, 8–17

    Article  PubMed  CAS  Google Scholar 

  20. Shafrir, E., Ziv, E., and Kalman, R. (2006). Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J 47, 212–224

    PubMed  CAS  Google Scholar 

  21. Kaiser, N., Nesher, R., Donath, M. Y., Fraenkel, M., Behar, V., Magnan, C., Ktorza, A., Cerasi, E., and Leibowitz, G. (2005). Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 54, S137–S144

    Article  PubMed  CAS  Google Scholar 

  22. Maislos, M., Medvedovskv, V., Sztarkier, I., Yaari, A., and Sikuler, E. (2006). Psammomys obesus (sand rat), a new animal model of non-alcoholic fatty liver disease. Diabetes Res Clin Pract 72, 1–5

    Article  PubMed  Google Scholar 

  23. Barker, D. J. P., Bull, A. R., Osmond, C., and Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. Br Med J 301, 259–262

    Article  CAS  Google Scholar 

  24. Hales, C. N. and Barker, D. J. P. (2001). The thrifty phenotype hypothesis. Br Med Bull 60, 5–20

    Article  PubMed  CAS  Google Scholar 

  25. McMillen, I. C. and Robinson, J. S. (2005), Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85, 571–633

    Article  PubMed  CAS  Google Scholar 

  26. Ravelli, A. C., van der Meulen, J. H., Osmond, C., Barker, D. J., and Bleker, O. P. (1999). Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 70, 811–816

    PubMed  CAS  Google Scholar 

  27. Ravelli, A. C. J., van der Meulen, J. H. P., Michels, R. P. J., Osmond, C., Barker, D. J. P., Hales, C. N., and Bleker, O. P. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177

    Article  PubMed  CAS  Google Scholar 

  28. Pettit, D. J. and Knowler, W. C. (1998). Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care 21, B138–B141

    Article  Google Scholar 

  29. Ozanne, S. E. (2001). Metabolic programming in animals: Type 2 diabetes. Br Med Bull 60, 143–152

    Article  PubMed  CAS  Google Scholar 

  30. Armitage, J. A., Khan, I. Y., Taylor, P. D., Nathanielsz, P. W., and Poston, L. (2004), Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?. J Physiol (Lond) 561, 355–377

    Article  CAS  Google Scholar 

  31. Bavdekar, A., Yajnik, C., Fall, C., Bapat, S., Pandit, A., Deshpande, V., Bhave, S., Kellingray, S., and Joglekar, C. (1999). Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both?. Diabetes 48, 2422–2429

    Article  PubMed  CAS  Google Scholar 

  32. McMillen, I. C., Adam, C. L., and Muhlhausler, B. S. (2005). Early origins of obesity: programming the appetite regulatory system. J Physiol 565, 9–17

    Article  PubMed  CAS  Google Scholar 

  33. Hales, C. N. and Barker, D. J. P. (2001). The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull 60, 5–20

    Article  PubMed  CAS  Google Scholar 

  34. Holemans, K., Verhaeghe, J., Dequeker, J., and Van Assche, F. A. (1996). Insulin sensitivity in adult female rats subjected to malnutrition during the perinatal period. J Soc Gynecol Investig 3, 71–77

    Article  PubMed  CAS  Google Scholar 

  35. Thompson, N. M., Norman, A. M., Donkin, S. S., Shankar, R. R., Vickers, M. H., Miles, J. L., and Breier, B. H. (2007). Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinol Metab Clin North Am 148, 2345–2354

    CAS  Google Scholar 

  36. Ozanne, S. E., Jensen, C. B., Tingey, K. J., Storgaard, H., Madsbad, S., and Vaag, A. A. (2005). Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48, 547–552

    Article  PubMed  CAS  Google Scholar 

  37. Hales, C. N., Desai, M., Ozanne, S. E., and Crowther, N. J. (1996). Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans 24, 341–350

    PubMed  CAS  Google Scholar 

  38. Petry, C. J., Ozanne, S. E., Wang, C. L., and Hales, C. N. (1997). Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci (Lond) 93, 147–152

    Google Scholar 

  39. Snoeck, A., Remacle, C., Reusens, B., and Hoet, J. J. (1990). Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57, 107–118

    Article  PubMed  CAS  Google Scholar 

  40. Ozanne, S. E., Smith, G. D., Tikerpae, J., and Hales, C. N. (1996). Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams. Am J Physiol Endocrinol Metab 270, E559–E564

    CAS  Google Scholar 

  41. Ozanne, S. E., Nave, B. T., Wang, C. L., Shepherd, P. R., Prins, J., and Smith, G. D. (1997). Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am J Physiol Endocrinol Metab 273, E46–E51

    CAS  Google Scholar 

  42. Ozanne, S. E., Wang, C. L., Coleman, N., and Smith, G. D. (1996). Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol Endocrinol Metab 271, E1128–E1134

    CAS  Google Scholar 

  43. Ozanne, S. E., Olsen, G. S., Hansen, L. L., Tingey, K. J., Nave, B. T., Wang, C. L., Hartil, K., Petry, C. J., Buckley, A. J., and Mosthaf-Seedorf, L. (2003). Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 177, 235–241

    Article  PubMed  CAS  Google Scholar 

  44. Ozanne, S. E., Jensen, C. B., Tingey, K. J., Storgaard, H., Madsbad, S., and Vaag, A. A. (2005). Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48, 547–552

    Article  PubMed  CAS  Google Scholar 

  45. Wadley, G. D., Siebel, A. L., Cooney, G. J., McConell, G. K., Wlodek, M. E., and Owens, J. A. (2008). Uteroplacental insufficiency and reducing litter size alters skeletal muscle mitochondrial biogenesis in a sex-specific manner in the adult rat. Am J Physiol Endocrinol Metab 294, E861–E869

    Article  PubMed  CAS  Google Scholar 

  46. Siebel, A. L., Mibus, A., De Blasio, M. J., Westcott, K. T., Morris, M. J., Prior, L., Owens, J. A., and Wlodek, M. E. (2008). Improved lactational nutrition and postnatal growth ameliorates impairment of glucose tolerance by uteroplacental insufficiency in male rat offspring. Endocrinology 149, 3067–3076

    Article  PubMed  CAS  Google Scholar 

  47. Srinivasan, M., Katewa, S. D., Palaniyappan, A., Pandya, J. D., and Patel, M. S. (2006). Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab 291, E792–E799

    Article  PubMed  CAS  Google Scholar 

  48. Muhlhausler, B. S., Adam, C. L., Findlay, P. A., Duffield, J. A., and McMillen, I. C. (2006). Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20, 1257–1259

    Article  PubMed  Google Scholar 

  49. Samuelsson, A.-M., Matthews, P. A., Argenton, M., Christie, M. R., McConnell, J. M., Jansen, E. H. J. M., Piersma, A. H., Ozanne, S. E., Twinn, D. F., Remacle, C., Rowlerson, A., Poston, L., and Taylor, P. D. (2008). Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51, 383–392

    Article  PubMed  CAS  Google Scholar 

  50. Srinivasan, M., Aalinkeel, R., Song, F., Mitrani, P., Pandya, J. D., Strutt, B., Hill, D. J., and Patel, M. S. (2006). Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype. Am J Physiol Endocrinol Metab290, E129–E134

    Article  PubMed  Google Scholar 

  51. Cerf, M. E., Williams, K., Chapman, C. S., and Louw, J. (2007). Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas 34, 347–353

    Article  PubMed  CAS  Google Scholar 

  52. Muhlhausler, B. S., Roberts, C. T., McFarlane, J. R., Kauter, K. G., and McMillen, I. C. (2002). Fetal leptin is a signal of fat mass independent of maternal nutrition in ewes fed at or above maintenance energy requirements. Biol Reprod 67, 493–499

    Article  PubMed  CAS  Google Scholar 

  53. Muhlhausler, B. S., Duffield, J. A., and McMillen, I. C. (2007). Increased maternal nutrition stimulates peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}), adiponectin and leptin mRNA expression in adipose tissue before birth. Endocrinology 148, 878–885

    Article  PubMed  CAS  Google Scholar 

  54. Kasser, T. R., Martin, R. J., and Allen, C. E. (1981). Effect of gestational alloxan diabetes and fasting on fetal lipogenesis and lipid deposition in pigs. Biol Neonate 40, 105–112

    Article  PubMed  CAS  Google Scholar 

  55. Ezekwe, M. O. and Martin, R. J. (1980). The effects of maternal alloxan diabetes on body composition, liver enzymes and metabolism and serum metabolites and hormones of fetal pigs. Horm Metab Res 12, 136–139

    Article  PubMed  CAS  Google Scholar 

  56. Bayol, S. A., Simbi, B. H., Bertrand, J. A., and Stickland, N. C. (2008). Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 586, 3219–3230

    Article  PubMed  CAS  Google Scholar 

  57. Padoan, A., Rigano, S., Ferrazzi, E., Beaty, B. L., Battaglia, F. C., and Galan, H. L. (2004). Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am J Obstet Gynecol 191, 1459–1464

    Article  PubMed  Google Scholar 

  58. Crescenzo, R., Samec, S., Antic, V., Rohner-Jeanrenaud, F., Seydoux, J., Montani, J.-P., and Dulloo, A. G. (2003). A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Acta Paediatr 52, 1090–1097

    CAS  Google Scholar 

  59. Ibanez, L., Ong, K., Dunger, D. B., and de Zegher, F. (2006). Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab 91, 2153–2158

    Article  PubMed  CAS  Google Scholar 

  60. Jaquet, D., Gaboriau, A., Czernichow, P., and Levy-Marchal, C. (2000). Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 85, 1401–1406

    Article  PubMed  CAS  Google Scholar 

  61. Ozanne, S. E. (2001). Metabolic programming in animals. Br Med Bull 60, 143–152

    Article  PubMed  CAS  Google Scholar 

  62. Kind, K. L., Clifton, P. M., Grant, P. A., Owens, P. C., Sohlstrom, A., Roberts, C. T., Robinson, J. S., and Owens, J. A. (2003). Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig. Am J Physiol Regul Integr Comp Physiol 284, R140–R152

    PubMed  CAS  Google Scholar 

  63. De Blasio, M. J., Gatford, K. L., McMillen, I. C., Robinson, J. S., and Owens, J. A. (2006). Placental restriction of fetal growth increases insulin action, growth and adiposity in the young lamb. Endocrinology 148, 1350–1358

    Article  PubMed  Google Scholar 

  64. Alexander, G. (1978). Quantitative development of adipose tissue in foetal sheep. Aust J Biol Sci 31, 489–503

    PubMed  CAS  Google Scholar 

  65. Merklin, R. J. (1973). Growth and distribution of human fetal brown fat. Anat Res 178, 637–646

    Article  Google Scholar 

  66. Højlund, K., Mogensen, M., Sahlin, K., and Beck-Nielsen, H. (2008), Mitochondrial dysfunction in type 2 diabetes and obesity. Endocrinol Metabol Clin North Am 37, 713–731

    Article  Google Scholar 

  67. Junien, C., Gallou-Kabani, C., Vigé, A., and Gross, M. S. (2005). Nutritional epigenomics: consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations. Ann Endocrinol (Paris) 66, S19–S28

    Google Scholar 

  68. Gallou-Kabani, C. and Junien, C. (2005). Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54, 1899–1906

    Article  PubMed  Google Scholar 

  69. Waterland, R. A., Travisano, M., Tahiliani, K. G., Rached, M. T., and Mirza, S. (2008).Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes 32, 1373–1379

    Article  Google Scholar 

  70. Haslam, D. W. and James, W. P. (2005). Obesity. Lancet 366, 1197–1209

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly Sara Mühlhausler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mühlhausler, B.S. (2009). Nutritional Models of Type 2 Diabetes Mellitus. In: Stocker, C. (eds) Type 2 Diabetes. Methods in Molecular Biology, vol 560. Humana Press. https://doi.org/10.1007/978-1-59745-448-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-448-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-15-2

  • Online ISBN: 978-1-59745-448-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics