Skip to main content

Biobank Informatics: Connecting Genotypes and Phenotypes

  • Protocol
  • First Online:
Methods in Biobanking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 675))

Abstract

The sequencing of the human genome, completed at the dawn of the twenty-first century, allows researchers to integrate new data on genetic risk factors with demographic and lifestyle data collected via modern communication technologies. The technical prerequisites now exist for merging these cascades of molecular genetic information, not only to national health registers, but also to epidemiology and clinical data.

Long-term storage of biological materials and data is a critical component of any epidemiological or clinical study. In designing Biobanks, informatics plays a vital role for the handling of samples and data in a timely fashion. Biobank Informatics contains important elements concerning definition, structure, and standardization of information that has been gathered from a multitude of sources from population-based registries, biobanks, patient records, and from large-scale molecular measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betsou, F., Ferguson, M., Jallal, B. and Litton, J.-E. (2004) Biobanks: accelerating molecular medicine, challenges facing the global biobanking community, in Life science insights (Z. Zimmerman, M. Swenson and B. Reeve, eds.), IDC, Framingham, MA. pp. 1–31.

    Google Scholar 

  2. Mahan, S., Ardlie, K. G., Krenitsky, K. F., Walsh, G. and Clough, G. (2004) Collaborative design for automated DNA storage that allows for rapid, accurate, large-scale studies. Assay Drug Dev Technol 2, 683–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ölund, G., Lilndqvist, P. and Litton, J.-E. (2007) BIMS: An information management system for biobanking in the 21st century. IBM Systems Journal 46, 171–82.

    Article  Google Scholar 

  4. Litton, J. E., Muilu, J., Bjorklund, A., Leinonen, A. and Pedersen, N. L. (2003) Data modeling and data communication in GenomEUtwin. Twin Res 6, 383–90.

    PubMed  Google Scholar 

  5. Haas, L. M., Lin, E. T. and Roth, M. A. (2002) Data integration through database federation. IBM Systems Journal 41, 578–96.

    Article  Google Scholar 

  6. Ollier, W., Sprosen, T. and Peakman, T. (2005) UK Biobank: from concept to reality. Pharmacogenomics 6, 639–46.

    Article  PubMed  Google Scholar 

  7. Rhodes, R. (2002) A Healthy Approach to Data. IBM Systems Magazine.

    Google Scholar 

  8. Achard, F., Vaysseix, G. and Barillot, E. (2001) XML, bioinformatics and data integration. Bioinformatics 17, 115–25.

    Article  PubMed  CAS  Google Scholar 

  9. IBM Corporation. WebSphere information integrator, http://www-01.ibm.com/soft ware/data/integration 2010. Accessed on 30th Sep. 2010

  10. Knoppers, B. M. and Saginur, M. (2005) The Babel of genetic data terminology. Nat Biotechnol 23, 925–7.

    Article  PubMed  CAS  Google Scholar 

  11. IBM Corporation. Data discovery and query builder, DB2 for i5/OS, http://www-03.ibm.com/systems/isoftware/db2 2010. Accessed on 30th Sep. 2010

  12. Peltonen, L. (2003) GenomEUtwin: a strategy to identify genetic influences on health and disease. Twin Res 6, 354–60.

    PubMed  Google Scholar 

  13. Herscovitz, E. (1999) Secure virtual private networks: the future of data communications. Int J Network Mgmt 9, 213–20.

    Article  Google Scholar 

  14. Cimino, J. J. and Zhu, X. (2006) The practical impact of ontologies on biomedical informatics, in IMIA yearbook of medical informatics (R. Haux and C. Kulikowski, eds.), Schattauer Verlagsgesellschaft mbH, Stuttgart. pp. 124–35.

    Google Scholar 

  15. Wang, A. Y., Barrett, J. W., Bentley, T., Markwell, D., Price, C., Spackman, K. A. and Stearns, M. Q. (2001) Mapping between SNOMED RT and Clinical terms version 3: a key component of the SNOMED CT development process. Proc AMIA Symp , 741–5.

    Google Scholar 

  16. http://www.who.int/classifications/icd/en/

  17. http://www.nlm.nih.gov/research/umls/about_umls.htm

  18. Selden, C. R. l. and Humphreys, B. L. (1997) Unified medical language system. Current Bibliographies in Medicine 8, 96

    Google Scholar 

  19. Rosse, C., Shapiro, L. G. and Brinkley, J. F. (1998) The digital anatomist foundational model: principles for defining and structuring its concept domain. Proc AMIA Symp , 820–4.

    Google Scholar 

  20. Rosse, C., Mejino, J. L., Modayur, B. R., Jakobovits, R., Hinshaw, K. P. and Brinkley, J. F. (1998) Motivation and organizational principles for anatomical knowledge representation: the digital anatomist symbolic knowledge base. J Am Med Inform Assoc 5, 17–40.

    Article  PubMed  CAS  Google Scholar 

  21. http://www.ifcc.org/index.php?option=com_content&task=blogcategory&id=91&Itemid=150

  22. Forrey, A. W., McDonald, C. J., DeMoor, G., Huff, S. M., Leavelle, D., Leland, D., Fiers, T., Charles, L., Griffin, B., Stalling, F., Tullis, A., Hutchins, K. and Baenziger, J. (1996) Logical observation identifier names and codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results. Clin Chem 42, 81–90.

    PubMed  CAS  Google Scholar 

  23. Stoeckert, C. J., Jr. and Parkinson, H. (2003) The MGED ontology: a framework for describing functional genomics experiments. Comp Funct Genomics 4, 127–32.

    Article  PubMed  Google Scholar 

  24. http://www.geneontology.org/

  25. http://en.wikipedia.org/wiki/Main_Page

  26. Manfreda, K. L. and Vehovar, V. (2002) Survey design features influencing response rates in web surveys. in The International Conference on Improving Surveys, University of Copenhagen, Denmark.

    Google Scholar 

  27. Cook, C., Heath, F. and Thompson, R. L. (2000) A meta-analysis of response rates in web- or internet-based surveys. Educ Psychol Meas 60, 821–36.

    Article  Google Scholar 

  28. Wyatt, J. C. (2000) When to use web-based surveys. J Am Med Inform Assoc 7, 426–9.

    Article  PubMed  CAS  Google Scholar 

  29. Sax, L. J., Gilmartin, S. K. and Bryant, A. N. (2003) Assessing response rates and nonresponse bias in web and paper surveys, in Research in higher education, vol. 44, Springer, Netherlands. pp. 409–32.

    Google Scholar 

  30. Miller, E. T., Neal, D. J., Roberts, L. J., Baer, J. S., Cressler, S. O., Metrik, J. and Marlatt, G. A. (2002) Test-retest reliability of alcohol measures: is there a difference between internet-based assessment and traditional methods? Psychol Addict Behav 16, 56–63.

    Article  PubMed  Google Scholar 

  31. Jackob, N. and Zerback, T. (2006) Improving quality by lowering non-response: a guideline for online surveys. in Quality criteria in survey research VI, Cadenabbia, Italy.

    Google Scholar 

  32. Fricker, R. D. and Schonlau, L. (2002) Advantages and disadvantages of internet research surveys: evidence from the literature. Field Methods 14, 347–67.

    Article  Google Scholar 

  33. Ekman, A., Dickman, P. W., Klint, A., Weiderpass, E. and Litton, J. E. (2006) Feasibility of using web-based questionnaires in large population-based epidemiological studies. Eur J Epidemiol 21, 103–11.

    Article  PubMed  Google Scholar 

  34. Tolonen, H., Dobson, A. and Kulathinal, S. (2005) Effect on trend estimates of the difference between survey respondents and non-respondents: results from 27 populations in the WHO MONICA Project. Eur J Epidemiol 20, 887–98.

    Article  PubMed  Google Scholar 

  35. Fejer, R., Hartvigsen, J., Kyvik, K. O., Jordan, A., Christensen, H. W. and Hoilund-Carlsen, P. F. (2006) The Funen Neck and Chest Pain study: analysing non-response bias by using national vital statistic data. Eur J Epidemiol 21, 171–80.

    Article  PubMed  Google Scholar 

  36. Jousilahti, P., Salomaa, V., Kuulasmaa, K., Niemela, M. and Vartiainen, E. (2005) Total and cause specific mortality among participants and non-participants of population based health surveys: a comprehensive follow up of 54 372 Finnish men and women. J Epidemiol Community Health 59, 310–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Eric Litton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Litton, JE. (2011). Biobank Informatics: Connecting Genotypes and Phenotypes. In: Dillner, J. (eds) Methods in Biobanking. Methods in Molecular Biology, vol 675. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-423-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-423-0_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-995-6

  • Online ISBN: 978-1-59745-423-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics