Skip to main content

Molecular Targeting in Hepatocellular Carcinoma

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Globally, hepatocellular carcinoma (HCC) represents the fifth most common cause of cancer and is diagnosed in 500,000 patients annually. Recent molecular and epidemiologic analyses of tumor specimens suggest a complex and heterogeneous pathogenesis of HCC. Despite this hetergeneity, specific molecular pathways have been identified in the progression of HCC and there is increasing evidence that experimental approaches targeting these pathways have been initiated with a variety of targeted agents, which will be reviewed in this chapter. The potential of targeting therapeutics for HCC has been recently validated in a randomized Phase III clinical trial of sorafenib for advanced HCC. Some of the remaining challenges in using molecular targeted treatment for HCC will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancerburden: Globocan 2000. Int J Cancer 2001;94(2):153–6.

    Article  PubMed  CAS  Google Scholar 

  2. Tanaka Y, Hanada K, Mizokami M, Yeo AE, Shih JW, Gojobori T, et al. A comparison of the molecular clock of hepatitis C virus in theUnited States and Japan predicts that hepatocellular carcinomaincidence in the United States will increase over the next twodecades. Proc Natl Acad Sci USA 2002;99(24):15584–9.

    Article  PubMed  CAS  Google Scholar 

  3. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinomain the united states. N Engl J Med 1999;340:745–750.

    Article  PubMed  CAS  Google Scholar 

  4. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P,et al. Morbidity and mortality in compensated cirrhosis type C: aretrospective follow-up study of 384 patients. Gastroenterology 1997;112(2):463–72.

    Article  PubMed  CAS  Google Scholar 

  5. Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer.Semin Liver Dis 1999;19(3):271–85.

    PubMed  CAS  Google Scholar 

  6. Brechot C, Thiers V, Kremsdorf D, Nalpas B, Pol S, Paterlini-BrechotP. Persistent hepatitis B virus infection in subjects withouthepatitis B surface antigen: clinically significant or purely“occult.” Hepatology 2001;34(1):194–203.

    Article  PubMed  CAS  Google Scholar 

  7. Okuda K. Hepatocellular carcinoma. J Hepatol 2000;32(1Suppl):225–37.

    Article  PubMed  CAS  Google Scholar 

  8. Fattovich G, Giustina G, Schalm SW, Hadziyannis S, Sanchez-Tapias J, Almasio P, et al. Occurrence of hepatocellular carcinoma anddecompensation in western European patients with cirrhosis type B.The EUROHEP Study Group on Hepatitis B Virus and Cirrhosis. Hepatology 1995;21(1):77–82.

    PubMed  CAS  Google Scholar 

  9. Sun Z, Lu P, Gail MH, Pee D, Zhang Q, Ming L, et al. Increased riskof hepatocellular carcinoma in male hepatitis B surface antigencarriers with chronic hepatitis who have detectable urinaryaflatoxin metabolite M1. Hepatology 1999;30(2):379–83.

    Article  PubMed  CAS  Google Scholar 

  10. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T,et al. Risk factors for hepatocellular carcinoma among patients withchronic liver disease. N Engl J Med 1993;328(25):1797–801.

    Article  PubMed  CAS  Google Scholar 

  11. Colombo M, de Franchis R, Del Ninno E, Sangiovanni A, De Fazio C,Tommasini M, et al. Hepatocellular carcinoma in Italian patientswith cirrhosis. N Engl J Med 1991;325(10):675–80.

    Google Scholar 

  12. Bruix J, Barrera JM, Calvet X, Ercilla G, Costa J, Sanchez-TapiasJM, et al. Prevalence of antibodies to hepatitis C virus in Spanishpatients with hepatocellular carcinoma and hepatic cirrhosis. Lancet 1989;2(8670):1004–6.

    Google Scholar 

  13. WHO. Hepatitis C: global prevalence. Wkly Epidemiol Rec1997;72:341–344.

    Google Scholar 

  14. Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa H,et al. Natural history of hepatocellular carcinoma and prognosis inrelation to treatment. Study of 850 patients. Cancer1985;56(4):918–928.

    Article  PubMed  CAS  Google Scholar 

  15. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003;362(9399):1907–17.

    Article  PubMed  Google Scholar 

  16. Bruix J, Llovet JM. Prognostic prediction and treatment strategy inhepatocellular carcinoma. Hepatology 2002;35(3):519–24.

    Article  PubMed  Google Scholar 

  17. Barbara L, Benzi G, Gaiani S, Fusconi F, Zironi G, Siringo S, et al. Natural history of small untreated hepatocellular carcinoma incirrhosis: a multivariate analysis of prognostic factors of tumorgrowth rate and patient survival. Hepatology1992;16(1):132–7.

    Article  PubMed  CAS  Google Scholar 

  18. Arii S, Yamaoka Y, Futagawa S, Inoue K, Kobayashi K, Kojiro M,et al. Results of surgical and nonsurgical treatment for small-sizedhepatocellular carcinomas: a retrospective and nationwide survey inJapan. The Liver Cancer Study Group of Japan. Hepatology2000;32(6):1224–9.

    Article  PubMed  CAS  Google Scholar 

  19. Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis ofsurgical treatment for early hepatocellular carcinoma: resectionversus transplantation. Hepatology 1999;30(6):1434–1440.

    Article  PubMed  CAS  Google Scholar 

  20. Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of smallhepatocellular carcinomas in patients with cirrhosis. N Engl JMed 1996;334(11):693–699.

    Google Scholar 

  21. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma:the BCLC staging classification. Semin Liver Dis1999;19(3):329–38.

    PubMed  CAS  Google Scholar 

  22. Llovet J, Bustamente J, Castells A, Vilana R, Ayuso C, Sala M,et al. Natural history of untreated nonsurgical hepatocellularcarcinoma: rational for the design and evaluation of therapeutictrials. Hepatology 1999;29:62–67.

    Article  PubMed  CAS  Google Scholar 

  23. Llovet JM, Bruix J. Systematic review of randomized trials forunresectable hepatocellular carcinoma: chemoembolization improvessurvival. Hepatology 2003;37:429–442.

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz JD, Beutler AS. Therapy for unresectable hepatocellularcarcinoma: Review of the randomized clinical trials – II: Systemicand local non-embolization based therapies in unresectable andadvanced hepatocellular carcinoma. Anticancer Drugs2004;15:439–452.

    Article  PubMed  CAS  Google Scholar 

  25. Nagasue N, Uchida M, Makino Y, Takemoto Y, Yamanoi A, Hayashi T,et al. Incidence and factors associated with intrahepatic recurrencefollowing resection of hepatocellular carcinoma. Gastroenterology 1993;105(2):488–94.

    PubMed  CAS  Google Scholar 

  26. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, et al.Oligonucleotide microarray for prediction of early intrahepaticrecurrence of hepatocellular carcinoma after curative resection.Lancet 2003;361(9361):923–929.

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz JD, Schwartz M, Mandeli J, Sung M. Neoadjuvant and adjuvanttherapy for resectable hepatocellular carcinoma: review of therandomised clinical trials. Lancet Oncol 2002;3(10):593–603.

    Article  PubMed  Google Scholar 

  28. Ringe B, Pichlmayr R, Wittekind C, Tusch G. Surgical treatment ofhepatocellular carcinoma: experience with liver resection andtransplantation in 198 patients. World J Surg1991;15(2):270–85.

    Article  PubMed  CAS  Google Scholar 

  29. United Network for Organ Sharing. Annual report.http://www.unos.org/data. 2000.

    Google Scholar 

  30. Llovet JM, Sala M, Fuster J, Navasa M, Pons F, Sole M, et al. Predictors of drop-out and survival of patients with hepatocellularcarcinoma candidates for liver transplantation. Hepatology2003;38:763A.

    Article  Google Scholar 

  31. Buendia MA. Genetics of hepatocellular carcinoma. Semin CancerBiol 2000;10(3):185–200.

    Article  CAS  Google Scholar 

  32. Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene2002;21(16):2593–604.

    Article  PubMed  CAS  Google Scholar 

  33. Kensler TW, Qian GS, Chen JG, Groopman JD. Translational strategiesfor cancer prevention in liver. Nat Rev Cancer2003;3(5):321–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kim JW, Wang XW. Gene expression profiling of preneoplastic liverdisease and liver cancer: a new era for improved early detection andtreatment of these deadly diseases. Carcinogenesis2003;24(3):363–9.

    Article  PubMed  CAS  Google Scholar 

  35. Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. TP53 and livercarcinogenesis. Hum Mutat 2003;21(3):201–16.

    Article  PubMed  CAS  Google Scholar 

  36. Tannapfel A, Wittekind C. Genes involved in hepatocellularcarcinoma: deregulation in cell cycling and apoptosis. VirchowsArch 2002;440(4):345–52.

    Article  CAS  Google Scholar 

  37. Ozturk M, Cetin-Atalay R. Biology of hepatocellular cancer. In:Rustgi AK (Editor). Gastrointestinal Cancers. New York:Elsevier Science Ltd; pp 575–591, 2003.

    Google Scholar 

  38. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of humanhepatocellular carcinoma. Nat Genet 2002;31(4):339–346.

    Article  PubMed  CAS  Google Scholar 

  39. Iizuka N, Oka M, Yamada-Okabe H, Mori N, Tamesa T, Okada T, et al. Differential gene expression in distinct virologic types ofhepatocellular carcinoma: association with liver cirrhosis. Oncogene 2003;22(19):3007–14.

    Article  PubMed  CAS  Google Scholar 

  40. Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y, et al. Genome-wide analysis of gene expression in human hepatocellularcarcinomas using cDNA microarray: identification of genes involvedin viral carcinogenesis and tumor progression. Cancer Res2001;61(5):2129–37.

    PubMed  CAS  Google Scholar 

  41. Iizuka N, Oka M, Yamada-Okabe H, Mori N, Tamesa T, Okada T, et al.Comparison of gene expression profiles between hepatitis B virus-and hepatitis C virus-infected hepatocellular carcinoma byoligonucleotide microarray data on the basis of a supervisedlearning method. Cancer Res 2002;62(14):3939–44.

    PubMed  CAS  Google Scholar 

  42. Delpuech O, Trabut JB, Carnot F, Feuillard J, Brechot C, KremsdorfD. Identification, using cDNA macroarray analysis, of distinct geneexpression profiles associated with pathological and virologicalfeatures of hepatocellular carcinoma. Oncogene2002;21(18):2926–37.

    Article  PubMed  CAS  Google Scholar 

  43. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, et al. The core protein of hepatitis C virus induceshepatocellular carcinoma in transgenic mice. Nat Med1998;4(9):1065–7.

    Article  PubMed  CAS  Google Scholar 

  44. Theise ND, Schwartz M, Miller C, Thung SN. Macroregenerative nodulesand hepatocellular carcinoma in forty-four sequential adult liverexplants with cirrhosis. Hepatology1992;16(4):949–955.

    Article  PubMed  CAS  Google Scholar 

  45. Theise ND, Park YN, Kojiro M. Dysplastic nodules andhepatocarcinogenesis. Clin Liver Dis2002;6(2):497–512.

    Article  PubMed  Google Scholar 

  46. Terasaki S, Kaneko S, Kobayashi K, Nonomura A, Nakanuma Y. Histological features predicting malignant transformation ofnonmalignant hepatocellular nodules: a prospective study. Gastroenterology 1998;115(5):1216–22.

    Article  PubMed  CAS  Google Scholar 

  47. Seki S, Sakaguchi H, Kitada T, Tamori A, Takeda T, Kawada N, et al.Outcomes of dysplastic nodules in human cirrhotic liver: aclinicopathological study. Clin Cancer Res 2000;6(9):3469–73.

    Google Scholar 

  48. Maggioni M, Coggi G, Cassani B, Bianchi P, Romagnoli S, Mandelli A,et al. Molecular changes in hepatocellular dysplastic nodules onmicrodissected liver biopsies. Hepatology 2000;32(5):942–6.

    Article  PubMed  CAS  Google Scholar 

  49. Borzio M, Fargion S, Borzio F, Fracanzani AL, Croce AM, Stroffolini T, et al. Impact of large regenerative, low grade and high gradedysplastic nodules in hepatocellular carcinoma development. JHepatol 2003;39(2):208–14.

    Article  Google Scholar 

  50. Anders RA, Yerian LM, Tretiakova M, Davison JM, Quigg RJ, Domer PH,et al. cDNA microarray analysis of macroregenerative and dysplasticnodules in end-stage hepatitis C virus-induced cirrhosis. Am JPathol 2003;162(3):991–1000.

    CAS  Google Scholar 

  51. Colombat M, Paradis V, Bieche I, Dargere D, Laurendeau I, Belghiti J, et al. Quantitative RT-PCR in cirrhotic nodules reveals geneexpression changes associated with liver carcinogenesis. JPathol 2003;201(2):260–7.

    Article  CAS  Google Scholar 

  52. Oh BK, Jo Chae K, Park C, Kim K, Jung Lee W, Han KH, et al. Telomereshortening and telomerase reactivation in dysplastic nodules ofhuman hepatocarcinogenesis. J Hepatol 2003;39(5):786–92.

    Article  PubMed  CAS  Google Scholar 

  53. Sun M, Eshleman JR, Ferrell LD, Jacobs G, Sudilovsky EC, Tuthill R,et al. An early lesion in hepatic carcinogenesis: loss ofheterozygosity in human cirrhotic livers and dysplastic nodules atthe 1p36-p34 region. Hepatology 2001;33(6):1415–24.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada T, De Souza AT, Finkelstein S, Jirtle RL. Loss of the geneencoding mannose 6-phosphate/insulin-like growth factor II receptoris an early event in liver carcinogenesis. Proc Natl Acad SciUSA 1997;94(19):10351–5.

    Article  CAS  Google Scholar 

  55. Oka Y, Waterland RA, Killian JK, Nolan CM, Jang HS, Tohara K, et al.M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomasin Japan. Hepatology 2002;35(5):1153–63.

    Article  PubMed  CAS  Google Scholar 

  56. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F,et al. Genetic alterations associated with hepatocellular carcinomasdefine distinct pathways of hepatocarcinogenesis. Gastroenterology 2001;120(7):1763–73.

    Article  PubMed  CAS  Google Scholar 

  57. Kojiro M. The evolution of pathologic features of hepatocellularcarcinoma. In: Tabor E (Editor). Viruses in Liver Cancer. NewYork: Elsevier Science BV; pp 113–122, 2002.

    Chapter  Google Scholar 

  58. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  59. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, et al. Predictinghepatitis B virus-positive metastatic hepatocellular carcinomasusing gene expression profiling and supervised machine learning.Nat Med 2003;9(4):416–23.

    Article  PubMed  CAS  Google Scholar 

  60. Bernard PS, Wittwer CT. Real-time PCR technology for cancerdiagnostics. Clin Chem 2002;48(8):1178–85.

    PubMed  CAS  Google Scholar 

  61. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A,et al. Distinct types of diffuse large B-cell lymphoma identified bygene expression profiling. Nature 2000;403(6769):503–11.

    Article  PubMed  CAS  Google Scholar 

  62. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al.Molecular classification of cutaneous malignant melanoma by geneexpression profiling. Nature 2000;406(6795):536–40.

    Article  PubMed  CAS  Google Scholar 

  63. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, et al. Delineation of prognostic biomarkers in prostate cancer.Nature 2001;412(6849):822–6.

    Article  PubMed  CAS  Google Scholar 

  64. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA,et al. Molecular portraits of human breast tumours. Nature2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  65. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW,et al. A gene-expression signature as a predictor of survival inbreast cancer. N Engl J Med 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  66. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, issilenced by methylation in human hepatocellular carcinoma and showsgrowth-suppression activity. Nat Genet 2001;28(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  67. Song BC, Chung YH, Kim JA, Choi WB, Suh DD, Pyo SI, et al.Transforming growth factor-beta1 as a useful serologic marker ofsmall hepatocellular carcinoma. Cancer 2002;94(1):175–80.

    Article  PubMed  CAS  Google Scholar 

  68. Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber HU,et al. KAI1, a new metastasis suppressor gene, is reduced inmetastatic hepatocellular carcinoma. Hepatology1998;28(6):1481–8.

    Article  PubMed  CAS  Google Scholar 

  69. De Souza AT, Hankins GR, Washington MK, Orton TC, Jirtle RL. M6P/IGF2R gene is mutated in human hepatocellular carcinomas withloss of heterozygosity. Nat Genet 1995;11(4):447–9.

    Article  PubMed  Google Scholar 

  70. Baek MJ, Piao Z, Kim NJ, Park C, Shin EC, Park JH, et al. p16 is amajor inactivation target in hepatocellular carcinoma. Cancer2000;89:60–68.

    Article  CAS  Google Scholar 

  71. Armengol C, Boix L, Bachs O, Sole M, Fuster J, Sala M, et al. p27(Kip1) is an independent predictor of recurrence after surgicalresection in patients with small hepatocellular carcinoma. J Hepatol 2003;38(5):591–7.

    Article  PubMed  CAS  Google Scholar 

  72. Boix L, Bruix J, Campo E, Sole M, Castells A, Fuster J, et al.nm23-H1 expression and disease recurrence after surgical resectionof small hepatocellular carcinoma. Gastroenterology1994;107(2):486–91.

    PubMed  CAS  Google Scholar 

  73. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, et al. Glypican-3: a novel serum and histochemical marker forhepatocellular carcinoma. Gastroenterology 2003;125(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  74. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, et al. Expression profiling in multistage hepatocarcinogenesis:identification of HSP70 as a molecular marker of earlyhepatocellular carcinoma. Hepatology 2003;37(1):198–207.

    Article  PubMed  CAS  Google Scholar 

  75. Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA.Differential impact of telomere dysfunction on initiation andprogression of hepatocellular carcinoma. Cancer Res2003;63(16):5021–7.

    PubMed  CAS  Google Scholar 

  76. Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M,et al. Involvement of the p38 mitogen-activated protein kinasecascade in hepatocellular carcinoma. Cancer2003;97(12):3017–26.

    Article  PubMed  CAS  Google Scholar 

  77. Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, et al.Involvement of PEG10 in human hepatocellular carcinogenesis throughinteraction with SIAH1. Cancer Res 2003;63(12):3043–8.

    PubMed  CAS  Google Scholar 

  78. Sung YK, Hwang SY, Park MK, Farooq M, Han IS, Bae HI, et al.Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci 2003;94(3):259–62.

    Article  PubMed  CAS  Google Scholar 

  79. Wang Y, Wu MC, Sham JS, Zhang W, Wu WQ, Guan XY. Prognosticsignificance of c-myc and AIB1 amplification in hepatocellularcarcinoma. A broad survey using high-throughput tissue microarray.Cancer 2002;95(11):2346–52.

    Article  PubMed  CAS  Google Scholar 

  80. Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, et al. Insight intohepatocellular carcinogenesis at transcriptome level by comparinggene expression profiles of hepatocellular carcinoma with those ofcorresponding noncancerous liver. Proc Natl Acad Sci USA2001;98(26):15089–94.

    Article  PubMed  CAS  Google Scholar 

  81. Smith MW, Yue ZN, Geiss GK, Sadovnikova NY, Carter VS, Boix L,et al. Identification of novel tumor markers in hepatitis Cvirus-associated hepatocellular carcinoma. Cancer Res2003;63(4):859–64.

    PubMed  CAS  Google Scholar 

  82. Smith MW, Yue ZN, Korth MJ, Do HA, Boix L, Fausto N, et al. Hepatitis C virus and liver disease: global transcriptionalprofiling and identification of potential markers. Hepatology2003;38(6):1458–67.

    PubMed  CAS  Google Scholar 

  83. Shirota Y, Kaneko S, Honda M, Kawai HF, Kobayashi K. Identificationof differentially expressed genes in hepatocellular carcinoma withcDNA microarrays. Hepatology 2001;33:832–840.

    Article  PubMed  CAS  Google Scholar 

  84. Cheung ST, Chen X, Guan XY, Wong SY, Tai LS, Ng IO, et al. Identifymetastasis-associated genes in hepatocellular carcinoma throughclonality delineation for multinodular tumor. Cancer Res2002;62(16):4711–4721.

    PubMed  CAS  Google Scholar 

  85. Wurmbach E, Chen Y, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genomewide molecularprofiles of HCV-induced dysplasia and hepatocellular carcinoma. Hematology 2007;45(4):938–947.

    CAS  Google Scholar 

  86. Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, et al.Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 2001;61(10):4238–4243.

    PubMed  CAS  Google Scholar 

  87. Tal-Kremer S, Reeves H, Narla G, Thung SN, Schwartz M, Difeo A,et al. Frequent inactivation of the tumor suppressor Kruppel-likefactor 6 (KLF6) in hepatocellular carcinoma. Hepatology2004;40:1047–1052.

    Article  CAS  Google Scholar 

  88. Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P. Chromosomealterations in human hepatocellular carcinomas correlate withaetiology and histologal grade – results of an explorative CGHmeta-analysis. Br J Cancer 2005;92:935–41.

    Article  PubMed  CAS  Google Scholar 

  89. Lemmer ER, Friedman SL, Llovet JM. Molecular diagnosis of chronic liver disease and hepatocellularcarcinoma: the potential of gene expression profiling. Semin Liver Dis 2006;26(4):373–834.

    Article  PubMed  CAS  Google Scholar 

  90. Ieta K, Ojima E, Tanaka F, Nakamura Y, Haraguchi N, Mimori K, et al. identification of overexpressedgenes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating enzyme E2C gene expression.Int J Cancer 2007;121(1):33–38.

    Article  PubMed  CAS  Google Scholar 

  91. Locker J. A new way to look at liver cancer. Hepatology2004;40(3):521–523.

    Article  PubMed  Google Scholar 

  92. Thorgeirsson SS. Hunting for tumor suppressor genes in liver cancer.Hepatology 2003;37(4): 739–741.

    Article  PubMed  CAS  Google Scholar 

  93. Grisham JW. Molecular genetic alterations in primary hepatocellularneoplasms: hepatocellular adenoma, hepatocellular carcinoma, andhepatoblastoma. In: Coleman WB, Tsongalis GJ (Editors). TheMolecular Basis of Human Cancer. Totowa, NJ: Humana Press Inc;pp 269–346, 2001.

    Google Scholar 

  94. Suriawinata A, Xu R. An update on the molecular genetics ofhepatocellular carcinoma. Semin Liver Dis 2004;24(1):77–88.

    Article  PubMed  CAS  Google Scholar 

  95. Villa E, Ferretti I, Grottola A, Buttafoco P, Buono MG, Giannini F,et al. Hormonal therapy with megestrol in inoperable hepatocellularcarcinoma characterized by variant oestrogen receptors. Br J Cancer 2001;84(7):881–5.

    Article  PubMed  CAS  Google Scholar 

  96. Kim KW, Bae SK, Lee OH, Bae MH, Lee MJ, Park BC. Insulin-like growthfactor II induced by hypoxia may contribute to angiogenesis of humanhepatocellular carcinoma. Cancer Res 1998;58(2):348–351.

    PubMed  CAS  Google Scholar 

  97. Bae MH, Lee MJ, Bae SK, Lee OH, Lee YM, Park BC, et al. Insulin-likegrowth factor II (IGF-II) secreted from HepG2 human hepatocellularcarcinoma cells shows angiogenic activity. Cancer Lett1998;128(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  98. El-Assal ON, Yamanoi A, Soda Y, Yamaguchi M, Igarashi M, Yamamoto A,et al. Clinical significance of microvessel density and vascularendothelial growth factor expression in hepatocellular carcinoma andsurrounding liver: possible involvement of vascular endothelialgrowth factor in the angiogenesis of cirrhotic liver. Hepatology 1998;27(6):1554–1562.

    Article  PubMed  CAS  Google Scholar 

  99. Miura H, Miyazaki T, Kuroda M, Oka T, Machinami R, Kodama T, et al.Increased expression of vascular endothelial growth factor in humanhepatocellular carcinoma. J Hepatol 1997;27(5):854–861.

    Article  PubMed  CAS  Google Scholar 

  100. Shimoda K, Mori M, Shibuta K, Banner BF, Barnard GF. Vascularendothelial growth factor/vascular permeability factor mRNAexpression in patients with chronic hepatitis C and hepatocellularcarcinoma. Int J Oncol 1999;14(2):353–359.

    PubMed  CAS  Google Scholar 

  101. Torimura T, Sata M, Ueno T, Kin M, Tsuji R, Suzaku K, et al.Increased expression of vascular endothelial growth factor isassociated with tumor progression in hepatocellular carcinoma. Hum Pathol 1998;29(9):986–991.

    Article  PubMed  CAS  Google Scholar 

  102. Li XM, Tang ZY, Zhou G, Lui YK, Ye SL. Significance of vascularendothelial growth factor mRNA expression in invasion and metastasisof hepatocellular carcinoma. J Exp Clin Cancer Res1998;17(1):13–17.

    PubMed  Google Scholar 

  103. Chow NH, Hsu PI, Lin XZ, Yang HB, Chan SH, Cheng KS, et al.Expression of vascular endothelial growth factor in normal liver andhepatocellular carcinoma: an immunohistochemical study. Hum Pathol 1997;28(6):698–703.

    Article  PubMed  CAS  Google Scholar 

  104. Yoshiji H, Kuriyama S, Hicklin DJ, Huber J, Yoshii J, Miyamoto Y,et al. KDR/Flk-1 is a major regulator of vascular endothelial growthfactor induced tumor development and angiogenesis in murinehepatocellular carcinoma cells. Hepatology 1999;30:1179–86.

    Article  PubMed  CAS  Google Scholar 

  105. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ,et al. Halting the interaction between vascular endothelial growthfactor and its receptors attenuates liver carcinogenesis in mice.Hepatology 2004;39(6):1517–24.

    Article  PubMed  CAS  Google Scholar 

  106. Graepler F, Verbeek B, Graeter T, Smirnow I, Kong HL, Schuppan D,et al. Combined endostatin/sFlt-1 antiangiogenic gene therapy ishighly effective in a rat model of HCC. Hepatology2005;41(4):879–86.

    Article  PubMed  CAS  Google Scholar 

  107. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J,Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, andleucovorin for metastatic colorectal cancer. N Engl J Med2004;350(23):2335–42.

    Google Scholar 

  108. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascularendothelial growth factor antibody, for metastatic renal cancer.N Engl J Med 2003;349(5):427–34.

    Article  PubMed  CAS  Google Scholar 

  109. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT,et al. Direct evidence that the VEGF-specific antibody bevacizumabhas antivascular effects in human rectal cancer. Nat Med2004;10(2):145–147.

    Article  PubMed  CAS  Google Scholar 

  110. Abe J, Zhou W, Takuwa N, Taguchi J, Kurokawa K, Kumada M, et al. Afumagillin derivative angiogenesis inhibitor, AGM-1470, inhibitsactivation of cyclin-dependent kinases and phosphorylation ofretinoblastoma gene product but not protein tyrosyl phosphorylationor protooncogene expression in vascular endothelial cells. Cancer Res 1994;54:3407–3412.

    PubMed  CAS  Google Scholar 

  111. Yeh JR, Mohan R, Crews CM. The antiangiogenic agent TNP-470 requiresp53 and p21CIP/WAF for endothelial growth arrest. Proc NatlAcad Sci USA 2000;97:12782–12787.

    Article  CAS  Google Scholar 

  112. Sheen IS, Jeng KS, Jeng WJ, Jeng CJ, Wang YC, Gu SL, et al.Fumagillin treatment of hepatocellular carcinoma in rats: an in vivostudy of antiangiogenesis. World J Gastroenterol2005;11(6):771–7.

    PubMed  CAS  Google Scholar 

  113. Sun HC, Tang ZY. Angiogenesis in hepatocellular carcinoma: theretrospectives and perspectives. J Cancer Res Clin Oncol2004;130(6):307–19.

    Article  PubMed  Google Scholar 

  114. Lenz W. Thalidomide and congenital abnormalities. Lancet1962;1:45.

    Article  Google Scholar 

  115. McBride WG. Thalidomide and congenital abnormalities. Lancet1961;2:1358.

    Article  Google Scholar 

  116. Moreira AL, Sampaio EP, Zmuidzinas A, Findt P, Smith KA, Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factoralpha by enhancing mRNA degradation. J Exp Med1993;177:1675–80.

    Article  PubMed  CAS  Google Scholar 

  117. Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulatesprimary human {T-lymphocytes}, preferentially inducing proliferation,cytokine production, and cytotoxic responses in the CD8+ subset.J Exp Med 1998;187:1885–92.

    Article  PubMed  CAS  Google Scholar 

  118. McHugh SM, Rifkin IR, Deighton J. The immunosuppressive drugthalidomide induces T helper cell type 2 (Th2) and concomitantlyinhibits Th1 cytokine production in mitogen- and antigen- stimulatedhuman peripheral blood mononuclear cell cultures. Clin ExpImmunol 1995;99:160–67.

    CAS  Google Scholar 

  119. Greitz H, Handt S, Zwingenberger K. Thalidomide selectivelymodulates the density of cell surface molecules involved in theadhesion cascade. Immunopharmacol 1996;31:213–21.

    Article  Google Scholar 

  120. Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis bythalidomide requires metabolic activation, which isspecies-dependent. Biochem Pharmacol 1998;55:1827–1834.

    Article  PubMed  CAS  Google Scholar 

  121. Kruse FE, Joussen AM, Rohrschneider K, Becker MD, Volcker HE. Thalidomide inhibits corneal angiogenesis induced by vascularendothelial growth factor. Graefes Arch Clin Exp Opthalmol1998;236:461–66.

    Article  CAS  Google Scholar 

  122. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is aninhibitor of angiogenesis. Proc Natl Acad Sci USA1994;91(9):4082–4085.

    Article  PubMed  CAS  Google Scholar 

  123. Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomidealone or with dexamethasone for previously untreated multiplemyeloma. J Clin Oncol 2003;21:16–19.

    Article  PubMed  CAS  Google Scholar 

  124. Dimopoulos MA, Zomas A, Viniou NA, Grigoraki V, Galani E, MatsoukaC, et al. Treatment of Waldenstrom’s macroglobulinemia withthalidomide. J Clin Oncol 2001;19:3596–601.

    PubMed  CAS  Google Scholar 

  125. Raza A, Meyer P, Dutt D, Zorat F, Lisak L, Nascimben F, et al.Thalidomide produces transfusion independence in long-standingrefractory anemias of patients with myelodysplastic syndromes. Blood 2001;98:958–65.

    Article  PubMed  CAS  Google Scholar 

  126. Fine H, Figg WD, Jaeckle K, Wen PY, Kyritsis AP, Loeffler JS, et al.Phase II trial of the antiangiogenic agent thalidomide in patientswith recurrent high-grade gliomas. J Clin Oncol2000;18:708–715.

    PubMed  CAS  Google Scholar 

  127. Daliani DD, Papandreou CN, Thall PF, Wang X, Perez C, Oliva R,et al. A pilot study of thalidomide in patients with progressivemetastatic renal cell carcinoma. Cancer 2002;95:758–65.

    Article  PubMed  CAS  Google Scholar 

  128. Little RF, Wyvill KM, Pluda JM, Welles L, Marshall V, Figg WD,et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma.J Clin Oncol 2000;18:2593–602.

    PubMed  CAS  Google Scholar 

  129. Patt YZ, Hassan MM, Lozano RD, Ellis LM, Petersen JA, Waugh K.Durable clinical response of refractory hepatocellular carcinoma toorally administered thalidomide. Am J Clin Oncol2000;23:319–21.

    PubMed  CAS  Google Scholar 

  130. Wang T-E, Kao C-R, Lin S-C, Chang W-H, Chu C-H, Lin J, et al.Salvage therapy for hepatocellular carcinoma with thalidomide. World J Gastroenterol 2004;10:649–53.

    PubMed  CAS  Google Scholar 

  131. Hsu C, Chen C-N, Chen L-T, Wu C-Y, Yang P-M, Lai M-Y, et al.Low-dose thalidomide treatment for advanced hepatocellularcarcinoma. Oncology 2003;65:242–9.

    Google Scholar 

  132. Lin AY, Brophy N, Fisher GA, So S, Biggs C, Yock T, et al. A phaseII study of thalidomide in patients with unresectable hepatocellularcarcinoma. Cancer 2005;103:119–125.

    Article  PubMed  CAS  Google Scholar 

  133. Patt YZ, Hassan MM, Lozano RD, Nooka AK, Schnirer II, Zeldis JB,et al. Thalidomide in the treatment of patients with hepatocellularcarcinoma: a phase II trial. Cancer 2005;103(4):749–55.

    Article  PubMed  CAS  Google Scholar 

  134. Schwartz JD, Sung M, Schwartz M, Lehrer D, Mandeli J, Liebes L,et al. Thalidomide in advanced hepatocellular carcinoma withoptional interferon alpha-2a upon progression. The Oncologist2005;10(9):718–27.

    Article  PubMed  CAS  Google Scholar 

  135. Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW,et al. Novel thalidomide analogues display anti-angiogenic activityindependently of immunomodulatory effects. Br J Cancer2002;87(10):1166–72.

    Article  PubMed  CAS  Google Scholar 

  136. Hsu C, Chen CN, Chen LT, Wu CY, Hsieh FJ, Cheng AL. Effect ofthalidomide in hepatocellular carcinoma: assessment with powerdoppler US and analysis of circulating angiogenic factors. Radiology 2005;235(2):509–16.

    Article  PubMed  Google Scholar 

  137. Yoshiji H, Kuriyama S, Fukui H. Angiotensin-I-converting enzymeinhibitors may be an alternative anti-angiogenic strategy in thetreatment of liver fibrosis and hepatocellular carcinoma. Possiblerole of vascular endothelial growth factor. Tumour Biol2002;23(6):348–56.

    Article  PubMed  CAS  Google Scholar 

  138. Noguchi R, Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K,et al. Combination of interferon-beta and the angiotensin-convertingenzyme inhibitor, perindopril, attenuates murine hepatocellularcarcinoma development and angiogenesis. Clin Cancer Res2003;9(16 Pt 1):6038–45.

    PubMed  CAS  Google Scholar 

  139. Semela D, Dufour JF. Angiogenesis and hepatocellular carcinoma. J Hepatol 2004;41(5):864–80.

    Article  PubMed  Google Scholar 

  140. Semenza GL. Surviving ischemia: Adaptive responses mediated byhypoxia-inducible factor 1. J Clin Invest 2000;106:809–812.

    PubMed  CAS  Google Scholar 

  141. Semenza GL. HIF-1 and tumor progression: pathophysiology andtherapeutics. Trends Mol Med 2002;8:S62–S67.

    Article  PubMed  CAS  Google Scholar 

  142. Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, et al.Classification and prediction of survival in hepatocellularcarcinoma by gene expression profiling. Hepatology2004;40(3):667–76.

    Article  PubMed  CAS  Google Scholar 

  143. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylasesthat modify HIF. Science 2001;294:1337–1340.

    Article  PubMed  CAS  Google Scholar 

  144. Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53status on tumor response to antiangiogenic therapy. Science2002;295:1526–1528.

    Article  PubMed  CAS  Google Scholar 

  145. Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drugdevelopment. Nat Rev Drug Discov 2003;2:803–811.

    Article  PubMed  CAS  Google Scholar 

  146. Ramanathan RK, Belani CP, Friedland D, Ramalingam S, Agarwala SS,Ivy P, et al. Phase I study (twice weekly schedule) of17-allylamino-17 demethoxygeldanamycin (17AAG NSC-704057) inpatients with advanced refractory tumors. Proc Am Soc ClinOncol 2005;23(16S):204s.

    Google Scholar 

  147. Solit DB, Egorin M, Kopil C, Delacruz A, Shaffer D, Slovin S, et al.Phase 1 pharmacokinetic and pharmacodynamic trial of docetaxel and17AAG (17-allylamino-17-demethoxygeldanamycin). Proc Am SocClin Oncol 2005;23(16S):204s.

    Google Scholar 

  148. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, JohnsonMS, et al. 2ME2 inhibits tumor growth and angiogenesis by disruptingmicrotubules and dysregulating HIF. Cancer Cell2003;3(4):363–75.

    Article  PubMed  CAS  Google Scholar 

  149. Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA,Shoemaker RH, et al. Identification of small molecule inhibitors ofhypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 2002;62(15):4316–24.

    PubMed  CAS  Google Scholar 

  150. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer2003;3(10):721–32.

    Article  PubMed  CAS  Google Scholar 

  151. Grigioni WF, Garbisa S, D’Errico A, Baccarini P, Stetler-Stevenson WG, Liotta LA, et al. Evaluation of hepatocellular carcinomaaggressiveness by a panel of extracellular matrix antigens. AmJ Pathol 1991;138(3):647–54.

    CAS  Google Scholar 

  152. Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, et al.Overexpression of matrix metalloproteinase 9 gene in hepatocellularcarcinoma with invasive potential. Hepatology1996;24(2):316–22.

    Article  PubMed  CAS  Google Scholar 

  153. Okazaki I, Wada N, Nakano M, Saito A, Takasaki K, Doi M, et al.Difference in gene expression for matrix metalloproteinase-1 betweenearly and advanced hepatocellular carcinomas. Hepatology1997;25(3):580–4.

    Article  PubMed  CAS  Google Scholar 

  154. Monvoisin A, Bisson C, Si-Tayeb K, Balabaud C, Desmouliere A,Rosenbaum J. Involvement of matrix metalloproteinase type-3 inhepatocyte growth factor-induced invasion of human hepatocellularcarcinoma cells. Int J Cancer 2002;97(2):157–62.

    Google Scholar 

  155. Martin DC, Sanchez-Sweatman OH, Ho AT, Inderdeo DS, Tsao MS, Khokha R. Transgenic TIMP-1 inhibits simian virus 40 T antigen-inducedhepatocarcinogenesis by impairment of hepatocellular proliferationand tumor angiogenesis. Lab Invest 1999;79(2):225–34.

    PubMed  CAS  Google Scholar 

  156. Kim JH, Kim TH, Jang JW, Jang YJ, Lee KH, Lee ST. Analysis of matrixmetalloproteinase mRNAs expressed in hepatocellular carcinoma celllines. Mol Cells 2001;12(1):32–40.

    PubMed  CAS  Google Scholar 

  157. Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V,Antonaci S. Human hepatocellular carcinoma (HCC) cells require bothalpha3beta1 integrin and matrix metalloproteinases activity formigration and invasion. Lab Invest 2001;81(4):613–27.

    Google Scholar 

  158. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al.Matrix metalloproteinase-9 triggers the angiogenic switch duringcarcinogenesis. Nat Cell Biol 2000;2(10):737–44.

    Article  PubMed  CAS  Google Scholar 

  159. Moore MJ, Hamm J, Dancey J, Eisenberg PD, Dagenais M, Fields A,et al. Comparison of gemcitabine versus the matrix metalloproteinaseinhibitor BAY 12–9566 in patients with advanced or metastaticadenocarcinoma of the pancreas: a phase III trial of the NationalCancer Institute of Canada Clinical Trials Group. J Clin Oncol2003;21(17):3296–302.

    Article  PubMed  CAS  Google Scholar 

  160. Bramhall SR, Schulz J, Nemunaitis J, Brown PD, Baillet M, BuckelsJA. A double-blind placebo-controlled, randomised study comparinggemcitabine and marimastat with gemcitabine and placebo as firstline therapy in patients with advanced pancreatic cancer. Br JCancer 2002;87(2):161–7.

    Article  CAS  Google Scholar 

  161. Ha KT, Kim JK, Lee YC, Kim CH. Inhibitory effect of Daesungki-Tangon the invasiveness potential of hepatocellular carcinoma throughinhibition of matrix metalloproteinase-2 and -9 activities. Toxicol Appl Pharmacol 2004;200(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  162. Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, et al. Novel andtherapeutic effect of caffeic acid and caffeic acid phenyl ester onhepatocarcinoma cells: complete regression of hepatoma growth andmetastasis by dual mechanism. FASEB J 2004;18(14):1670–81.

    Article  PubMed  CAS  Google Scholar 

  163. Bu W, Tang ZY, Sun FX, Ye SL, Liu KD, Xue Q, et al. Effects ofmatrix metalloproteinase inhibitor BB-94 on liver cancer growth andmetastasis in a patient-like orthotopic model LCI-D20. Hepatogastroenterology 1998;45(22):1056–61.

    PubMed  CAS  Google Scholar 

  164. Couvelard A, Bringuier AF, Dauge MC, Nejjari M, Darai E, Benifla JL,et al. Expression of integrins during liver organogenesis in humans.Hepatology 1998;27(3):839–47.

    Article  PubMed  CAS  Google Scholar 

  165. Patriarca C, Roncalli M, Gambacorta M, Cominotti M, Coggi G, VialeG. Patterns of integrin common chain beta 1 and collagen IVimmunoreactivity in hepatocellular carcinoma. Correlations withtumour growth rate, grade and size. J Pathol1993;171(1):5–11.

    Article  PubMed  CAS  Google Scholar 

  166. Volpes R, van den Oord JJ, Desmet VJ. Integrins as differential celllineage markers of primary liver tumors. Am J Pathol1993;142(5):1483–92.

    PubMed  CAS  Google Scholar 

  167. Scoazec JY, Flejou JF, D’Errico A, Fiorentino M, Zamparelli A,Bringuier AF, et al. Fibrolamellar carcinoma of the liver:composition of the extracellular matrix and expression ofcell-matrix and cell-cell adhesion molecules. Hepatology1996;24(5):1128–36.

    Google Scholar 

  168. Le Bail B, Faouzi S, Boussarie L, Balabaud C, Bioulac-Sage P,Rosenbaum J. Extracellular matrix composition and integrinexpression in early hepatocarcinogenesis in human cirrhotic liver.J Pathol 1997;181(3):330–7.

    Article  PubMed  CAS  Google Scholar 

  169. Begum NA, Mori M, Matsumata T, Takenaka K, Sugimachi K, Barnard GF.Differential display and integrin alpha 6 messenger RNAoverexpression in hepatocellular carcinoma. Hepatology1995;22(5):1447–55.

    Article  PubMed  CAS  Google Scholar 

  170. Mita MM, Mita AC, Goldston M, Chu QS, Tolcher AW, Ricart A, et al.Pharmacokinetics (PK) and pharmacodynamics (PD) of E7820 - an oralsulfonamide with novel alpha-2 integrin mediated antiangiogenicproperties: Results of a phase I study. Proc Am Soc Clin Oncol2005;23(16S): 212s.

    Google Scholar 

  171. Jayson GC, Mullamitha S, Ton C, Valle J, Jackson A, Julyan P, et al.Phase I study of CNTO 95, a fully human monoclonal antibody (mAb) toalpha-v integrins, in patients with solid tumors. Proc Am SocClin Oncol 2005;23(16s):220s.

    Google Scholar 

  172. Nejjari M, Hafdi Z, Dumortier J, Bringuier AF, Feldmann G, ScoazecJY. alpha6beta1 integrin expression in hepatocarcinoma cells:regulation and role in cell adhesion and migration. Int JCancer 1999;83(4):518–25.

    Article  CAS  Google Scholar 

  173. Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R.Integrin alpha1beta1 and alpha2beta1 are the key regulators ofhepatocarcinoma cell invasion across the fibrotic matrixmicroenvironment. Cancer Res 2003;63(23):8312–7.

    PubMed  CAS  Google Scholar 

  174. Jonker DJ, Stewart DJ, Goel R, Avruch L, Goss G, Maroun J, et al. Aphase I study of the novel molecularly targeted vascular targetingagent Exherin (ADH-1), shows activity in some patients withrefractory solid tumors stratified according to N-cadherinexpression. Proc Am Soc Clin Oncol 2005;23(16s):201s.

    Google Scholar 

  175. Kiss A, Wang NJ, Xie JP, Thorgeirsson SS. Analysis of transforminggrowth factor (TGF)-alpha/epidermal growth factor receptor,hepatocyte growth Factor/c-met, TGF-beta receptor type II, and p53expression in human hepatocellular carcinomas. Clin Cancer Res1997;3(7): 1059–66.

    PubMed  CAS  Google Scholar 

  176. Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T,et al. Clinical significance of vascular endothelial growth factorand basic fibroblast growth factor gene expression in liver tumor.Hepatology 1996;23(3):455–464.

    Article  PubMed  CAS  Google Scholar 

  177. Lee GH, Merlino G, Fausto N. Development of liver tumors intransforming growth factor alpha transgenic mice. Cancer Res1992;52(19):5162–5170.

    PubMed  CAS  Google Scholar 

  178. Laird AD, Brown PI, Fausto N. Inhibition of tumor growth in liverepithelial cells transfected with a transforming growth factor alphaantisense gene. Cancer Res 1994;54(15):4224–4232.

    PubMed  CAS  Google Scholar 

  179. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT. TGFalpha overexpression in transgenic mice induces liver neoplasia andabnormal development of the mammary gland and pancreas. Cell1990;61(6):1137–1146.

    Article  PubMed  CAS  Google Scholar 

  180. Seki S, Sakai Y, Kitada T, Kawakita N, Yanai A, Tsutsui H, et al.Induction of apoptosis in a human hepatocellular carcinoma cell lineby a neutralizing antibody to transforming growth factor-alpha. Virchows Arch 1997;430(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  181. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC.Cross-talk between epidermal growth factor receptor and c-Met signalpathways in transformed cells. J Biol Chem2000;275(12):8806–11.

    Article  PubMed  CAS  Google Scholar 

  182. Schiffer E, Housset C, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellularcarcinoma development in the rat liver with cirrhosis. Hepatology 2005;41(2):307–14.

    Article  PubMed  CAS  Google Scholar 

  183. Hopfner M, Sutter AP, Huether A, Schuppan D, Zeitz M, Scherubl H.Targeting the epidermal growth factor receptor by gefitinib fortreatment of hepatocellular carcinoma. J Hepatol2004;41(6):1008–16.

    Article  PubMed  CAS  Google Scholar 

  184. Matsuo M, Sakurai H, Saiki I. ZD1839, a selective epidermal growthfactor receptor tyrosine kinase inhibitor, shows antimetastaticactivity using a hepatocellular carcinoma model. Mol CancerTher 2003;2(6):557–61.

    CAS  Google Scholar 

  185. Ueno Y, Sakurai H, Matsuo M, Choo MK, Koizumi K, Saiki I. Selectiveinhibition of TNF-alpha-induced activation of mitogen-activatedprotein kinases and metastatic activities by gefitinib. Br JCancer 2005;92(9):1690–5.

    Article  CAS  Google Scholar 

  186. Zhu BD, Yuan SJ, Zhao QC, Li X, Li Y, Lu QY. Antitumor effect ofGefitinib, an epidermal growth factor receptor tyrosine kinaseinhibitor, combined with cytotoxic agent on murine hepatocellularcarcinoma. World J Gastroenterol 2005;11(9):1382–6.

    PubMed  CAS  Google Scholar 

  187. Philip PA, Mahoney M, Thomas J, Pitot H, Donehower R, Kim G, et al.Phase II Trial of erlotinib (OSI-774) in patients withhepatocellular or biliary cancer. Proc Am Soc Clin Onc2004;22:319s.

    Google Scholar 

  188. Thomas MB, Dutta A, Brown T, Charnsangavej C, Rashid A, Hoff PM,et al. A phase II open-label study of OSI-774 (NSC 718781) inunresectable hepatocellular carcinoma. Proc Am Soc Clin Onc2005;23:317s.

    Google Scholar 

  189. Ellouk-Achard S, Djenabi S, De Oliveira GA, Desauty G, Duc HT,Zohair M, et al. Induction of apoptosis in rat hepatocarcinoma cellsby expression of IGF-I antisense c-DNA. J Hepatol1998;29(5):807–18.

    Google Scholar 

  190. Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, et al. Amethylated oligonucleotide inhibits IGF2 expression and enhancessurvival in a model of hepatocellular carcinoma. J Clin Invest2003;111(2):265–273.

    Article  PubMed  CAS  Google Scholar 

  191. Yang JM, Chen WS, Liu ZP, Luo YH, Liu WW. Effects of insulin-likegrowth factors-IR and -IIR antisense gene transfection on thebiological behaviors of SMMC-7721 human hepatoma cells. J Gastroenterol Hepatol 2003;18(3):296–301.

    Article  PubMed  CAS  Google Scholar 

  192. Di Cosimo S, Seoane J, Guzman M, Rojo F, Jimenez J, Anido J, et al. Combination of the mammalian target of rapamycin (mTOR) inhibitoreverolimus (E) with the insulin like growth factor-1-receptor(IGF-1-R) inhibitor NVP-AEW-541: a mechanistic based anti-tumorstrategy. Proc Am Soc Clin Onc 2005;23:219s.

    Google Scholar 

  193. Gualberto A, Alsina M, Lacy M, Poutney S, Birgin A, Littman B,et al. Inhibition of the insulin like growth factor 1 receptor by aspecific monoclonal antibody in multiple myeloma. Am Soc ClinOncol Abstract Catalog 2005;23:203s.

    Google Scholar 

  194. Maret A, Galy B, Arnaud E, Bayard F, Prats H. Inhibition offibroblast growth factor 2 expression by antisense RNA induced aloss of the transformed phenotype in a human hepatoma cell line.Cancer Res 1995;55(21):5075–5079.

    PubMed  CAS  Google Scholar 

  195. Shao RX, Otsuka M, Kato N, Taniguchi H, Hoshida Y, Moriyama M,et al. Acyclic retinoid inhibits human hepatoma cell growth bysuppressing fibroblast growth factor-mediated signaling pathways.Gastroenterology 2005;128(1):86–95.

    Article  PubMed  CAS  Google Scholar 

  196. Miura D, Miura Y, Yagasaki K. Resveratrol inhibits hepatoma cellinvasion by suppressing gene expression of hepatocyte growth factorvia its reactive oxygen species-scavenging property. Clin ExpMetastasis 2004;21(5):445–51.

    Article  CAS  Google Scholar 

  197. Heideman DA, Overmeer RM, van Beusechem VW, Lamers WH, Hakvoort TB,Snijders PJ, et al. Inhibition of angiogenesis and HGF-cMET-elicitedmalignant processes in human hepatocellular carcinoma cells usingadenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther2005;12(12):954–62.

    Google Scholar 

  198. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P,et al. A selective small molecule inhibitor of c-Met kinase inhibitsc-Met-dependent phenotypes in vitro and exhibits cytoreductiveantitumor activity in vivo. Cancer Res 2003;63(21):7345–55.

    PubMed  CAS  Google Scholar 

  199. Wang SY, Chen B, Zhan YQ, Xu WX, Li CY, Yang RF, et al. SU5416 is apotent inhibitor of hepatocyte growth factor receptor (c-Met) andblocks HGF-induced invasiveness of human HepG2 hepatoma cells. J Hepatol 2004;41(2):267–73.

    Article  PubMed  CAS  Google Scholar 

  200. Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001; 93(14):1062–74.

    Article  PubMed  CAS  Google Scholar 

  201. Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E. Over-expressionof the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK inhepatocellular carcinoma: its role in tumor progression andapoptosis. BMC Gastroenterol 2003;3(1):19.

    Article  PubMed  Google Scholar 

  202. Jagirdar J, Nonomura A, Patil J, Thor A, Paronetto F. Ras oncogenep21 expression in hepatocellular carcinoma. J Exp Pathol1989;4(1):37–46.

    PubMed  CAS  Google Scholar 

  203. Nonomura A, Ohta G, Hayashi M, Izumi R, Watanabe K, Takayanagi N,et al. Immunohistochemical detection of ras oncogene p21 product inliver cirrhosis and hepatocellular carcinoma. Am JGastroenterol 1987;82(6):512–8.

    CAS  Google Scholar 

  204. Tiniakos D, Spandidos DA, Yiagnisis M, Tiniakos G. Expression of rasand c-myc oncoproteins and hepatitis B surface antigen in humanliver disease. Hepatogastroenterology 1993;40(1):37–40.

    PubMed  CAS  Google Scholar 

  205. Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV. Increased MAPKexpression and activity in primary human hepatocellular carcinoma.Biochem Biophys Res Commun 1997;236(1):54–8.

    Article  PubMed  CAS  Google Scholar 

  206. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, et al.Activation of mitogen-activated protein kinases/extracellularsignal-regulated kinases in human hepatocellular carcinoma. Hepatology 1998;27(4):951–8.

    Article  PubMed  CAS  Google Scholar 

  207. Tsou AP, Wu KM, Tsen TY, Chi CW, Chiu JH, Lui WY, et al. Parallelhybridization analysis of multiple protein kinase genes:identification of gene expression patterns characteristic of humanhepatocellular carcinoma. Genomics 1998;50(3):331–40.

    Article  PubMed  CAS  Google Scholar 

  208. Zhou JM, Zhu XF, Pan QC, Liao DF, Li ZM, Liu ZC. Manumycin inhibitscell proliferation and the Ras signal transduction pathway in humanhepatocellular carcinoma cells. Int J Mol Med2003;11(6):767–71.

    PubMed  CAS  Google Scholar 

  209. Wiesenauer CA, Yip-Schneider MT, Wang Y, Schmidt CM. Multipleanticancer effects of blocking MEK-ERK signaling in hepatocellularcarcinoma. J Am Coll Surg 2004;198(3):410–21.

    Article  PubMed  Google Scholar 

  210. Tsukada Y, Miyazawa K, Kitamura N. High intensity ERK signalmediates hepatocyte growth factor-induced proliferation inhibitionof the human hepatocellular carcinoma cell line HepG2. J BiolChem 2001;276(44):40968–76.

    CAS  Google Scholar 

  211. Schmidt CM, Wang Y, Wiesenauer C. Novel combination ofcyclooxygenase-2 and MEK inhibitors in human hepatocellularcarcinoma provides a synergistic increase in apoptosis. JGastrointest Surg 2003;7(8):1024–33.

    Article  Google Scholar 

  212. Cheng J, Imanishi H, Liu W, Nakamura H, Morisaki T, Higashino K,et al. Involvement of cell cycle regulatory proteins and MAP kinasesignaling pathway in growth inhibition and cell cycle arrest by aselective cyclooxygenase 2 inhibitor, etodolac, in humanhepatocellular carcinoma cell lines. Cancer Sci2004;95(8):666–73.

    Article  PubMed  CAS  Google Scholar 

  213. Phase I/II study of epirubicin and celecoxib in patients withhepatocellular carcinoma (NU-0216); 285669. In: DeVita VT (Editor).Current Clinical Trials in Oncology: National Cancer InstitutePDQ. Yardley, PA: MediMedia; p I-46, 2005.

    Google Scholar 

  214. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M,et al. Phase I clinical and pharmacokinetic study of the Novel Rafkinase and vascular endothelial growth factor receptor inhibitor BAY43–9006 in patients with advanced refractory solid tumors. JClin Oncol 2005;23(5):965–72.

    Article  CAS  Google Scholar 

  215. Lorusso P, Krishnamurthi S, Rinehart JR, Nabell L, Croghan G,Varterasian M, et al. A phase 1–2 clinical study of a secondgeneration oral MEK inhibitor, PD 0325901 in patients with advancedcancer. Proc Am Soc Clin Onc 2005;23:194s.

    Google Scholar 

  216. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, et al.Hepatocyte-specific Pten deficiency results in steatohepatitis andhepatocellular carcinomas. J Clin Invest 2004;113(12):1774–1783.

    Article  PubMed  CAS  Google Scholar 

  217. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTORand P70 S6 kinase expression in primary liver neoplasms. ClinCancer Res 2004;10(24):8421–8425.

    Article  CAS  Google Scholar 

  218. Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P,et al. mTOR, a novel target in breast cancer: the effect of CCI-779,an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001;8(3):249–58.

    Article  PubMed  Google Scholar 

  219. Tabernero J, Rojo F, Burris H, Casado E, Macarulla T, Jones S,et al. A phase I study with tumor molecular pharmacodynamic (MPD)evaluation of dose and schedule of the oral mTOR-inhibitorEverolimus (RAD001) in patients (pts) with advanced solid tumors.Proc Am Soc Clin Onc 2005;23:193s.

    Google Scholar 

  220. Rivera VM, Kreisberg JI, Mita MM, Goldston M, Knowles HL, Herson J,et al. Pharmacodynamic study of skin biopsy specimens in patients(pts) with refractory or advanced malignancies followingadministration of AP23573, an MTOR inhibitor. Proc Am Soc ClinOnc 2005;23:200s.

    Google Scholar 

  221. Desai AA, Mita M, Fetterly GJ, Chang C, Netsch M, Knowles HL, et al. Development of a pharmacokinetic (PK) model and assessment ofpatient (pt) covariate effects on dose-dependent PK followingdifferent dosing schedules in two phase I trials of AP 23573 (AP), amTOR inhibitor. Proc Am Soc Clin Onc 2005;23:202s.

    Google Scholar 

  222. Duran I, Le, L, Saltman D, Kortmansky J, Kocha W, Singh D, et al. Aphase II trial of temsirolimus. Proc Am Soc Clin Onc2005;23:215s.

    Google Scholar 

  223. Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. Beta-cateninmutations are associated with a subset of low-stage hepatocellularcarcinoma negative for hepatitis B virus and with favorableprognosis. Am J Pathol 2000;157(3):763–70.

    PubMed  CAS  Google Scholar 

  224. Mao TL, Chu JS, Jeng YM, Lai PL, Hsu HC. Expression of mutantnuclear beta-catenin correlates with non-invasive hepatocellularcarcinoma, absence of portal vein spread, and good prognosis. J Pathol 2001;193(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  225. Terris B, Pineau P, Bregeaud L, Valla D, Belghiti J, Tiollais P,et al. Close correlation between beta-catenin gene alterations andnuclear accumulation of the protein in human hepatocellularcarcinomas. Oncogene 1999;18(47):6583–8.

    Article  PubMed  CAS  Google Scholar 

  226. Wong CM, Fan ST, Ng IO. Beta-catenin mutation and overexpression inhepatocellular carcinoma: clinicopathologic and prognosticsignificance. Cancer 2001;92:136–145.

    Article  PubMed  CAS  Google Scholar 

  227. Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA. Nuclear accumulation of mutated beta-catenin in hepatocellularcarcinoma is associated with increased cell proliferation. Am JPathol 1999;155:703–710.

    CAS  Google Scholar 

  228. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wntsignaling in cancer. Biochim Biophys Acta 2003;1653(1):1–24.

    PubMed  CAS  Google Scholar 

  229. You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, et al. Ananti-Wnt-2 monoclonal antibody induces apoptosis in malignantmelanoma cells and inhibits tumor growth. Cancer Res2004;64(15):5385–5389.

    Article  PubMed  CAS  Google Scholar 

  230. You L, He B, Xu Z, Uematsu K, Mazieres J, Mikami I, et al. Inhibition of Wnt-2-mediated signaling induces programmed cell deathin non-small-cell lung cancer cells. Oncogene2004;23(36):6170–6174.

    Article  PubMed  CAS  Google Scholar 

  231. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F,et al. Small-molecule antagonists of the oncogenic Tcf/beta-cateninprotein complex. Cancer Cell 2004;5(1):91–102.

    Article  PubMed  CAS  Google Scholar 

  232. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. A smallmolecule inhibitor of beta-catenin/CREB-binding proteintranscription. Proc Natl Acad Sci USA 2004;101(34):12682–12687.

    Article  PubMed  CAS  Google Scholar 

  233. Yamada Y, Yoshimi N, Hirose Y, Hara A, Shimizu M, Kuno T, et al. Suppression of occurrence and advancement ofbeta-catenin-accumulated crypts, possible premalignant lesions ofcolon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib.Jpn J Cancer Res 2001;92(6):617–623.

    PubMed  CAS  Google Scholar 

  234. Williams JL, Nath N, Chen J, Hundley TR, Gao J, Kopelovich L, et al. Growth inhibition of human colon cancer cells by nitric oxide(NO)-donating aspirin is associated with cyclooxygenase-2 inductionand beta-catenin/T-cell factor signaling, nuclear factor-kappaB, andNO synthase 2 inhibition: implications for chemoprevention. Cancer Res 2003;63(22):7613–7618.

    PubMed  CAS  Google Scholar 

  235. Hawcroft G, D’Amico M, Albanese C, Markham AF, Pestell RG, Hull MA. Indomethacin induces differential expression of beta-catenin,gamma-catenin and T-cell factor target genes in human colorectalcancer cells. Carcinogenesis 2002;23(1):107–114.

    Article  PubMed  CAS  Google Scholar 

  236. Dihlmann S, Klein S, Doeberitz Mv MK. Reduction ofbeta-catenin/T-cell transcription factor signaling by aspirin andindomethacin is caused by an increased stabilization ofphosphorylated beta-catenin. Mol Cancer Ther2003;2(6):509–516.

    PubMed  CAS  Google Scholar 

  237. Boon EM, Keller JJ, Wormhoudt TA, Giardiello FM, Offerhaus GJ, vander Neut R, et al. Sulindac targets nuclear beta-cateninaccumulation and Wnt signalling in adenomas of patients withfamilial adenomatous polyposis and in human colorectal cancer celllines. Br J Cancer 2004;90(1):224–229.

    Article  PubMed  CAS  Google Scholar 

  238. Voorhees PM, Dees EC, O’Neil B, Orlowski RZ. The proteasome as atarget for cancer therapy. Clin Cancer Res2003;9(17):6316–25.

    PubMed  CAS  Google Scholar 

  239. Magill L, Walker B, Irvine AE. The proteasome: a novel therapeutictarget in haematopoietic malignancy. Hematology2003;8(5):275–83.

    Article  PubMed  CAS  Google Scholar 

  240. Adams J. The development of proteasome inhibitors as anticancerdrugs. Cancer Cell 2004; 5(5): 417–21.

    Article  PubMed  CAS  Google Scholar 

  241. Adams J. The proteasome: structure, function, and role in the cell.Cancer Treat Rev 2003;29:3–9.

    Article  PubMed  CAS  Google Scholar 

  242. Pagano M, Benmaamar R. When protein destruction runs amok,malignancy is on the loose. Cancer Cell 2003;4(4):251–256.

    Article  PubMed  CAS  Google Scholar 

  243. Shirahashi H, Sakaida I, Terai S, Hironaka K, Kusano N, Okita K. Ubiquitin is a possible new predictive marker for the recurrence ofhuman hepatocellular carcinoma. Liver 2002;22(5):413–418.

    Article  PubMed  CAS  Google Scholar 

  244. Cervello M, Giannitrapani L, La Rosa M, Notarbartolo M, Labbozzetta M, Poma P, et al. Induction of apoptosis by the proteasome inhibitorMG132 in human HCC cells: Possible correlation with specificcaspase-dependent cleavage of beta-catenin and inhibition ofbeta-catenin-mediated transactivation. Int J Mol Med2004;13(5):741–8.

    PubMed  CAS  Google Scholar 

  245. Davis NB, Taber DA, Ansari RH, Ryan CW, George C, Vokes EE, et al. Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago phase II consortium study. J Clin Oncol2004;22(1):115–9.

    Article  PubMed  CAS  Google Scholar 

  246. Kondagunta GV, Drucker B, Schwartz L, Bacik J, Marion S, Russo P,et al. Phase II trial of bortezomib for patients with advanced renalcell carcinoma. J Clin Oncol 2004;22(18):3720–5.

    Article  PubMed  CAS  Google Scholar 

  247. Hegewisch-Becker S, Sterneck M, Schubert U, Rogiers X, Guerciolini R, Pierce JE, et al. Phase I/II trial of bortezomib in patients withunresectable hepatocellular carcinoma (HCC). Proc Am Soc ClinOncol 2004;23:335s.

    Google Scholar 

  248. Berlin J, Chapman W. Phase II study of doxorubicin and bortezomib in patients withhepatocellular carcinoma (ECOG-E6202); 363801. In: DeVita VT(Editor). Current Clinical Trials in Oncology: National CancerInstitute PDQ. Yardley, PA: MediMedia; p. I-46, 2005.

    Google Scholar 

  249. Nishida N, Fukuda Y, Komeda T, Kita R, Sando T, Furukawa M, et al. Amplification and overexpression of the cyclin D1 gene in aggressivehuman hepatocellular carcinoma. Cancer Res1994;54(12):3107–10.

    PubMed  CAS  Google Scholar 

  250. Bedossa P, Peltier E, Terris B, Franco D, Poynard T. Transforminggrowth factor beta 1 (TGF-B1) and transforming growth factor beta 1 receptors in normal, cirrhotic and neoplastic human livers. Hepatology 1995;21:760–66.

    PubMed  CAS  Google Scholar 

  251. Donaghy A, Ross R, Gimson A, Hughes SC, Holly J, Williams R. Growthhormone, insulin-like growth factor-I and insulin-like growth factorbinding proteins 1 and 3 in chronic liver disease. Hepatology1995;21:680–688.

    PubMed  CAS  Google Scholar 

  252. Sue SR, Chari RS, Kong F-M, Mills JJ, Fine RL, Jirtle RL. Transforming growth factor beta receptors andmannose-6-phosphate/insulin-like growth factor-II receptorexpression in human hepatocellular carcinoma. Ann Surg1995;222:171–8.

    Article  PubMed  CAS  Google Scholar 

  253. Hui A-M, Sun L, Kanai Y, Sakamoto M, Tsuda H, Hirohashi S. ReducedP27Kip1 expression in hepatocellular carcinomas. Cancer Lett1997;132:67–73.

    Article  Google Scholar 

  254. Furutani M, Arii S, Tanaka H, Mise M, Niwano M, Harada T. Decreasedexpression of rare and somatic mutation of the CIP1/WAF1 gene inhuman hepatocellular carcinoma. Cancer Lett 1997;111:191–97.

    Article  PubMed  CAS  Google Scholar 

  255. Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H. P16-INK4 isinactivated by extensive CpG methylation in human hepatocellularcarcinoma. Gastroenterology 1999;116:394–400.

    Article  PubMed  CAS  Google Scholar 

  256. Ito Y, Matsuura N, Sakon M, Miyoshi E, Noda K, Takeda T. Expressionand prognostic roles of the G1-S modulators in hepatocellularcarcinoma: P27 effectively predicts the recurrence. Hepatology1999;30:90–99.

    Article  PubMed  CAS  Google Scholar 

  257. Pineau P, Marchio A, Nagamori S, Seki S, Tiollais P, Dejean A. Homozygous deletion scanning in hepatobiliary tumor cell linesreveals alternative pathways for liver carcinogenesis. Hepatology 2003;37(4):852–61.

    Article  PubMed  CAS  Google Scholar 

  258. Strahl BD, Allis CD. The language of covalent histone modifications.Nature 2000;403(6765):41–5.

    Article  PubMed  CAS  Google Scholar 

  259. Grunstein M. Histone acetylation in chromatin structure andtranscription. Nature 1997;389(6649): 349–52.

    Article  PubMed  CAS  Google Scholar 

  260. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS,et al. Methylation of histone H3 Lys 4 in coding regions of activegenes. Proc Natl Acad Sci USA 2002;99(13): 8695–700.

    PubMed  CAS  Google Scholar 

  261. Kanai Y, Ushijima S, Hui AM, Ochiai A, Tsuda H, Sakamoto M, et al. The E-cadherin gene is silenced by CpG methylation in humanhepatocellular carcinomas. Int J Cancer 1997;71(3): 355–9.

    Article  PubMed  CAS  Google Scholar 

  262. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S. Silencing of the {E-cadherin} invasion-suppressor gene by CpGmethylation in human carcinomas. Proc Natl Acad Sci USA1995;92:7416–7419.

    Article  PubMed  CAS  Google Scholar 

  263. Herman JG, Baylin SB. Gene silencing in cancer in association withpromoter hypermethylation. N Engl J Med2003;349(21):2042–2054.

    Article  PubMed  CAS  Google Scholar 

  264. Schwienbacher C, Gramantieri L, Scelfo R, Veronese A, Calin GA, Bolondi L, et al. Gain of imprinting at chromosome 11p15: Apathogenetic mechanism identified in human hepatocarcinomas. Proc Natl Acad Sci USA 2000;97(10):5445–9.

    Article  PubMed  CAS  Google Scholar 

  265. Paradis V, Dargere D, Bonvoust F, Rubbia-Brandt L, Ba N, Bioulac-Sage P, et al. Clonal analysis of micronodules in virusC-induced liver cirrhosis using laser capture microdissection (LCM)and HUMARA assay. Lab Invest 2000;80(10):1553–1559.

    PubMed  CAS  Google Scholar 

  266. Paradis V, Laurendeau I, Vidaud M, Bedossa P. Clonal analysis ofmacronodules in cirrhosis. Hepatology 1998;28:953–958.

    Article  PubMed  CAS  Google Scholar 

  267. Okuda T, Wakasa K, Kubo S, Hamada T, Fujita M, Enomoto T, et al. Clonal analysis of hepatocellular carcinoma and dysplastic nodule bymethylation pattern of X-chromosome-linked human androgen receptorgene. Cancer Lett 2001;164(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  268. Ochiai T, Urata Y, Yamano T, Yamagishi H, Ashihara T. Clonalexpansion in evolution of chronic hepatitis to hepatocellularcarcinoma as seen at an X-chromosome locus. Hepatology2000;31(3):615–21.

    Article  PubMed  CAS  Google Scholar 

  269. Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S.Expression of mRNA for DNA methyltransferases and methyl-CpG-bindingproteins and DNA methylation status on CpG islands andpericentromeric satellite regions during human hepatocarcinogenesis.Hepatology 2001;33(3):561–8.

    Article  PubMed  CAS  Google Scholar 

  270. Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, et al.Phase I study of an oral histone deacetylase inhibitor,suberoylanilide hydroxamic acid, in patients with advanced cancer.J Clin Oncol 2005;23(17):3923–31.

    Article  PubMed  CAS  Google Scholar 

  271. Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylaseinhibitor, in patients with advanced and refractory solid tumors orlymphoma. J Clin Oncol 2005;23(17):3912–22.

    Article  PubMed  CAS  Google Scholar 

  272. Steele N, Vidal L, Plumb J, Attard G, Rasmussen A, Buhl-Jensen P,et al. A phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) studyof the histone deacetylase (HDAC) inhibitor PXD101 in patients (pts)with advanced solid tumours. Proc Am Soc Clin Oncol2005;23:200s.

    Google Scholar 

  273. Donovan EA, Ryan Q, Acharya M, Chung E, Trepel J, Maynard K, et al.Phase I pharmacokinetic-pharmacodynamic trial of weekly MS-275, anoral histone deacetylase inhibitor. Proc Am Soc Clin Oncol2005;:23.

    Google Scholar 

  274. Rowinsky EK, de Bono J, Deangelo DJ, van Oosterom A, Morganroth J,Laird GH, et al. Cardiac monitoring in phase I trials of a novelhistone deacetylase (HDAC) inhibitor LAQ824 in patients withadvanced solid tumors and hematologic malignancies. Proc Am SocClin Oncol 2005;:23.

    Google Scholar 

  275. Hansen M, Gimsing P, Rasmusen A, Buhl Jensen P, Meldgaard Knudsen L.A phase 1 study of the histone deacetylase (HDAC) inhibitor PXD101in patients with advanced hematological tumors. Proc Am SocClin Oncol 2005;23:225s.

    Google Scholar 

  276. Beck J, Fischer T, George D, Huber C, Calvo E, Atadja P, et al.Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of ORALLBH589B: A novel histone deacetylase (HDAC) inhibitor. Proc AmSoc Clin Oncol 2005;:23.

    Google Scholar 

  277. Herold C, Ganslmayer M, Ocker M, Hermann MAG, Hahn EG, et al. Thehistone deactylase inhibitor Trichostatin-A blocks proliferation andtriggers apoptotic programs in hepatoma cells. J Hepatol2002;36:233–240.

    Article  PubMed  CAS  Google Scholar 

  278. Yamashita Y, Shimada M, Harimoto N, Rikimaru T, Shirabe K, Tanaka S,et al. Histone deactylase inhibitor trichostatin A inducescell-cycle arrest/apoptosis and hepatocyte differentiation in humanhepatoma cells. Int J Cancer 2003;103:572–76.

    Article  PubMed  CAS  Google Scholar 

  279. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F. Inhibition of histone deactylase increases cytotoxicity toanticancer drugs targeting DNA. Cancer Res 2003;63:7291–7300.

    PubMed  CAS  Google Scholar 

  280. Ocker M, Alajati A, Ganslmayer M, Zopf S, Luders M, Neureiter D,et al. The histone-deacetylase inhibitor SAHA potentiatesproapoptotic effects of 5-fluorouracil and irinotecan in hepatomacells. J Cancer Res Clin Oncol 2005;131(6):385–394.

    Article  PubMed  CAS  Google Scholar 

  281. Choi HS, Lee JH, Park JG, Lee Trichostatin YIA. A histonedeacetylase inhibitor, activates the IGFBP-3 promoter byupregulating Sp1 activity in hepatoma cells: alteration of theSp1/Sp3/HDAC1 multiprotein complex. Biochem Biophys Res Commun2002;296(4):1005–1012.

    Article  PubMed  CAS  Google Scholar 

  282. Chiba T, Yokosuka O, Fukai K, Kojima H, Tada M, Arai M, et al. Cellgrowth inhibition and gene expression induced by the histonedeacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology 2004;66(6):481–491.

    Article  PubMed  CAS  Google Scholar 

  283. Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeki F, et al.Identification of genes up-regulated by histone deacetylaseinhibition with cDNA microarray and exploration of epigeneticalterations on hepatoma cells. J Hepatol 2004;41(3):436–445.

    Article  PubMed  CAS  Google Scholar 

  284. Liu LH, Xiao WH, Liu WW. Effect of 5-Aza-2’-deoxycytidine on the P16tumor suppressor gene in hepatocellular carcinoma cell line HepG2.World J Gastroenterol 2001;7(1):131–135.

    PubMed  CAS  Google Scholar 

  285. Stewart DJ, Kurzrock R, Oki Y, Kehr K, Gupta S, Wistuba II, et al.Pharmacodynamics of decitabine 5 days/week x 2 weeks in advancedcancers. Proc Am Soc Clin Oncol 2005;23:219s.

    Google Scholar 

  286. Vidal L, Leslie M, Sludden J, Griffin MG, Plummer R, Judson I,et al. A phases I and pharmacodynamic study of a 7 day infusionschedule of the DNMT1 antisense compound MG98. Proc Am Soc ClinOncol 2005;23:209s.

    Google Scholar 

  287. Gilbert J, Gore SD, Herman JG, Carducci MA. The clinical applicationof targeting cancer through histone acetylation and hypomethylation.Clin Cancer Res 2004;10(14):4589–96.

    Article  PubMed  CAS  Google Scholar 

  288. Zhu WG, Otterson GA. The interaction of histone deacetylaseinhibitors and DNA methyltransferase inhibitors in the treatment ofhuman cancer cells. Curr Med Chem Anticancer Agents2003;3(3): 187–99.

    Article  PubMed  CAS  Google Scholar 

  289. Helder MN, Wisman GB, van der Zee GJ. Telomerase and telomeres: frombasic biology to cancer treatment. Cancer Invest2002;20(1):82–101.

    Article  PubMed  CAS  Google Scholar 

  290. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB,et al. Extension of life-span by introduction of telomerase intonormal human cells. Science 1998;279(5349):349–52.

    Article  PubMed  CAS  Google Scholar 

  291. Beattie TL, Zhou W, Robinson MO, Harrington L. Reconstitution ofhuman telomerase activity in vitro. Curr Biol1998;8(3):177–80.

    Article  PubMed  CAS  Google Scholar 

  292. Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, et al. Reconstitution of human telomerase with the template RNA componenthTR and the catalytic protein subunit hTRT. Nat Genet1997;17(4):498–502.

    Article  PubMed  CAS  Google Scholar 

  293. Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, et al.Telomerase activation by hTRT in human normal fibroblasts andhepatocellular carcinomas. Nat Genet 1998;18(1):65–8.

    Article  PubMed  CAS  Google Scholar 

  294. Nagao K, Tomimatsu M, Endo H, Hisatomi H, Hikiji K. Telomerasereverse transcriptase mRNA expression and telomerase activity inhepatocellular carcinoma. J Gastroenterol 1999;34(1): 83–87.

    Article  PubMed  CAS  Google Scholar 

  295. Kojima H, Yokosuka O, Imazeki F, Saisho H, Omata M. Telomeraseactivity and telomere length in hepatocellular carcinoma and chronicliver disease. Gastroenterology 1997;112:493–500.

    Article  PubMed  CAS  Google Scholar 

  296. Tahara H, Nakanishi T, Kitamoto M, Nakashio R, Shay JW, Tahara E. Telomerase activity in human liver tissue: comparison betweenchronic liver disease and hepatocellular carcinoma. Cancer Res1995;55:2734–36.

    PubMed  CAS  Google Scholar 

  297. Olivero OA, Poirier MC. Preferential incorporation of 3’-azido-2’,3’-dideoxythymidine into telomeric DNA and Z-DNA-containing regionsof Chinese hamster ovary cells. Mol Carcinog 1993;8(2):81–8.

    Article  PubMed  CAS  Google Scholar 

  298. Arts EJ, Quinones-Mateu ME, Albright JL. Mechanisms of clinicalresistance by HIV-1 variants to zidovudine and the paradox ofreverse transcriptase sensitivity. Drug Res Updates1998; 1:21–28.

    Article  CAS  Google Scholar 

  299. Prins J, De Vries EG, Mulder NH. Antisense of oligonucleotides and the inhibition of oncogene expression. Clin Oncol (R CollRadiol) 1993;5:245–252.

    Article  CAS  Google Scholar 

  300. Kondo Y, Koga S, Komata T, Kondo S. Treatment of prostate cancer invitro and in vivo with 2–5A-anti-telomerase RNA component. Oncogene 2000;19(18):2205–11.

    Article  PubMed  CAS  Google Scholar 

  301. Kushner DM, Paranjape JM, Bandyopadhyay B, Cramer H, Leaman DW,Kennedy AW, et al. 2–5A antisense directed against telomerase RNAproduces apoptosis in ovarian cancer cells. Gynecol Oncol2000;76(2):183–92.

    Google Scholar 

  302. Kang SS, Kwon T, Kwon DY, Do SI. Akt protein kinase enhances humantelomerase activity through phosphorylation of telomerase reversetranscriptase subunit. J Biol Chem 1999; 274(19):13085–90.

    Article  PubMed  CAS  Google Scholar 

  303. Han H, Bennett RJ, Hurley LH. Inhibition of unwinding ofG-quadruplex structures by Sgs1 helicase in the presence ofN,N’-bis[2-(1-piperidino)ethyl]-3,4,9,10-perylenetetracarboxylicdiimide, a {G-quadruplex-interactive} ligand. Biochemistry2000;39(31):9311–6.

    Article  PubMed  CAS  Google Scholar 

  304. Fedoroff OY, Salazar M, Han H, Chemeris VV, Kerwin SM, Hurley LH. NMR-Based model of a telomerase-inhibiting compound bound toG-quadruplex DNA. Biochemistry 1998;37(36):12367–74.

    Article  PubMed  CAS  Google Scholar 

  305. Tebes SJ, Johnson NC, Fiorica JV, Kruk PA. Inhibition of telomerasein ovarian cancer using siRNA technology. Proc Am Soc Clin Onc2005;23:236s.

    Google Scholar 

  306. Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. Tankyrase 1 as a targetfor telomere-directed molecular cancer therapeutics. CancerCell 2005;7(1):25–37.

    CAS  Google Scholar 

  307. Tressler RJ, Chin AC, Gryaznov SM, Harley CB. Preclinical efficacy,safety, and ADME of GRN163l, a novel telomerase inhibitor developedfor the treatment of cancer. Proc Am Soc Clin Onc2005;23:233s.

    Google Scholar 

  308. Nakamura M, Saito H, Ebinuma H, Wakabayashi K, Saito Y, Takagi T,et al. Reduction of telomerase activity in human liver cancer cellsby a histone deacetylase inhibitor. J Cell Physiol2001;187(3):392–401.

    Article  PubMed  CAS  Google Scholar 

  309. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol1999;17(9):2941–53.

    PubMed  CAS  Google Scholar 

  310. Reed JC. Mechanisms of apoptosis. Am J Pathol2000;157(5):1415–30.

    PubMed  CAS  Google Scholar 

  311. Makin G, Hickman JA. Apoptosis and cancer chemotherapy. CellTissue Res 2000;301(1):143–52.

    CAS  Google Scholar 

  312. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin CellBiol 2001;13(5):555–62.

    Article  CAS  Google Scholar 

  313. Evan G, Littlewood T. A matter of life and cell death. Science1998;281(5381):1317–22.

    Article  PubMed  CAS  Google Scholar 

  314. Millward MJ, Bedikian AY, Conry RM, Gore ME, Pehamberger HE, Sterry W, et al. Randomized multinational phase 3 trial of dacarbazine(DTIC) with or without Bcl-2 antisense (oblimersen sodium) inpatients (pts) with advanced malignant melanoma (MM): Analysis oflong-term survival. Proc Am Soc Clin Oncol 2004;22(14S):711s.

    Google Scholar 

  315. DeVita VT. Phase II study of oblimersen and doxorubicin in patientswith advanced hepatocellular carcinoma (PMH-PHL-011 257565). In:DeVita VT (Editor). Current Clinical Trials in Oncology:National Cancer Institute PDQ. Yardley, PA: MediMedia; p I-46,2005.

    Google Scholar 

  316. Olney HJ, Weng X, Watson M, Beauparlent P, Soulieres D, Viallet J,et al. Preclinical evaluation of apoptosis induction by the novelsmall molecule BCL-2 inhibitor, GX015–070, in ex vivo chroniclymphoid leukemia (CLL) cells. Proc Am Soc Clin Oncol2005;23(16S):228s.

    Google Scholar 

  317. Castro JE, Prada CE, Kitada S, Contreras D, Viallet J, Reed JC,et al. GX-015–070MS, a synthetic small molecule induces apoptosisin vitro and in vivo in chronic lymphocytic leukemia. Proc AmSoc Clin Oncol 2005;23(16S):233s.

    Google Scholar 

  318. McGreivy JS, Marshall J, Cheson BD, Hwang J, Malik S, Lebowitz P,et al. Initial results from ongoing phase I trials of a novel panbcl-2 family small molecule inhibitor. Proc Am Soc Clin Oncol2005;23(16S):236s.

    Google Scholar 

  319. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA,et al. Safety and antitumor activity of recombinant soluble Apo2ligand. J Clin Invest 1999;104(2):155–62.

    Article  PubMed  CAS  Google Scholar 

  320. Pacey S, Plummer RE, Attard G, Bale C, Clavert AH, Blagden S, et al.Phase I and pharmacokinetic study of HGS-ETR2, a human monoclonalantibody to TRAIL R2, in patients with advanced solid malignancies.Proc Am Soc Clin Oncol 2005;23:205s.

    Google Scholar 

  321. Arafat WO, Buchsbaum DJ. TRAIL-mediated induction of apoptosis as atargeted therapy for prostate cancer. Proc Am Soc Clin Oncol2005;23:237s.

    Google Scholar 

  322. Chang TH, Szabo E. Induction of differentiation and apoptosis byligands of peroxisome proliferator-activated receptor gamma innon-small cell lung cancer. Cancer Res 2000;60(4):1129–38.

    PubMed  CAS  Google Scholar 

  323. Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H,et al. Ligands for peroxisome proliferator-activated receptorgammaand retinoic acid receptor inhibit growth and induce apoptosis ofhuman breast cancer cells in vitro and in BNX mice. Proc NatlAcad Sci USA 1998;95(15): 8806–11.

    Article  CAS  Google Scholar 

  324. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M,et al. Terminal differentiation of human breast cancer through PPARgamma. Mol Cell 1998;1(3):465–70.

    Article  PubMed  CAS  Google Scholar 

  325. Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, et al. Effects of ligand activation of peroxisome proliferator-activatedreceptor gamma in human prostate cancer. Proc Natl Acad SciUSA 2000;97(20):10990–5.

    Article  CAS  Google Scholar 

  326. Rumi MAK, Sato H, Ishihara S, Kawashima K, Hamamoto S, Kazumori H,et al. Peroxisome proliferator-activated receptor gammaligand-induced growth inhibition of human hepatocellular carcinoma.Br J Cancer 2001;84:1640–47.

    Article  PubMed  CAS  Google Scholar 

  327. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB,et al. Differentiation and reversal of malignant changes in coloncancer through PPARgamma. Nat Med 1998;4(9):1046–52.

    Article  PubMed  CAS  Google Scholar 

  328. Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, Kohno M, et al.Inhibition of human lung cancer cell growth by the peroxisomeproliferator-activated receptor-gamma agonists through induction ofapoptosis. Biochem Biophys Res Commun 2000;270(2):400–5.

    Article  PubMed  CAS  Google Scholar 

  329. Toyoda M, Takagi H, Horiguchi N, Kakizaki S, Sato K, Takayama H,et al. A ligand for peroxisome proliferator activated receptor gammainhibits cell growth and induces apoptosis in human liver cancercells. Gut 2002;50(4):563–7.

    Article  PubMed  CAS  Google Scholar 

  330. Date M, Fukuchi K, Morita S, Takahashi H, Ohura K. 15-Deoxy-delta12,14-prostaglandin J2, a ligand for peroxisome proliferators-activatedreceptor-gamma, induces apoptosis in human hepatoma cells. Liver Int 2003;23(6):460–6.

    Article  PubMed  CAS  Google Scholar 

  331. Debrock G, Vanhentenrijk V, Sciot R, Debiec-Rychter M, Oyen R, VanOosterom A. A phase II trial with rosiglitazone in liposarcomapatients. Br J Cancer 2003;89(8):1409–12.

    Article  PubMed  CAS  Google Scholar 

  332. Kulke MH, Demetri GD, Sharpless NE, Ryan DP, Shivdasani R, Clark JS,et al. A phase II study of troglitazone, an activator of thePPARgamma receptor, in patients with chemotherapy-resistantmetastatic colorectal cancer. Cancer J 2002;8(5):395–9.

    PubMed  Google Scholar 

  333. Schaefer KL, Wada K, Takahashi H, Matsuhashi N, Ohnishi S, Wolfe MM,et al. Peroxisome proliferator-activated receptor gamma inhibitionprevents adhesion to the extracellular matrix and induces anoikis inhepatocellular carcinoma cells. Cancer Res 2005;65(6):2251–9.

    Article  PubMed  CAS  Google Scholar 

  334. Read WL, Govindan R, James J, Picus J. Phase I study of bexaroteneand rosiglitazone in patients with refractory cancers. Proc AmSoc Clin Onc 2005;23:232s.

    Google Scholar 

  335. Mangelsdorf DJ, Umesono K, Evans RM. The retinoid receptors. In:Sporn MB, Roberts AB, Goodman DS (Editors). The Retinoids:Biology, Chemistry and Medicine, 2nd Ed. New York: Raven Press; pp 319–349, 1994.

    Google Scholar 

  336. Miller WHJ. The emerging role of retinoids and retinoic acidmetabolism blocking agents in the treatment of cancer. Cancer1998;83:1471–1482.

    Article  PubMed  CAS  Google Scholar 

  337. Muto Y, Moriwaki H, Ninomiya M, Adachi S, Saito A, Takasaki KT,et al. Prevention of second primary tumors by an acyclic retinoid,polyprenoic acid, in patients with hepatocellular carcinoma.Hepatoma Prevention Study Group. N Engl J Med1996;334(24):1561–1567.

    Article  PubMed  CAS  Google Scholar 

  338. Muto Y, Moriwaki H, Saito A. Prevention of second primary tumors byan acyclic retinoid in patients with hepatocellular carcinoma[letter; comment]. N Engl J Med 1999;340(13):1046–7.

    Article  PubMed  CAS  Google Scholar 

  339. Piao YF, Shi Y, Gao PJ. Inhibitory effect of all-trans retinoic acidon human hepatocellular carcinoma cell proliferation. World JGastroenterol 2003;9(9):2117–2120.

    CAS  Google Scholar 

  340. Suzui M, Masuda M, Lim JT, Albanese C, Pestell RG, Weinstein IB.Growth inhibition of human hepatoma cells by acyclic retinoid isassociated with induction of p21(CIP1) and inhibition of expressionof cyclin D1. Cancer Res 2002;62(14):3997–4006.

    PubMed  CAS  Google Scholar 

  341. Nakamura N, Shidoji Y, Moriwaki H, Muto Y. Apoptosis in humanhepatoma cell line induced by 4, 5-didehydro geranylgeranoic acid(acyclic retinoid) via down-regulation of transforming growthfactor-alpha. Biochem Biophys Res Commun 1996;219(1):100–4.

    Article  PubMed  CAS  Google Scholar 

  342. Matsushima-Nishiwaki R, Okuno M, Takano Y, Kojima S, Friedman SL,Moriwaki H. Molecular mechanism for growth suppression of humanhepatocellular carcinoma cells by acyclic retinoid. Carcinogenesis 2003;24(8):1353–1359.

    Google Scholar 

  343. Mervis J. Ancient remedy performs new tricks. Science1996;273:578.

    Article  PubMed  CAS  Google Scholar 

  344. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardasthi LJ,et al. Complete remission after treatment of acute promyelocyticleukemia with arsenic trioxide. N Engl J Med 1998;339:1341–1348.

    Article  PubMed  CAS  Google Scholar 

  345. Shen ZY, Shen J, Cai WJ, Hong C, Zheng MH. The alteration ofmitochondria is an early event of arsenic trioxide induced apoptosisin esophageal carcinoma cells. Int J Mol Med 2000;5:155–158.

    PubMed  CAS  Google Scholar 

  346. Chow SK, Chan JY, Fung KP. Inhibition of cell proliferation and theaction mechanisms of arsenic trioxide (As203) on human breast cancercells. J Cell Biochem 2004;93:173–187.

    Article  PubMed  CAS  Google Scholar 

  347. Jiang XH, Wong BCY, Yuen ST, Jiang SH, Cho CH, Lai KC. Arsenictrioxide induces apoptosis in human gastric cancer cells throughupregulation of p53 and activation of caspase 3. Int J Cancer2001;93:173–179.

    Article  Google Scholar 

  348. Chan JY, Siu KP, Fung KP. Effect of arsenic trioxide on multidrugresistant hepatocellular carcinoma cells. Cancer Lett2005;236(2):250–8.

    Article  PubMed  CAS  Google Scholar 

  349. Oketani M, Kohara K, Tuvdendorj D, Ishitsuka K, Komorizono Y,Ishibashi K, et al. Inhibition by arsenic trioxide of human hepatomacell growth. Cancer Lett 2002;183(2):147–53.

    Google Scholar 

  350. Kito M, Matsumoto K, Wada N, Sera K, Futatsugawa S, Naoe T, et al.Antitumor effect of arsenic trioxide in murine xenograft model. Cancer Sci 2003;94(11):1010–4.

    Article  PubMed  CAS  Google Scholar 

  351. Wang SS, Zhang T, Wang XL, Hong L, Qi QH. Effect of arsenic trioxideon rat hepatocellular carcinoma and its renal cytotoxicity. World J Gastroenterol 2003;9(5):930–5.

    PubMed  CAS  Google Scholar 

  352. Xu HY, Yang YL, Liu SM, Bi L, Chen SX. Effect of arsenic trioxide onhuman hepatocarcinoma in nude mice. World J Gastroenterol2004;10(24):3677–9.

    PubMed  CAS  Google Scholar 

  353. Zhang T, Wang SS, Hong L, Wang XL, Qi QH. Arsenic trioxide inducesapoptosis of rat hepatocellular carcinoma cells in vivo. J ExpClin Cancer Res 2003;22(1):61–8.

    Google Scholar 

  354. Koike Y, Shiratori Y, Sato S, Obi S, Teratani T, Imamura M. Des-gamma-carboxy prothrombin as a useful predisposing factor forthe development of portal venous invasion in patients withhepatocellular carcinoma: a prospective analysis of 227 patients.Cancer 2001;91:561–569.

    Article  PubMed  CAS  Google Scholar 

  355. Miyakawa T, Kajiwara Y, Shirahata A, Okamoto K, Itoh H, Ohsato K. Vitamin K contents in liver tissue of hepatocellular carcinomapatients. Jpn J Cancer Res 2000;91:68–74.

    Google Scholar 

  356. Hitomi M, Yokoyama F, Kita Y, Nonomura T, Masaki T, Yoshiji H,et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellularcarcinoma in vitro and in vivo. Int J Oncol2005;26(3):713–20.

    PubMed  CAS  Google Scholar 

  357. Carr BI, Wang Z, Kar S. K vitamins, PTP antagonism, and cell growtharrest. J Cell Physiol 2002;193(3):263–74.

    Article  PubMed  CAS  Google Scholar 

  358. Ge L, Wang Z, Wang M, Kar S, Carr BI. Involvement of c-Myc in growthinhibition of Hep 3B human hepatoma cells by a vitamin K analog.J Hepatol 2004;41(5):823–9.

    Article  PubMed  CAS  Google Scholar 

  359. Markovits J, Wang Z, Carr BI, Sun TP, Mintz P, Le Bret M, et al.Differential effects of two growth inhibitory K vitamin analogs oncell cycle regulating proteins in human hepatoma cells. LifeSci 2003;72(24):2769–84.

    CAS  Google Scholar 

  360. Osada S, Carr BI. Mechanism of novel vitamin K analog induced growthinhibition in human hepatoma cell line. J Hepatol2001;34(5):676–82.

    Article  PubMed  CAS  Google Scholar 

  361. Otsuka M, Kato N, Shao RX, Hoshida Y, Ijichi H, Koike Y, et al.Vitamin K2 inhibits the growth and invasiveness of hepatocellularcarcinoma cells via protein kinase A activation. Hepatology2004;40(1):243–51.

    Article  PubMed  CAS  Google Scholar 

  362. Koike Y, Shiratori Y, Shiina S, Teratani T, Obi S, Sato S, et al.Randomized prospective study of prevention from tumor invasion intoportal vein in 120 patients with hepatocellular carcinoma by vitaminK. Gastroenterology Suppl. Proc Ann Meeting AGA, AASL,GRG, SSAT, ASGE 2002;122(4):P-43.

    Google Scholar 

  363. Villa E, Colantoni A, Camma C, Grottola A, Buttafoco P, Gelmini R,et al. Estrogen receptor classification for hepatocellularcarcinoma: comparison with clinical staging systems. J ClinOncol 2003;21:441–46.

    Article  CAS  Google Scholar 

  364. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsedmultiple myeloma. N Engl J Med 2005;352:2487–2498.

    Article  PubMed  CAS  Google Scholar 

  365. Kozloff M, Cohn A, Christiansen N, Flynn P, Kabbinavar F, Robles R,et al. Safety of bevacizumab (BV) among patients (pts) receivingfirst-line chemotherapy (CT) for metastatic colorectal cancer(mCRC): preliminary results from a larger registry trial in the US. Proc Am Soc Clin Oncol 2005;23(16S):262s.

    Google Scholar 

  366. Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J, et al. Establishment of ahepatocellular carcinoma cell line with unique metastaticcharacteristics through in vivo selection and screening formetastasis-related genes through cDNA microarray. J Cancer ResClin Oncol 2003;129(1):43–51.

    CAS  Google Scholar 

  367. Kawai HF, Kaneko S, Honda M, Shirota Y, Kobayashi K. Alpha-fetoprotein producing hepatoma cell lines share commonexpression profiles of genes in various categories demonstrated bycDNA microarray analysis. Hepatology 2001;33:676–691.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Schwartz, J.D., Llovet, J.M. (2008). Molecular Targeting in Hepatocellular Carcinoma. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics