Skip to main content

Abstract

Transforming growth factor-β(TGF-β) regulates cell growth inhibition, and perturbations of TGF-β signaling contribute to tumor progression. The effects of TGF-β growth inhibition are mediated by TGF-β receptors and Smad proteins. The role of TGF-β signaling in esophageal cancer has recently been elucidated. Although mutation of these genes is rare in esophageal cancer, alteration of the expression of these mediators correlates with tumor progression and poor prognosis. The mechanisms of the expression of the TGF-β signaling. mediators appear to be regulated by ubiquitin-dependent degradation. Consequently, transmission of TGF-β signaling may be hampered in esophageal cancer and loss of the growth inhibitory responses to TGF-β may occur in this disease. In summary, modulation of the expression of TGF-β singaling mediators is involved in the progression of esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. White RL. Tumor suppressing pathways. Cell 1998;92:591–592.

    Article  CAS  PubMed  Google Scholar 

  2. Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev 1996;7:93–102.

    Article  CAS  PubMed  Google Scholar 

  3. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–1338.

    Article  CAS  PubMed  Google Scholar 

  4. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at chromosome 18q21.1. Science 1996;271:350–353.

    Article  CAS  PubMed  Google Scholar 

  5. Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999;18:3098–3103.

    Article  CAS  PubMed  Google Scholar 

  6. Sugimachi K, Watanabe M, Sadanaga N, et al. Recent advances in the diagnosis and surgical treatment of patients with carcinoma of the esophagus. J Am Coll Surg 1994;178:363–368.

    CAS  PubMed  Google Scholar 

  7. Kodama M, Kakegawa T. Treatment of superficial cancer of the esophagus: a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan. Surgery 1998;123:432–439.

    CAS  PubMed  Google Scholar 

  8. Kuwano H, Masuda N, Kato H, Sugimachi K. The subepithelial extension of esophageal carcinoma for determining the resection margin during esophagectomy: a serial histopathologic investigation. Surgery 2002;131:S14–S21.

    Article  PubMed  Google Scholar 

  9. Shimada Y, Imamura M, Shibagaki I, et al. Genetic alterations in patients with esophageal cancer with short-and long-term survival rates after curative esophagectomy. Ann Surg 1997;226:162–168.

    Article  CAS  PubMed  Google Scholar 

  10. Shiozaki H, Doki Y, Kawanishi K, et al. Clinical application of malignancy potential grading as a prognostic factor of human esophageal cancers. Surgery 2000;127:552–561.

    Article  CAS  PubMed  Google Scholar 

  11. Massagué J. TGF-β signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  12. Roberts AB, Thompson NL, Heine U, Flanders C, Sporn MB. Transforming growth factor-β: possible roles in carcinogenesis. Br J Cancer 1988;57:594–600.

    CAS  PubMed  Google Scholar 

  13. Heldin C-H, Miyazono K, ten Dijke P. TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature 1997;390:465–471.

    Article  CAS  PubMed  Google Scholar 

  14. Massagué J, Wotton D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J 2000; 19:1745–1754.

    Article  PubMed  Google Scholar 

  15. Miyazono K, ten Dijke P, Heldin C-H. TGF-β signaling by Smad proteins. Adv Immunol 2000;75: 115–157.

    Article  CAS  PubMed  Google Scholar 

  16. Attisano L, Wrana JL. Smads as co-modulators. Curr Opin Cell Biol 2000;12:235–243.

    Article  CAS  PubMed  Google Scholar 

  17. Miyazono K. Positive and negative regulation of TGF-β signaling. J Cell Sci 2000;113:1101–1109.

    CAS  PubMed  Google Scholar 

  18. Feng XH, Zhang Y, Wu RY, Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-β-induced transcriptional activation. Genes Dev 1998; 12:2153–2163.

    Article  CAS  PubMed  Google Scholar 

  19. Janknecht R, Wells NJ, Hunter T. TGF-β-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 1998;12:2114–2119.

    Article  CAS  PubMed  Google Scholar 

  20. Nishihara A, Hanai J, Okamoto N, et al. Role of p300, a transcriptional coactivator, in signalling of TGF-β. Genes Cells 1998;3:613–623.

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA. Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Mol Cell 1999;4:499–509.

    Article  CAS  PubMed  Google Scholar 

  22. Akiyoshi S, Inoue H, Hanai J, et al. c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads. J Biol Chem 1999;274:35,269–35,277.

    Article  CAS  PubMed  Google Scholar 

  23. Luo K, Stroschein SL, Wang W, et al. The Ski oncoprotein interacts with the Smad proteins to repress TGF-β signaling. Genes Dev 1999;13:2196–2206.

    Article  CAS  PubMed  Google Scholar 

  24. Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 1999;286:771–774.

    Article  CAS  PubMed  Google Scholar 

  25. Nomura T, Khan MM, Kaul SC, et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev 1999;13:412–423.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu H, Kavsak P, Abdollah S, Wrana JL. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 1999;400:687–693.

    Article  CAS  PubMed  Google Scholar 

  27. Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in TGF-β signaling. J Biol Chem 2000;275:36,818–36,822.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 2001;98:974–979.

    Article  CAS  PubMed  Google Scholar 

  29. Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol Cell 2000;6:1365–1375.

    Article  CAS  PubMed  Google Scholar 

  30. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425–479.

    Article  CAS  PubMed  Google Scholar 

  31. Laney JD, Hochstrasser M. Substrate targeting in the ubiquitin system. Cell 1999;97:427–430.

    Article  CAS  PubMed  Google Scholar 

  32. Lahm H, Odartchenko N. Role of transforming growth factor β in colorectal cancer. Growth Factors 1993;9:1–9.

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto A, Jiang W, Kim SJ, et al. Overexpression of human cyclin D1 reduces the transforming growth factor β (TGF-β) type II receptor and growth inhibition by TGF-β1 in an immortalized human esophageal epithelial cell line. Proc Natl Acad Sci USA 1994;91:11,576–11,580.

    Article  CAS  PubMed  Google Scholar 

  34. Nishihira T, Hashimoto Y, Katayama M, Mori S, Kuroki T. Molecular and cellular features of esophageal cancer cells. J Cancer Res Clin Oncol 1993;119:441–449.

    Article  CAS  PubMed  Google Scholar 

  35. Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 2000;97:9624–9629.

    Article  CAS  PubMed  Google Scholar 

  36. Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor β1 in patients with colorectal cancer: association with disease progression. Gastroenterology 1996;110:375–382.

    Article  CAS  PubMed  Google Scholar 

  37. Saito H, Tsujitani S, Oka S, et al. The expression of transforming growth factor-β1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer 1999;86:1455–1462.

    Article  CAS  PubMed  Google Scholar 

  38. Shariat SF, Kim JH, Andrews B, et al. Preoperative plasma levels of transforming growth factor β 1 strongly predict clinical outcome in patients with bladder carcinoma. Cancer 2001;92:2985–2992.

    Article  CAS  PubMed  Google Scholar 

  39. Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor β 1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res 2002;8:1838–1842.

    CAS  PubMed  Google Scholar 

  40. Fukai Y, Fukuchi M, Masuda N, et al. Reduced expression of transforming growth factor-β receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer 2003;104:161–166.

    Article  CAS  PubMed  Google Scholar 

  41. Fukuchi M, Miyazaki T, Fukai Y, et al. Plasma level of transforming growth factor β1 measured from the azygos vein predicts prognosis in patients with esophageal cancer. Clin Cancer Res 2004;10:2738–2741.

    Article  CAS  PubMed  Google Scholar 

  42. Domini R. Physiopathology of hemodynamics of the esophageal venous plexus. Arch Ital Mal Appar Dig 1968;35:415–420.

    CAS  PubMed  Google Scholar 

  43. Chevallier JM, Vitte E, Derosier C, et al. The thoracic esophagus: sectional anatomy and radiosurgical applications. Surg Radiol Anat 1991;13:313–321.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Musci T, Derynck R. The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr Biol 1997;7:270–276.

    Article  PubMed  Google Scholar 

  45. Osawa H, Shitara Y, Shoji H, et al. Mutation analysis of transforming growth factor β type II receptor, Smad2, Smad3, and Smad4 in esophageal squamous cell carcinoma. Int J Oncol 2000;17:723–728.

    CAS  PubMed  Google Scholar 

  46. Fukuchi M, Masuda N, Miyazaki T, et al. Decreased Smad4 expression in the transforming growth factor-β signaling pathway during progression of esophageal squamous cell carcinoma. Cancer 2002;95:737–743.

    Article  CAS  PubMed  Google Scholar 

  47. Fukuchi M, Fukai Y, Masuda N, et al. High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res 2002;62:7162–7165.

    CAS  PubMed  Google Scholar 

  48. Fukuchi M, Nakajima M, Fukai Y, et al. Increased expression of c-Ski as a co-repressor in transforming growth factor-β signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 2004;108:818–824.

    Article  CAS  PubMed  Google Scholar 

  49. Sashiyama H, Shino Y, Sakao S, et al. Alteration of integrin expression relates to malignant progression of human papillomavirus-immortalized esophageal keratinocytes. Cancer Lett 2002;177:21–28.

    Article  CAS  PubMed  Google Scholar 

  50. Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-β. J Biol Chem 2000;275:29,244–29,256.

    Article  CAS  PubMed  Google Scholar 

  51. Miyazono K, Suzuki H, Imamura T. Regulation of TGF-β signaling and its roles in progression of tumors. Cancer Sci 2003;94:230–234.

    Article  CAS  PubMed  Google Scholar 

  52. Fukuchi M, Kato H, Kuwano H. TGF-β signaling in esophageal squamous cell carcinoma. Esophagus 2005;2:15–19.

    Article  Google Scholar 

  53. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  54. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    Article  CAS  PubMed  Google Scholar 

  55. Inman GJ, Nicolas FJ, Callahan JF, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002;62:65–74.

    Article  CAS  PubMed  Google Scholar 

  56. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel calss of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    CAS  PubMed  Google Scholar 

  57. Sunwoo JB, Chen Z, Dong G, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 2001;7:1419–1428.

    CAS  PubMed  Google Scholar 

  58. LeBlanc R, Catley LP, Hideshima T, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002;62:4996–5000.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fukuchi, M., Kato, H., Kuwano, H. (2008). TGF-β and Progression of Esophageal Cancer. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics