Skip to main content

Aberrant Transforming Growth Factor-β Signaling in Human Pancreatic Cancer: Translational Implications

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The most deadly form of pancreatic cancer in humans is pancreatic ductal adenocarcinoma (PDAC), a malignancy that exhibits multiple molecular alterations, including a high frequency of K-ras, p53, p16, and Smad4 mutations. PDACs express many mitogenic growth factors and their tyrosine kinase receptors, resulting in excessive activation of mitogenic pathways. These cancers also express high levels of transforming growth factor-β (TGF-β) isoforms. This review focuses on the potential role of TGF-βs in PDAC, delineating the evidence for their paracrine growth-promoting properties that enhance tumor angiogenesis, and metastasis, and underscoring the important role of Smad7 in conferring a growth and survival advantage to pancreatic cancer cells by blocking autocrine growth-inhibitory pathways while promoting the expression of genes implicated in metastasis and apoptosis resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gudjonsson B. Cancer of the pancreas. 50 years of surgery. Cancer 1987;60:2284–2303.

    Article  CAS  PubMed  Google Scholar 

  2. Warshaw AL, Ferandez-Del Castillo C. Pancreatic carcinoma. N Engl J Med 1992;326:455–465.

    Article  CAS  PubMed  Google Scholar 

  3. DiMagno EP, Reber HA, Tempero MA. AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology 1999;117:1464–1484.

    CAS  Google Scholar 

  4. Sener SF, Fremgen A, Menck HR, Winchester DP. Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the National Cancer Database. J Am Coll Surg 1999;189:1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kornmann M, Beger HG, Link KH. Chemosensitivity testing and test-directed chemotherapy in human pancreatic cancer. Recent Results Cancer Res 161:180–195.

    Google Scholar 

  6. Kern S, Tempero M, Corley B. Pancreatic Cancer: An Agenda for Action. Report of the Pancreatic Cancer Progress Review Group, NCI 2001.

    Google Scholar 

  7. Hansel DE, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet 2001;4:237–256.

    Article  CAS  Google Scholar 

  8. Korc M. “Biology of pancreatic cancer.” In: Rustgi AK, Crawford J, Saunders WB, eds. Gastrointestinal Cancers 2003;pp.519–528.

    Google Scholar 

  9. Summy JM, Trevino JG, Baker CH, Gallick GE. c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas 2005;31:263–274.

    Article  CAS  PubMed  Google Scholar 

  10. Greten FR, Weber CK, Greten TF, et al. Stat3 and NF-kappaB activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 2002;123:2052–2063.

    Article  CAS  PubMed  Google Scholar 

  11. Friess H, Guo XZ, Berberat P, et al. KAI1 expression is up-regulated in early pancreatic cancer and decreased in the presence of metastases. Cancer Res 1996;56:4876–4880.

    PubMed  Google Scholar 

  12. Murakami M, Nagai E, Mizumoto K, et al. Suppression of metastasis of human pancreatic cancer to the liver by transportal injection of recombinant adenoviral NK4 in nude mice. Int J Cancer 2005;117:160–165.

    Article  CAS  PubMed  Google Scholar 

  13. Korc M. Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer 2003;2:1–8.

    Article  Google Scholar 

  14. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 1999;10:303–360.

    CAS  PubMed  Google Scholar 

  15. Korc M. Role of growth factors in pancreatic cancer. Surg Oncol Clin N Am 1998;7:25–41.

    CAS  PubMed  Google Scholar 

  16. Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133–146.

    Article  CAS  PubMed  Google Scholar 

  17. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3:807–821.

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  19. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science 2002;296:1646–1647.

    Article  CAS  PubMed  Google Scholar 

  20. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005 2005;19:2783–2810.

    Article  CAS  Google Scholar 

  21. Feng XH, Derynck R. Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.

    Article  CAS  PubMed  Google Scholar 

  22. Yamanaka Y, Friess H, Büchler M, Beger HG, Gold LI. Synthesis and expression of transforming growth factor beta-1, beta-2, and beta-3 in the endocrine and exocrine pancreas. Diabetes 1993;42:746–756.

    Article  CAS  PubMed  Google Scholar 

  23. Moritani M, Yamasaki S, Kagami M, et al. Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-betal. Mol Cell Endocrinol 2005;229:175–184.

    Article  CAS  PubMed  Google Scholar 

  24. Grewal IS, Grewal KD, Wong FS, et al. Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism. J Autoimmun 2002;19:9–22.

    Article  PubMed  Google Scholar 

  25. Boyer Arnold N, Korc M. Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. J Biol Chem 2005;280:21,858–21,866.

    Article  CAS  PubMed  Google Scholar 

  26. Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-beta. Adv Cancer Res 1997;71:165–207.

    Article  CAS  PubMed  Google Scholar 

  27. Senderowicz AM. Inhibitors of cyclin-dependent kinase modulators for cancer therapy. Prog Drug Res 2005;63:183–206.

    Article  CAS  PubMed  Google Scholar 

  28. Kleeff J, Korc M. Up-regulation of transforming growth factor (TGF)-beta receptors by TGF-beta1 in COLO-357 cells. J Biol Chem 1998;273:7495–7500.

    Article  CAS  PubMed  Google Scholar 

  29. Denicourt C, Dowdy SF. Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 2004;18:851–855.

    Article  CAS  PubMed  Google Scholar 

  30. Gitig DM, Koff A. Cdk pathway: cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Mol Biotechnol 2001;19:179–188.

    Article  CAS  PubMed  Google Scholar 

  31. Coqueret O. Linking cyclins to transcriptional control. Gene 2002;299:35–55.

    Article  CAS  PubMed  Google Scholar 

  32. Kornmann M, Tangvoranuntakul P, Korc M. TGF-beta-1 up-regulates cyclin D1 expression in COLO-357 cells, whereas suppression of cyclin D1 levels is associated with down-regulation of the type I TGF-beta receptor. Int J Cancer 1999;83:247–254.

    Article  CAS  PubMed  Google Scholar 

  33. Beauchamp RD, Lyons RM, Yang EY, Coffey RJ, Jr., Moses HL. Expression of and response to growth regulatory peptides by two human pancreatic carcinoma cell lines. Pancreas 1990;5:369–380.

    Article  CAS  PubMed  Google Scholar 

  34. Baldwin RL, Korc M. Growth inhibition of human pancreatic carcinoma cells by transforming growth factor beta-1. Growth Factors 1993;8:23–24.

    Article  CAS  PubMed  Google Scholar 

  35. Hahn SA, Schutte M, Shansul Hoque ATM, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;268:350–353.

    Article  Google Scholar 

  36. Baldwin RL, Friess H, Yokoyama M, et al. Attenuated ALK5 receptor expression in human pancreatic cancer: correlation with resistance to growth inhibition. Int J Cancer 1996;67:283–288.

    Article  CAS  PubMed  Google Scholar 

  37. Wagner M, Kleeff J, Lopez ME, Bockman I, Massagué J, Korc M. Transfection of the type I TGF-beta receptor restores TGF-beta responsiveness in pancreatic cancer. Int J Cancer 1998;78:255–260.

    Article  CAS  PubMed  Google Scholar 

  38. Wyllie FS, Dawson T, Bond JA, et al. Correlated abnormalities of transforming growth factor-β response and p53 expression in thyroid epithelial cell transformation. Mol Cel Endo 1998;76:13–21.

    Article  Google Scholar 

  39. Villanueva A, Garcia C, Paules AB, et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 1998;17:1969–1978.

    Article  CAS  PubMed  Google Scholar 

  40. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998;58:5329–5332.

    CAS  PubMed  Google Scholar 

  41. Kleeff J, Ishiwata T, Maruyama H, et al. The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 1999;18:5363–5372.

    Article  CAS  PubMed  Google Scholar 

  42. Kleeff J, Maruyama H, Friess H, Büchler MW, Falb D, Korc M. Smad6 suppresses TGF-beta-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun 1999;255:268–273.

    Article  CAS  PubMed  Google Scholar 

  43. Massagué J, Blain SW, Lo RS. TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    Article  PubMed  Google Scholar 

  44. Friess H, Yamanaka Y, Büchler MW, et al. Enhanced expression of transforming growth factor-beta isoforms in human pancreatic cancer correlates with decreased survival. Gastroenterology 1993;105:1846–1856.

    CAS  PubMed  Google Scholar 

  45. Anzano MA, Roberts AB, De Larco JE, et al. Increased secretion of type beta transforming growth factor accompanies viral transformation of cells. Mol Cell Biol 1985;5:242–247.

    CAS  PubMed  Google Scholar 

  46. Steiner MS, Barrack ER. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol Endocrinol 1992;6: 15–25.

    Article  CAS  PubMed  Google Scholar 

  47. Arteaga CL, Carty-Dugger T, Moses HL, Hurd SD, Pietenpol JA. Transforming growth factor beta 1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ 1993;4:193–201.

    CAS  PubMed  Google Scholar 

  48. Fitzpatrick DR, Bielefeldt Ohmann H, Himbeck RP, Jarnicki AG, Marzo AL, Robinson BW. Transforming growth factor-beta: antisense RNA-mediated inhibition affects anchorage-independent growth, tumorigenicity and tumor-infiltrating T-cells in malignant mesothelioma. Growth Factors 1994;11:29–44.

    Article  CAS  PubMed  Google Scholar 

  49. Marzo AL, Fitzpatrick DR, Robinson BW, Scott B. Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res 1997;57:3200–3207.

    CAS  PubMed  Google Scholar 

  50. Hoefer M, Anderer FA. Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 1995;41:302–308.

    Article  CAS  PubMed  Google Scholar 

  51. Lopez AR, Cook J, Deininger PL, Derynck R. Dominant negative mutants of transforming growth factor-beta 1 inhibit the secretion of different transforming growth factor-beta isoforms. Mol Cell Biol 1992;12:1674–1679.

    CAS  PubMed  Google Scholar 

  52. Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y. Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor beta receptor therapy. Cancer Res 1999;59:1273–1277.

    CAS  PubMed  Google Scholar 

  53. Komesli S, Vivien D, Dutartre P. Chimeric extracellular domain type II transforming growth factor (TGF)-beta receptor fused to the Fc region of human immunoglobulin as a TGF-beta antagonist. Eur J Biochem 1988;254:505–513.

    Article  Google Scholar 

  54. Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L. A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 1999;59:5041–5046.

    CAS  PubMed  Google Scholar 

  55. Halder SK, Beauchamp RD, Datta PK. A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 2005;7:509–521.

    Article  CAS  PubMed  Google Scholar 

  56. Rowland-Goldsmith MA, Maruyama H, Kusama T, Ralli S, Korc M. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clin Cancer Res 2001;7:2931–2940.

    CAS  PubMed  Google Scholar 

  57. Rowland-Goldsmith MA, Maruyama H, Matsuda K, et al. Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 2002;1:161–167.

    CAS  PubMed  Google Scholar 

  58. Luo J, Guo P, Matsuda K, et al. Pancreatic cancer cell-derived vascular endothelial growth factor is biologically active in vitro and enhances tumorigenicity in vivo. Int J Cancer 2001;92:361–369.

    Article  CAS  PubMed  Google Scholar 

  59. Fukasawa M, Korc M. Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 2004;10:3327–3332.

    Article  CAS  PubMed  Google Scholar 

  60. Sirard C, Kim S, Mirtsos C, et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J Biol Chem 2000;275:2063–2070.

    Article  CAS  PubMed  Google Scholar 

  61. Petritsch C, Beug H, Balmain A, Oft M. TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 2000;14:3093–3101.

    Article  CAS  PubMed  Google Scholar 

  62. Kleeff J, Wildi S, Friess H, Korc M. Ligand induced upregulation of the type II transforming growth factor (TGF-beta) receptor enhances TGF-beta responsiveness in COLO-357 cells. Pancreas 1999;18:354–370.

    Article  Google Scholar 

  63. Dai JL, Schutte M, Bansal RK, Wilentz RE, Sugar AY, Kern SE. Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells. Mol Carcinog 1999;26:37–43.

    Article  CAS  PubMed  Google Scholar 

  64. Simeone DM, Pham T, Logsdon CD. Disruption of TGFbeta signaling pathways in human pancreatic cancer cells. Ann Surg 2000;232:73–80.

    Article  CAS  PubMed  Google Scholar 

  65. Yasutome M, Gunn J, Korc M. Restoration of Smad4 in BxPC3 pancreatic cancer cels attenuates proliferation without altering angiogenesis. Clin Exp Metastasis 2005;22:461–473.

    Article  CAS  PubMed  Google Scholar 

  66. Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proct Natl Acad Sci USA 2000;97:9624–9629.

    Article  CAS  Google Scholar 

  67. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004;29(5):265–273.

    Article  PubMed  CAS  Google Scholar 

  68. Datta PK, Moses HL. STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling. Mol Cell Biol 2000;20:3157–3167.

    Article  CAS  PubMed  Google Scholar 

  69. Simonsson M, Heldin C-H, Ericsson J, Gronroos E. The balance between acetylation and deacetylation controls Smad7 stability. J Biol Chem 2005;280:21,797–21,803.

    Article  CAS  PubMed  Google Scholar 

  70. Ferrigno O, Lallemand F, Verrecchia F, et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 2002;21(32):4879–4884.

    Article  CAS  PubMed  Google Scholar 

  71. Monteleone G, Del Vecchio Blanco G, Monteleone I, et al. Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology 2005;129:1420–1429.

    Article  CAS  PubMed  Google Scholar 

  72. Ogunjimi AA, Briant DJ, Pece-Barbara N, et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 2005;19:297–308.

    Article  CAS  PubMed  Google Scholar 

  73. Shi W, Sun C, He B, et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 2004;164:291–300.

    Article  CAS  PubMed  Google Scholar 

  74. Wang W, Huang XR, Li AG, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 2005;16:1371–1383.

    Article  CAS  PubMed  Google Scholar 

  75. Bell E, Munoz-Sanjuan I, Altmann CR, Vonica A, Brivanlou AH. Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development 2003;130:1381–1389.

    Article  CAS  PubMed  Google Scholar 

  76. Arnold NB, Ketterer K, Kleeff J, Friess H, Büchler MW, Korc M. Thioredoxin is downstream of Smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer. Cancer Res 2004;64:3599–3606.

    Article  CAS  PubMed  Google Scholar 

  77. Boulay JL, Mild G, Lowy A, et al. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J Cancer 2003;104:446–449.

    Article  CAS  PubMed  Google Scholar 

  78. Cerutti JM, Ebina KN, Matsuo SE, Martins L, Maciel RM, Kimura ET. Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines. J Endocrinol Invest 2003;26:516–521.

    CAS  PubMed  Google Scholar 

  79. Monteleone G, Mann J, Monteleone I, et al. A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gut inflammation. J Biol Chem 2004;279:3925–3932.

    Article  CAS  PubMed  Google Scholar 

  80. He W, Li AG, Wang D, et al. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J 2002;21:2580–2590.

    Article  CAS  PubMed  Google Scholar 

  81. Wang B, Hao J, Jones SC, Yee MS, Roth JC, Dixon IM. Decreased Smad7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 2002;282:H1685–H1696.

    CAS  PubMed  Google Scholar 

  82. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts. J Clin Invest 2004;113:253–264.

    CAS  PubMed  Google Scholar 

  83. Pulaski L, Landstrom M, Heldin C-H, Souchelnytskyi S. Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-beta-dependent signaling but affects Smad7-dependent transcriptional activation. J Biol Chem 2001;276:14,344–14,349.

    CAS  PubMed  Google Scholar 

  84. Gronroos E, Hellman U, Heldin C-H, Ericsson J. Control of Ssmad7 stability by competition between acetylation and ubiquitination. Mol Cell 2002;10:483–493.

    Article  CAS  PubMed  Google Scholar 

  85. Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 2001;41:261–295.

    Article  CAS  PubMed  Google Scholar 

  86. Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 2000;29:312–322.

    Article  CAS  PubMed  Google Scholar 

  87. Davis W Jr. Ronai Z, Tew KD. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 2001;296:1–6.

    CAS  PubMed  Google Scholar 

  88. Takeuchi J, Hirota K, Itoh T, et al. Thioredoxin inhibits tumor necrosis factor-or interleukin-1-induced NF-kappaB activation at a level upstream of NF-kappaB-inducing kinase. Antioxid Redox Signal 2000;2:83–92.

    Article  CAS  PubMed  Google Scholar 

  89. Freemerman AJ, Gallegos A, Powis G. Nuclear factor kappaB transactivationis increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res 1999;59:4090–4094.

    CAS  PubMed  Google Scholar 

  90. Koga H, Kotoh S, Nakashima M, Yokomizo A, Tanaka M, Naito S. Accumulation of intracellular platinum is correlated with intrinsic cisplatin resistance in human bladder cancer cell lines. Int J Oncol 2000;16:1003–1007.

    CAS  PubMed  Google Scholar 

  91. Ueno M, Masutani H, Arai RJ, et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 1999;274:35,809–35,815.

    Article  CAS  PubMed  Google Scholar 

  92. Butterfield LH, Merino A, Golub SH, Shau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal 1999;1:385–402.

    Article  CAS  PubMed  Google Scholar 

  93. Barral AM, Kallstrom R, Sander B, Rosen A. Thioredoxin, thioredoxin reductase and tumour necrosis factor-alpha expression in melanoma cells: correlation to resistance against cytotoxic attack. Melanoma Res 2000;10:331–343.

    Article  CAS  PubMed  Google Scholar 

  94. Kuang C, Xiao Y, Liu X, et al. In vivo disruption of TGF-beta signaling by Smad7 leads to premalignant ductal lesions in the pancreas. Proc Natl Acad Sci USA 2006;103:1858–1863.

    Article  CAS  PubMed  Google Scholar 

  95. Oft M, Heider KH, Beug H. TGF beta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998;8:1243–1252.

    Article  CAS  PubMed  Google Scholar 

  96. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–1338.

    Article  CAS  PubMed  Google Scholar 

  97. Matsuzaki K, Date M, Furukawa F, et al. Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res 2000;60:1394–1402.

    CAS  PubMed  Google Scholar 

  98. Lu Z, Friess H, Graber HU, et al. Presence of two signaling TGF-β receptors in human pancreatic cancer correlates with advanced tumor stage. Dig Dis Sci 1997;42:2054–2063.

    Article  CAS  PubMed  Google Scholar 

  99. Wagner M, Kleeff J, Friess H, Büchler M, Ueno H, Korc M. Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased patient survival in human pancreatic cancer. Pancreas 1999;19:370–376.

    Article  CAS  PubMed  Google Scholar 

  100. Kleeff J, Friess H, Simon P, et al. Overexpression of Smad2 and co-localization with TGF-beta1 in human pancreatic cancer. Dig Dis Sci 1999;44:1793–1802.

    Article  CAS  PubMed  Google Scholar 

  101. Wenger C, Ellenrieder V, Alber B, et al. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 1999;18:1073–1080.

    Article  CAS  PubMed  Google Scholar 

  102. Hartel M, Di Mola FF, Gardini A, et al. Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg 2004;28:818–825.

    Article  PubMed  Google Scholar 

  103. Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M. Connective tissue growth factor specific antibody attenuates metastasis and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cel Therap 2006;1108–1116.

    Google Scholar 

  104. Yamashita H, ten Dijke P, Heldin C-H, Miyazono K. Bone morphogenetic protein receptors. Bone 1996;19:569–574.

    Article  CAS  PubMed  Google Scholar 

  105. Kleeff J, Maruyama H, Ishiwata T, et al. Bone morphogenetic protein-2 exerts diverse effects on cell growth in vitro, and is expressed in human pancreatic cancer in vivo. Gastroenterology 1999;116:1202–1216.

    Article  CAS  PubMed  Google Scholar 

  106. Moore MJ. Brief communication: a new combination in the treatment of advanced pancreatic cancer. Semin Oncol 2005;32:5–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Korc, M. (2008). Aberrant Transforming Growth Factor-β Signaling in Human Pancreatic Cancer: Translational Implications. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics