Skip to main content

DNA Methylation and Histone Deacetylation Inhibitors as Potential Therapeutic Agents for the Reconstitution of TGF-β Signaling in Breast Cancer

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Abstract

Neoplastic cells show reduced expression of TGF-β receptor type II (RII) in comparison to the normal breast tissue and benign lesions. Also, loss of RII expression correlates with high-tumor grade and invasive carcinomas. This correlation is also reflected in established primary breast carcinoma cell lines. Absence/reduced expression of RII was not associated with RII gene deletion, amplification, or mutations. The RII promoter is devoid of a distinct TATA box and is dependent on Sp1 transcription factor for its activity. While Sp1 activates RII gene transcription another member of the Sp gene family, Sp3 acts as a repressor, thus suggesting SP1/Sp3 activities control RII gene expression. Loss of RII expression in breast cancer cells involves two epigenetic mechanisms, DNA methylation and histone deacetylation. Inhibition of DNA methylation by decitabine (5 aza 2′ deoxycytidine) stimulated RII expression in breast cancer cells. However, loss of RII expression was not owing to methylation of the RII gene. The RII gene in breast cancer cells exhibited reduced Sp1 binding and increased Sp3 binding activities. Inhibition of DNA methylation led to increased Sp1 binding as a consequence of increased Sp1 protein stability and simultaneous loss of Sp3 binding owing to decreased Sp3 transcription, thus altering Sp1/Sp3 activities leading to RII expression in breast cancer cells. In contrast, inhibition of histone deacetylation by trichostatin A (TSA) induced RII expression without changing activator Sp1 and repressor Sp3 binding activities. However, in the TSA treated breast cancer cells, histone acetyltransferase (HATs) p300 mediated acetylation of Sp3 and converted Sp3 from a repressor to an activator of RII gene transcription. RII regeneration following inhibition of DNA methylation as well as histone deacetylation restored TGF-β response, thus suggesting that DNA methylation inhibitor decitabine and histone deacetylation inhibitor TSA either alone or in combination may be used as potential therapeutic agents for the reconstitution of TGF-β tumor suppressor pathway in breast carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tang B, Vu M, Booker T, et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003;112:1116–1124.

    CAS  PubMed  Google Scholar 

  2. Elliott RL, Blobe GC. Role of transforming growth factor-beta in human cancer. J Clin Oncol 2005; 23:2078–2093.

    Article  CAS  PubMed  Google Scholar 

  3. Barlow J, Yandell D, Weaver D, Casey T, Plaut K. High stromal expression of transforming growth factor-beta type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Res Treat 2003;79:149–159.

    Article  CAS  PubMed  Google Scholar 

  4. Gobbi H, Arteaga CL, Jensen RA, et al. Loss of expression of transforming growth factor beta type II receptor correlates with high tumor grade in human breast in-situ and invasive carcinomas. Histopathology 2000;36:168–177.

    Article  CAS  PubMed  Google Scholar 

  5. Forrester E, Chytil A, Bierie B, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005;65:2296–2302.

    Article  CAS  PubMed  Google Scholar 

  6. Sun L, Wu G, Willson JK, et al. Expression of transforming growth factor beta type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem 1994;269:26,449–26,455.

    CAS  PubMed  Google Scholar 

  7. Kalkhoven E, Roelen BA, de Winter JP, et al. Resistance to transforming growth factor-beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 1995; 6:1151–1161.

    CAS  PubMed  Google Scholar 

  8. Brattain MG, Ko Y, Banerji SS, Wu G, Willson JK. Defects of TGF-beta receptor signaling in mammary cell tumorigenesis. J Mammary Gland Biol Neoplasia 1996;1:365–372.

    Article  CAS  PubMed  Google Scholar 

  9. Ko Y, Banerji SS, Liu Y, et al. Expression of transforming growth factor-beta receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells. J Cell Physiol 1998;176:424–434.

    Article  CAS  PubMed  Google Scholar 

  10. Ammanamanchi S, Tillekeratne MP, Ko TC, Brattain MG. Endogenous control of cell cycle progression by autocrine transforming growth factor-beta in breast cancer cells. Cancer Res 2004;64:2509–2515.

    Article  CAS  PubMed  Google Scholar 

  11. Ko Y, Koli M, Banerji SS, et al. A kinase defective transforming growth factor-beta receptor type II is a dominant negative regulator for human breast carcinoma MCF-7 cells. Int J Oncol 1998;12:87–94.

    CAS  PubMed  Google Scholar 

  12. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM. Transgenic mice over-expressing a dominant negative mutant type II transforming growth factor-beta receptor show enhanced tumori-genesis in the mammary gland and lung in response to the carcinogen 7, 12-dimethylbenz(α)-anthracene. Cancer Res 1997;57:5564–5570.

    CAS  PubMed  Google Scholar 

  13. Gorska AE, Jensen RA, Shyry-Aakre ME, Bhowmick NA, Moses HL. Transgenic mice expressing a dominant negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 2003;163:1539–1549.

    CAS  PubMed  Google Scholar 

  14. Buck M, Von der Fecht J, Knabbe C. Antiestrogenic regulation of transforming growth factor-beta receptors I and II in human breast cancer cells. Ann NY Acad Sci 2002;963:140–143.

    Article  CAS  PubMed  Google Scholar 

  15. Tomita S, Deguchi S, Miyaguni T, Muto Y, Tamamoto T, Toda T. Analysis of microsatellite instability and the transforming growth factor-beta receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features. Breast Cancer Res Treat 1999;53:33–39.

    Article  CAS  PubMed  Google Scholar 

  16. Lucke CD, Philpott A, Metcalfe JC, et al. Inhibiting mutations in the transforming growth factor-beta type 2 receptor in recurrent human breast cancer. Cancer Res 2001;61:482–485.

    CAS  PubMed  Google Scholar 

  17. Humphries DE, Bloom BB, Fine A, Goldstein RH. Structure and expression of the promoter for the human type II transforming growth factor-beta receptor. Biochem Biophys Res Commun 1994;203:1020–1027.

    Article  CAS  PubMed  Google Scholar 

  18. Bae HW, Geiser AG, Kim DH, et al. Characterization of the promoter region of the human transforming growth factor-beta type II receptor gene. J Biol Chem 1995;270:29,460–29,468.

    Article  CAS  PubMed  Google Scholar 

  19. Choi SG, Yi Y, Kim YS, et al. A novel ets-related transcription factor, ERT/ESX/ESE-1, regulates expression of the transforming growth factor-beta type II receptor. J Biol Chem 1998;273:110–117.

    Article  CAS  PubMed  Google Scholar 

  20. Chang J, Lee C, Hahm KB, Yi Y, Choi SG, Kim SJ. Over-expression of ERT(ESX/ESE-1/ELF3), an ets-related transcription factor, induces endogenous TGF-beta type II receptor expression and restores the TGF-beta signaling pathway in Hs 578t human breast cancer cells. Oncogene 2000;19:151–154.

    Article  CAS  PubMed  Google Scholar 

  21. Jackson RJ, Antonia SJ, Wright KL, Moon NS, Nepven A, Munoz-Antonia T. Human cut-like repressor protein binds TGF-beta type II receptor gene promoter. Arch Biochem Biophys 1999;371:290–300.

    Article  CAS  PubMed  Google Scholar 

  22. Im YH, Kim HT, Lee C, et al. EWS-FL11, EWS_ERG, and EWS-ETV1 oncoproteins of ewing tumor family all suppress transcription of transforming growth factor-beta type II receptor gene. Cancer Res 2000;60:1536–1540.

    CAS  PubMed  Google Scholar 

  23. Du B, Fu C, Kent KC, et al. Elevated Egr-1 in human atherosclerotic cells transcriptionally repress the transforming growth factor-beta type II receptor. J Biol Chem 2000;275:39,039–39,047.

    Article  CAS  PubMed  Google Scholar 

  24. Song SU, Oh IS, Lee B, et al. Identification of a negative cis-regulatory element and multiple DNA binding proteins that inhibit transcription of the transforming growth factor-beta type II receptor gene. Gene 2001;262:179–187.

    Article  CAS  PubMed  Google Scholar 

  25. Adnane J, Seijo E, Chen Z, et al. Rho B, not RhoA represses the transcription of the transforming growth factor-beta type II receptor by a mechanism involving activator protein 1. J Biol Chem 2002; 277:8500–8507.

    Article  CAS  PubMed  Google Scholar 

  26. Chuang LY, Guh JY, Liu SF, et al. Regulation of the type II transforming growth factor-beta receptors by protein kinase C iota. Biochem J 2003;375:385–393.

    Article  CAS  PubMed  Google Scholar 

  27. Kopp JL, Wilder PJ, Desler M, et al. Unique and selective effects of five ets family members, elf3, ets1, ets2, pea3 and pu1 on the promoter of the type II transforming growth factor-beta receptor gene. J Biol Chem 2004;279:19,407–19,420.

    Article  CAS  PubMed  Google Scholar 

  28. Jennings R, Alsarraj M, Wright KL, Munoz-Antonia T. Regulation of the human transforming growth factor-beta type II receptor gene promoter by novel Sp1 sites. Oncogene 2001;20:6899–6909.

    Article  CAS  PubMed  Google Scholar 

  29. Bernadt CT, Rizzino A. Roles of the conserved CCAAT and GC boxes of the human and mouse type II transforming growth factor-beta receptor genes. Mol Reprod Dev 2003;65:353–365.

    Article  CAS  PubMed  Google Scholar 

  30. Ammanamanchi S, Kim SJ, Sun LZ, Brattain MG. Induction of transforming growth factor-beta receptor type II expression in estrogen receptor positive breast cancer cells through Sp1 activation by 5 aza-2′ deoxycytidine. J Biol Chem 1998;273:16,527–16,534.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Zhong X, Li W, Brattain MG, Banerji SS. The role of Sp1 in the differential expression of transforming growth factor-beta receptor type II in human breast adenocarcinoma MCF-7 cells. J Biol Chem 2000;275:12,231–12,236.

    Article  CAS  PubMed  Google Scholar 

  32. Ammanamanchi S, Brattain MG. Sp3 is a transcriptional repressor of transforming growth factor-beta receptors. J Biol Chem 2001;276:3348–3352.

    Article  CAS  PubMed  Google Scholar 

  33. Suske G. The Sp-family of transcription factors. Gene 1999;238:291–300.

    Article  CAS  PubMed  Google Scholar 

  34. Momparler R. Cancer epigenetics. Oncogene 2003;22:6479–6483.

    Article  CAS  PubMed  Google Scholar 

  35. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG island methylation has non-random and tumor type specific patterns. Nat Genet 2000;24:132–138.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang HT, Chen XF, Wang MH, et al. Defective expression of transforming growth factor-beta receptor type II is associated with CpG methylated promoter in primary non-small cell lung cancer. Clin Cancer Res 2004;10:2359–2367.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao H, Shiina H, Greene KL, et al. R. CpG methylation at promoter site-140 inactivates TGF-beta 2 receptor gene in prostate cancer. Cancer 2005;104:44–52.

    Article  CAS  PubMed  Google Scholar 

  38. Bovenzi V, Momparler RL. Antineoplastic action of 5 aza 2′ deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor-beta and estrogen receptor-alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol 2001;48:71–76.

    Article  CAS  PubMed  Google Scholar 

  39. Shin TH, Paterson AJ, Grant JH III, Meluch AA, Kudlow JE. 5 azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor-alpha expression. Mol Cell Biol 1992;12:3998–4006.

    CAS  PubMed  Google Scholar 

  40. Han I, Kudlow JE. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 1997;17:2550–2558.

    CAS  PubMed  Google Scholar 

  41. Venkatasubbarao K, Ammanamanchi S, Brattain MG, Mimari D, Freeman JW. Reversion of transcriptional repression of Sp1 by 5 aza 2′deoxycytidine restores TGF-beta type II receptor expression in the pancreatic cancer cell line MIA PaCa-2. Cancer Res 2001;61:6239–6247.

    CAS  PubMed  Google Scholar 

  42. Ammanamanchi S, Brattain MG. 5 aza C treatment enhances expression of transforming growth factor-beta receptors through down-regulation of Sp3. J Biol Chem 2001;276:32,854–32,859.

    Article  CAS  PubMed  Google Scholar 

  43. Periyasamy S, Ammanamanchi S, Tillekeratne MP, Brattain MG. Repression of transforming growth factor-beta receptor type I promoter expression by Sp1 deficiency. Oncogene 2000;19:4660–4667.

    Article  CAS  PubMed  Google Scholar 

  44. Dokmanovic M, Marks MA. Prospects: Histone deacetylase inhibitors. J Cell Biochem 2005;96: 293–304.

    Article  CAS  PubMed  Google Scholar 

  45. Lehrmann H, Pritchard LL, Harel-Bellan A. Hsitone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 2002;86:41–45.

    Article  CAS  PubMed  Google Scholar 

  46. Sengupta N, Seto E. Regulation of histone deacetylase activities. J Cell Biochem 2004;93:57–67.

    Article  CAS  PubMed  Google Scholar 

  47. Choi JH, Kwon HJ, Yoon BI, et al. Expression profile of histone deacetylase I in gastric cancer tissues. Jpn J Cancer Res 2001;92:1300–1304.

    CAS  PubMed  Google Scholar 

  48. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 2004;59:177–189.

    Article  CAS  PubMed  Google Scholar 

  49. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005;45:495–528.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly WK, Marks PA. Drug insight: Histone deacetylase inhibitors development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Prac 2005;2:1–8.

    Google Scholar 

  51. Rosato RR, Grant S. Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2003;2:30–37.

    PubMed  Google Scholar 

  52. Lindemann RK, Gabrielli B, Johnstone RW. Histone deacetylase inhibitors for the treatment of cancer. Cell Cycle 2004;3:779–788.

    CAS  PubMed  Google Scholar 

  53. Marks PA, Richon VM, Miller T, Kelly WK. Histone decaetylase inhibitors. Adv Cancer Res 2004;91:137–168.

    Article  CAS  PubMed  Google Scholar 

  54. Ammanamanchi S, Freeman JW, Brattain MG. Acetylated Sp3 is a transcriptional activator. J Biol Chem 2003;278:35,775–35,780.

    Article  CAS  PubMed  Google Scholar 

  55. Huang L, Sowa Y, Sakai T, Pardee AB. Activation of the p21/WAF1/Cip1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene 2000;19:5712–5719.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Dufau ML. Silencing of transcription of the human luteinizing hormone receptor gene by histone deacetylase-mSin3A complex. J Biol Chem 2002;277:33,431–33,438.

    Article  CAS  PubMed  Google Scholar 

  57. Braun H, Koop R, Ertmer A, Nacht S, Suske G. Transcription factor Sp3 is regulated by acetylation. Nucleic Acids Res 2001;29:4994–5000.

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki T, Kimura A, Nagai R, Horikoshi M. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 2000;5:29–41.

    Article  CAS  PubMed  Google Scholar 

  59. Park SH, Lee SR, Kim BC, et al. Transcriptional regulation of the transforming growth factor-beta type II receptor gene by histone acetyltransferase and decaetylase is mediated by NF-Y in human breast cancer cells. J Biol Chem 2002;277:5168–5174.

    Article  CAS  PubMed  Google Scholar 

  60. Huang W, Zhao S, Ammanamanchi S, Brattain MG, Venkatasubbarao S, Freeman JW. TSA induces TGF-beta type II receptor promoter activity and acetylation of Sp1 by recruitment of pCAF/p300 to a Sp1. NF-Y complex. J Biol Chem 2005;280:10,047–10,054.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ammanamanchi, S., Brattain, M.G. (2008). DNA Methylation and Histone Deacetylation Inhibitors as Potential Therapeutic Agents for the Reconstitution of TGF-β Signaling in Breast Cancer. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics