Skip to main content

Animal Models in Functional Magnetic Resonance Imaging

  • Chapter
Sourcebook of Models for Biomedical Research

Abstract

Functional magnetic resonance imaging (fMRI) has significantly advanced brain research, both in basic sciences as well as in translational and clinical studies. Animal models have been at the forefront of research into the mechanisms of magnetic resonance imaging (MRI) and fMRI. The use of animal models in fMRI has been particularly advantageous in preclinical and translational studies of various models of brain disease, and fundamental in the exploration of basic neuroscience questions, such as the mechanisms of perception, behavior, and cognition. This chapter describes the practical aspects of the use of animal models in fMRI studies of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nyberg L. Functional neuroimaging of cognition: State-of-the-art. Scand J Psychol 2001;42(3):163–165.

    Article  PubMed  CAS  Google Scholar 

  2. Matthews PM, Honey GD, Bullmore ET. Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 2006;7(9):732–744.

    Article  PubMed  CAS  Google Scholar 

  3. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002;25(12):621–625.

    Article  PubMed  CAS  Google Scholar 

  4. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;87(24):9868–9872.

    Article  PubMed  CAS  Google Scholar 

  5. Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation. Magn Reson Med 1990;16(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  6. Kim SG, Ackerman JJ. Quantification of regional blood flow by monitoring of exogenous tracer via nuclear magnetic resonance spectroscopy. Magn Reson Med 1990;14(2):266–282.

    Article  PubMed  CAS  Google Scholar 

  7. Detre JA, Eskey CJ, Koretsky AP. Measurement of cerebral blood flow in rat brain by 19F-NMR detection of trifluoromethane washout. Magn Reson Med 1990;15(1):45–57.

    Article  PubMed  CAS  Google Scholar 

  8. Detre JA, Williams DS, Koretsky AP. Nuclear magnetic resonance determination of flow, lactate, and phosphate metabolites during amphetamine stimulation of the rat brain. NMR Biomed 1990;3(6): 272–278.

    Article  PubMed  CAS  Google Scholar 

  9. Barranco D, Sutton LN, Florin S, Greenberg J, Sinnwell T, Ligeti L, et al. Use of 19F NMR spectroscopy for measurement of cerebral blood flow: A comparative study using microspheres. J Cereb Blood Flow Metab 1989;9(6):886–891.

    PubMed  CAS  Google Scholar 

  10. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med 1988;6(2): 164–174.

    Article  PubMed  CAS  Google Scholar 

  11. Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, et al. Contrast agents and cerebral hemodynamics. Magn Reson Med 1991;19(2):285–292.

    Article  PubMed  CAS  Google Scholar 

  12. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 1992;89(1):212–216.

    Article  PubMed  CAS  Google Scholar 

  13. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  14. Widmaier EP, Raff H, Strang KT. Wander, Sherman, & Luciano’s Human Physiology: The Mechanisms of Body Function, 7th ed. New York: McGraw-Hill, 1998.

    Google Scholar 

  15. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001;21(10): 1133–1145.

    Article  PubMed  CAS  Google Scholar 

  16. Sokoloff L. Energy metabolism in neural tissues in vivo at rest and in functionally altered states. In: Shulman RG, Rothman DL, Eds. Brain Energetics and Neuronal Activity Applications to fMRI and Medicine. West Sussex: John Wiley & Sons, Ltd., 2004:11–30.

    Chapter  Google Scholar 

  17. Kennedy C, Des Rosiers MH, Sakurada O, Shinohara M, Reivich M, Jehle JW, et al. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc Natl Acad Sci USA 1976;73(11):4230–4234.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, et al. Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 1979;205(4407): 723–725.

    Article  PubMed  CAS  Google Scholar 

  19. Sokoloff L. The F. O. Schmitt Lecture in Neuroscience 1980. The relationship between function and energy metabolism: Its use in the localization of functional activity in the nervous system. Neurosci Res Program Bull 1981;19(2):159–207.

    PubMed  CAS  Google Scholar 

  20. Phelps ME, Mazziotta JC. Positron emission tomography: Human brain function and biochemistry. Science 1985;228(4701): 799–809.

    Article  PubMed  CAS  Google Scholar 

  21. Gjedde A. Does deoxyglucose uptake in the brain reflect energy metabolism? Biochem Pharmacol 1987;36(12):1853–1861.

    Article  PubMed  CAS  Google Scholar 

  22. Buxton RB. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques, 1st ed. Cambridge, UK: Cambridge University Press, 2002.

    Google Scholar 

  23. Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997;17(1):64–72.

    Article  PubMed  CAS  Google Scholar 

  24. Lauritzen M. Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat Rev Neurosci 2005;6(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  25. Kuschinsky W, Paulson OB. Capillary circulation in the brain. Cerebrovasc Brain Metab Rev 1992;4(3):261–286.

    PubMed  CAS  Google Scholar 

  26. Mandeville JB, Marota JJ, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 1998;39(4):615–624.

    Article  PubMed  CAS  Google Scholar 

  27. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA 1936;22(4):210–216.

    Article  PubMed  CAS  Google Scholar 

  28. Cho ZH, Ro YM, Lim TH. NMR venography using the susceptibility effect produced by deoxyhemoglobin. Magn Reson Med 1992;28(1):25–38.

    Article  PubMed  CAS  Google Scholar 

  29. Weisskoff RM, Kiihne S. MRI susceptometry: Image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med 1992;24(2):375–383.

    Article  PubMed  CAS  Google Scholar 

  30. Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001;13(4):496–520.

    Article  PubMed  CAS  Google Scholar 

  31. Silva AC, Kim SG. Perfusion-based functional magnetic resonance imaging. Concepts Magn Reson Part A 2003;16A(1):16–27.

    Article  Google Scholar 

  32. Golay X, Hendrikse J, Lim TC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004;15(1):10–27.

    Article  PubMed  Google Scholar 

  33. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999;19(7):701–735.

    Article  PubMed  CAS  Google Scholar 

  34. Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 2002;113(5):621–634.

    Article  PubMed  Google Scholar 

  35. Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, et al. Functional cerebral imaging by susceptibilitycontrast NMR. Magn Reson Med 1990;14(3):538–546.

    Article  PubMed  CAS  Google Scholar 

  36. Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991;254(5032):716–719.

    Article  PubMed  CAS  Google Scholar 

  37. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14(2):249265.

    Article  Google Scholar 

  38. Leite FP, Tsao D, Vanduffel W, Fize D, Sasaki Y, Wald LL, et al. Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Neuroimage 2002;16(2):283–294.

    Article  PubMed  Google Scholar 

  39. Scheffler K, Seifritz E, Haselhorst R, Bilecen D. Titration of the BOLD effect: Separation and quantitation of blood volume and oxygenation changes in the human cerebral cortex during neuronal activation and ferumoxide infusion. Magn Reson Med 1999;42(5): 829–836.

    Article  PubMed  CAS  Google Scholar 

  40. Brasch RC, Weinmann HJ, Wesbey GE. Contrast-enhanced NMR imaging: Animal studies using gadolinium-DTPA complex. AJR Am J Roentgenol 1984;142(3):625–630.

    PubMed  CAS  Google Scholar 

  41. Schmiedl U, Ogan MD, Moseley ME, Brasch RC. Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0 T: An experimental study in rats. AJR Am J Roentgenol 1986;147(6): 1263–1270.

    PubMed  CAS  Google Scholar 

  42. Tauber U, Weinmann HJ, Panzer M, Acksteiner B, Vollert B, Schulze PE. Whole-body autoradiographic studies in rats with gadolinium-diethylenetriaminepentaacetic acid, a new contrast agent for magnetic resonance imaging. Arzneimittelforschung 1986;36(7): 1089–1091.

    PubMed  CAS  Google Scholar 

  43. Schmiedl U, Ogan M, Paajanen H, Marotti M, Crooks LE, Brito AC, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: Biodistribution and imaging studies. Radiology 1987;162(1 Pt. l):205–210.

    PubMed  CAS  Google Scholar 

  44. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990;175(2):489–493.

    PubMed  CAS  Google Scholar 

  45. Rudin M, Sauter A. Noninvasive determination of regional cerebral blood flow in rats using dynamic imaging with Gd(DTPA). Magn Reson Med 1991;22(1):32–46.

    Article  PubMed  CAS  Google Scholar 

  46. Moseley ME, White DL, Wang SC, Wikstrom MG, Dupon JW, Gobbel G, et al. Vascular mapping using albumin-(Gd-DTPA), an intravascular MR contrast agent, and projection MR imaging. J Comput Assist Tomogr 1989;13(2):215–221.

    Article  PubMed  CAS  Google Scholar 

  47. Benderbous S, Bonnemain B. Superparamagnetic nanoparticles as blood-pool contrast agents. Contribution to MRI preclinical investigations. Radiologe 1995;35(11 Suppl. 2):S248–S252.

    PubMed  CAS  Google Scholar 

  48. Carr DH. The use of proton relaxation enhancers in magnetic resonance imaging. Magn Reson Imaging 1985;3(1): 17–25.

    Article  PubMed  CAS  Google Scholar 

  49. Norman AB, Thomas SR, Pratt RG, Samaratunga RC, Sanberg PR. A magnetic resonance imaging contrast agent differentiates between the vascular properties of fetal striatal tissue transplants and gliomas in rat brain in vivo. Brain Res 1989;503(1):156–159.

    Article  PubMed  CAS  Google Scholar 

  50. Baba T, Moriguchi M, Natori Y, Katsuki C, Inoue T, Fukui M. Magnetic resonance imaging of experimental rat brain tumors: Histopathological evaluation. Surg Neurol 1990;34(6):378–382.

    Article  PubMed  CAS  Google Scholar 

  51. Kornguth S, Anderson M, Turski P, Sorenson J, Robins HI, Cohen J, et al. Glioblastoma multiforme: MR imaging at 1.5 and 9.4 T after injection of polylysine-DTPA-Gd in rats. AJNR Am J Neuroradiol 1990;11(2):313–318.

    PubMed  CAS  Google Scholar 

  52. Rajan SS, Rosa L, Francisco J, Muraki A, Carvlin M, Tuturea E. MRI characterization of 9L-glioma in rat brain at 4.7 Tesla. Magn Reson Imaging 1990;8(2):185–190.

    Article  PubMed  CAS  Google Scholar 

  53. Schmiedl UP, Kenney J, Maravilla KR. MRI of blood-brain barrier permeability in astrocytic gliomas: Application of small and large molecular weight contrast media. Magn Reson Med 1991;22(2): 288–292.

    Article  PubMed  CAS  Google Scholar 

  54. Hayakawa K, Yamashita K, Matsuda T, Miyake T, Ito H. MR imaging of acute cerebral infarction: Experimental study with Gd-DTPA. Radiat Med 1989;7(2):58–65.

    PubMed  CAS  Google Scholar 

  55. Kent TA, Quast MJ, Kaplan BJ, Najafi A, Amparo EG, Gevedon RM, et al. Cerebral blood volume in a rat model of ischemia by MR imaging at 4.7 T. AJNR Am J Neuroradiol 1989;10(2):335–338.

    PubMed  CAS  Google Scholar 

  56. Maeda M, Itoh S, Ide H, Matsuda T, Kobayashi H, Kubota T, et al. Acute stroke in cats: Comparison of dynamic susceptibility-contrast MR imaging with T2-and diffusion-weighted MR imaging. Radiology 1993;189(1):227–232.

    PubMed  CAS  Google Scholar 

  57. Hawkins CP, Munro PM, MacKenzie F, Kesselring J, Tofts PS, du Boulay EP, et al. Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 1990;113(Pt. 2):365–378.

    Article  PubMed  Google Scholar 

  58. Prato FS, Frappier JR, Shivers RR, Kavaliers M, Zabel P, Drost D, et al. Magnetic resonance imaging increases the blood-brain barrier permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats. Brain Res 1990;523(2):301–304.

    Article  PubMed  CAS  Google Scholar 

  59. Norman AB, Bertram KJ, Thomas SR, Pratt RG, Samaratunga RC, Sanberg PR. Magnetic resonance imaging of rat brain following in vivo disruption of the cerebral vasculature. Brain Res Bull 1991;26(4):593–597.

    Article  PubMed  CAS  Google Scholar 

  60. Rudin M, Sauter A. Non-invasive determination of cerebral blood flow changes by 19F NMR spectroscopy. NMR Biomed 1989;2(3): 98–103.

    Article  PubMed  CAS  Google Scholar 

  61. Ewing JR, Branch CA, Helpern JA, Smith MB, Butt SM, Welch KM. Cerebral blood flow measured by NMR indicator dilution in cats. Stroke 1989;20(2):259–267.

    PubMed  CAS  Google Scholar 

  62. Detre JA, Subramanian VH, Mitchell MD, Smith DS, Kobayashi A, Zaman A, et al. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging. Magn Reson Med 1990;14(2):389–395.

    Article  PubMed  CAS  Google Scholar 

  63. Brunetti A, Nagashima G, Bizzi A, DesPres DJ, Alger JR. Cerebral blood flow in experimental ischemia assessed by 19F magnetic resonance spectroscopy in cats. Stroke 1990;21(10):1439–1444.

    PubMed  CAS  Google Scholar 

  64. van Zijl PC, Ligeti L, Sinnwell T, Alger JR, Chesnick AS, Moonen CT, et al. Measurement of cerebral blood flow by volume-selective 19F NMR spectroscopy. Magn Reson Med 1990;16(3):489–495.

    Article  PubMed  Google Scholar 

  65. Pekar J, Ligeti L, Ruttner Z, Lyon RC, Sinnwell TM, van Gelderen P, et al. In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance imaging. Magn Reson Med 1991;21(2):313–319.

    Article  PubMed  CAS  Google Scholar 

  66. Branch CA, Ewing JR, Helpern JA, Ordidge RJ, Butt S, Welch KM. Atraumatic quantitation of cerebral perfusion in cats by 19F magnetic resonance imaging. Magn Reson Med 1992;28(1):39–53.

    Article  PubMed  CAS  Google Scholar 

  67. Fiat D, Kang S. Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 170 in vivo NMR spectroscopy and magnetic resonance imaging: Part 1. Theory and data analysis methods. Neurol Res 1992;14(4): 303–311.

    PubMed  CAS  Google Scholar 

  68. Fiat D, Kang S. Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 170 in vivo NMR spectroscopy and magnetic resonance imaging. Part 2. Determination of CMRO2 for the rat by 170 NMR, and CMRO2, rCBF and the partition coefficient for the cat by 170 MRI. Neurol Res 1993;15(1):7–22.

    PubMed  CAS  Google Scholar 

  69. Roy CS, Sherrington CS. On the regulation of the blood supply of the brain. J Physiol 1890;l 1:85–108.

    Google Scholar 

  70. Kwong KK, Hopkins AL, Belliveau JW, Chesler DA, Porkka LM, McKinstry RC, et al. Proton NMR imaging of cerebral blood flow using H2(17)O. Magn Reson Med 1991;22(1):154–158.

    Article  PubMed  CAS  Google Scholar 

  71. Belliveau JW, Cohen MS, Weisskoff RM, Buchbinder BR, Rosen BR. Functional studies of the human brain using high-speed magnetic resonance imaging. J Neuroimaging 1991;1(1):36–41.

    PubMed  CAS  Google Scholar 

  72. Belliveau JW, Kwong KK, Kennedy DN, Baker JR, Stern CE, Benson R, et al. Magnetic resonance imaging mapping of brain function. Human visual cortex. Invest Radiol 1992;27(Suppl. 2): S59–S65.

    PubMed  Google Scholar 

  73. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14(1):68–78.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang W, Silva AC, Williams DS, Koretsky AP. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995;33(3):370–376.

    Article  PubMed  CAS  Google Scholar 

  75. Silva AC, Zhang W, Williams DS, Koretsky AP. Estimation of water extraction fractions in rat brain using magnetic resonance measurement of perfusion with arterial spin labeling. Magn Reson Med 1997;37(1):58–68.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang W, Williams DS, Detre JA, Koretsky AP. Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: Accounting for transit time and cross-relaxation. Magn Reson Med 1992;25(2):362–371.

    Article  PubMed  CAS  Google Scholar 

  77. Barbier EL, Silva AC, Kim SG, Koretsky AP. Perfusion imaging using dynamic arterial spin labeling (DASL). Magn Reson Med 2001;45(6):1021–1029.

    Article  PubMed  CAS  Google Scholar 

  78. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, et al. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 1994;7(l–2):75–82.

    Article  PubMed  CAS  Google Scholar 

  79. Silva AC, Williams DS, Koretsky AP. Evidence for the exchange of arterial spin-labeled water with tissue water in rat brain from diffusion-sensitized measurements of perfusion. Magn Reson Med 1997;38(2):232–237.

    Article  PubMed  CAS  Google Scholar 

  80. Ewing JR, Cao Y, Fenstermacher J. Single-coil arterial spin-tagging for estimating cerebral blood flow as viewed from the capillary: Relative contributions of intra-and extravascular signal. Magn Reson Med 2001;46(3):465–475.

    Article  PubMed  CAS  Google Scholar 

  81. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 1998;18(12):1365–1377.

    Google Scholar 

  82. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 1998;18(12):1378–1385.

    Google Scholar 

  83. Donahue KM, Weisskoff RM, Parmelee DJ, Callahan RJ, Wilkin-son RA, Mandeville JB, et al. Dynamic Gd-DTPA enhanced MRI measurement of tissue cell volume fraction. Magn Reson Med 1995;34(3):423–432.

    Article  PubMed  CAS  Google Scholar 

  84. Berry I, Benderbous S, Ranjeva JP, Gracia-Meavilla D, Manelfe C, Le Bihan D. Contribution of Sinerem used as blood-pool contrast agent: Detection of cerebral blood volume changes during apnea in the rabbit. Magn Reson Med 1996;36(3):415–419.

    Article  PubMed  CAS  Google Scholar 

  85. Donahue KM, Weisskoff RM, Chesler DA, Kwong KK, Bogdanov AA Jr, Mandeville JB, et al. Improving MR quantification of regional blood volume with intravascular T1 contrast agents: Accu-racy, precision, and water exchange. Magn Reson Med 1996;36(6): 858–867.

    Article  PubMed  CAS  Google Scholar 

  86. Lin W, Paczynski RP, Kuppusamy K, Hsu CY, Haacke EM. Quantitative measurements of regional cerebral blood volume using MRI in rats: Effects of arterial carbon dioxide tension and mannitol. Magn Reson Med 1997;38(3):4–8.

    Google Scholar 

  87. Schwarzbauer C, Morrissey SP, Deichmann R, Hillenbrand C, Syha J, Adolf H, et al. Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med 1997;37(5):769–777.

    Article  PubMed  CAS  Google Scholar 

  88. Caramia F, Yoshida T, Hamberg LM, Huang Z, Hunter G, Wanke I, et al. Measurement of changes in cerebral blood volume in spontaneously hypertensive rats following L-arginine infusion using dynamic susceptibility contrast MRI. Magn Reson Med 1998, 39(1): 160–163.

    Article  PubMed  CAS  Google Scholar 

  89. Moseley ME, Chew WM, White DL, Kucharczyk J, Litt L, Derugin N, et al. Hypercarbia-induced changes in cerebral blood volume in the cat: A 1H MRI and intravascular contrast agent study. Magn Reson Med 1992;23(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  90. White DL, Aicher KP, Tzika AA, Kucharczyk J, Engelstad BL, Moseley ME. Iron-dextran as a magnetic susceptibility contrast agent: Flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain. Magn Reson Med 1992;24(1): 14–28.

    Article  PubMed  CAS  Google Scholar 

  91. Hamberg LM, Macfarlane R, Tasdemiroglu E, Boccalini P, Hunter GJ, Belliveau JW, et al. Measurement of cerebrovascular changes in cats after transient ischemia using dynamic magnetic resonance imaging. Stroke 1993;24(3):444–450.

    PubMed  CAS  Google Scholar 

  92. Ogawa S, Lee TM, Barrere B. The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 1993;29(2):205–210.

    Article  PubMed  CAS  Google Scholar 

  93. Jones RA, Muller TB, Haraldseth O, Baptista AM, Oksendal AN. Cerebrovascular changes in rats during ischemia and reperfusion: A comparison of BOLD and first pass bolus tracking techniques. Magn Reson Med 1996;35(4):489–496.

    PubMed  CAS  Google Scholar 

  94. Kerskens CM, Hoehn-Berlage M, Schmitz B, Busch E, Bock C, Gyngell ML, et al. Ultrafast perfusion-weighted MRI of functional brain activation in rats during forepaw stimulation: Comparison with T2-weighted MRI. NMR Biomed 1996;9(1):20–23.

    Article  PubMed  CAS  Google Scholar 

  95. Hyder F, Shulman RG, Rothman DL. A model for the regulation of cerebral oxygen delivery. J Appl Physiol 1998;85(2):554–564.

    PubMed  CAS  Google Scholar 

  96. Kennan RP, Scanley BE, Innis RB, Gore JC. Physiological basis for BOLD MR signal changes due to neuronal stimulation: Separation of blood volume and magnetic susceptibility effects. Magn Reson Med 1998;40(6):840–846.

    Article  PubMed  CAS  Google Scholar 

  97. Hyder F, Behar KL, Martin MA, Blamire AM, Shulman RG. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. J Cereb Blood Flow Metab 1994;14(4):649–655.

    PubMed  CAS  Google Scholar 

  98. Gyngell ML, Bock C, Schmitz B, Hoehn-Berlage M, Hossmann KA. Variation of functional MRI signal in response to frequency of somatosensory stimulation in alpha-chloralose anesthetized rats. Magn Reson Med 1996;36(1):13–15.

    Article  PubMed  CAS  Google Scholar 

  99. Yang X, Hyder F, Shulman RG. Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996;93(1):475–478.

    Article  PubMed  CAS  Google Scholar 

  100. Hyder F, Rothman DL, Mason GF, Rangarajan A, Behar KL, Shulman RG. Oxidative glucose metabolism in rat brain during single forepaw stimulation: A spatially localized 1H[13C] nuclear magnetic resonance study. J Cereb Blood Flow Metab 1997; 17(10):1040–1047.

    Article  PubMed  CAS  Google Scholar 

  101. Yang X, Hyder F, Shulman RG. Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Reson Med 1997;38(6):874–877.

    Article  PubMed  CAS  Google Scholar 

  102. Bock C, Krep H, Brinker G, Hoehn-Berlage M. Brainmapping of alpha-chloralose anesthetized rats with T2*-weighted imaging: Distinction between the representation of the forepaw and hindpaw in the somatosensory cortex. NMR Biomed 1998;11(3): 115–119.

    Article  PubMed  CAS  Google Scholar 

  103. Yang X, Renken R, Hyder F, Siddeek M, Greer CA, Shepherd GM, et al. Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI. Proc Natl Acad Sci USA 1998;95(13):7715–7720.

    Article  PubMed  CAS  Google Scholar 

  104. Brinker G, Bock C, Busch E, Krep H, Hossmann KA, Hoehn-Berlage M. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn Reson Med 1999;41(3):469–473.

    Article  PubMed  CAS  Google Scholar 

  105. Silva AC, Lee SP, Yang G, Iadecola C, Kim SG. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J Cereb Blood Flow Metab 1999;19(8):871–879.

    Article  PubMed  CAS  Google Scholar 

  106. Lee SP, Silva AC, Ugurbil K, Kim SG. Diffusion-weighted spinecho fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 1999;42(5):919–928.

    Article  PubMed  CAS  Google Scholar 

  107. Mandeville JB, Marota JJ. Vascular filters of functional MRI: Spatial localization using BOLD and CBV contrast. Magn Reson Med 1999;42(3):591–598.

    Article  PubMed  CAS  Google Scholar 

  108. Duong TQ, Silva AC, Lee SP, Kim SG. Functional MRI of calciumdependent synaptic activity: Cross correlation with CBF and BOLD measurements. Magn Reson Med 2000;43(3):383–392.

    Article  PubMed  CAS  Google Scholar 

  109. Kida I, Xu F, Shulman RG, Hyder F. Mapping at glomerular resolution: fMRI of rat olfactory bulb. Magn Reson Med 2002;48(3): 570–576.

    Article  PubMed  Google Scholar 

  110. Silva AC, Koretsky AP. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci USA 2002;99(23):15182–15187.

    Article  PubMed  CAS  Google Scholar 

  111. Xu F, Liu N, Kida I, Rothman DL, Hyder F, Shepherd GM. Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb. Proc Natl Acad Sci USA 2003;100(19):11029–11034.

    Article  PubMed  CAS  Google Scholar 

  112. Keilholz SD, Silva AC, Raman M, Merkle H, Koretsky AP. Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging. Magn Reson Med 2004;52(1):89–99.

    Article  PubMed  Google Scholar 

  113. Keilholz SD, Silva AC, Raman M, Merkle H, Koretsky AP. BOLD and CBV-weighted functional magnetic resonance imaging of the rat somatosensory system. Magn Reson Med 2006;55(2):316–324.

    Article  PubMed  Google Scholar 

  114. Zhao F, Wang P, Hendrich K, Kim SG. Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimage 2005;27(2):416–424.

    Article  PubMed  CAS  Google Scholar 

  115. Goense JB, Logothetis NK. Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magn Reson Imaging 2006;24(4): 381–392.

    Article  PubMed  Google Scholar 

  116. van Bruggen N, Busch E, Palmer JT, Williams SP, de Crespigny AJ. High-resolution functional magnetic resonance imaging of the rat brain: Mapping changes in cerebral blood volume using iron oxide contrast media. J Cereb Blood Flow Metab 1998;18(11): 1178–1183.

    Article  PubMed  Google Scholar 

  117. Kida I, Hyder F, Kennan RP, Behar KL. Toward absolute quantitation of bold functional MRI. Adv Exp Med Biol 1999, 471:681–689.

    PubMed  CAS  Google Scholar 

  118. Hyder F, Renken R, Kennan RP, Rothman DL. Quantitative multimodal functional MRI with blood oxygenation level dependent exponential decays adjusted for flow attenuated inversion recovery (BOLDED AFFAIR). Magn Reson Imaging 2000;18(3):227–235.

    Article  PubMed  CAS  Google Scholar 

  119. Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR Biomed 2001;14(7–8): 413–431.

    Article  PubMed  CAS  Google Scholar 

  120. Hyder F. Neuroimaging with calibrated FMRI. Stroke 2004;35(ll Suppl. 1):2635–2641.

    Article  PubMed  Google Scholar 

  121. Marota JJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR, Mandeville JB. Investigation of the early response to rat forepaw stimulation. Magn Reson Med 1999;41(2):247–252.

    Article  PubMed  CAS  Google Scholar 

  122. Silva AC, Kim SG. Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magn Reson Med 1999;42(3):425–429.

    Article  PubMed  CAS  Google Scholar 

  123. Silva AC, Lee SP, Iadecola C, Kim SG. Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J Cereb Blood Flow Metab 2000;20(1): 201–206.

    Article  PubMed  CAS  Google Scholar 

  124. Wu G, Luo F, Li Z, Zhao X, Li SJ. Transient relationships among BOLD, CBV, and CBF changes in rat brain as detected by functional MRI. Magn Reson Med 2002;48(6):987–993.

    Article  PubMed  Google Scholar 

  125. Kida I, Maciejewski PK, Hyder F. Dynamic imaging of perfusion and oxygenation by functional magnetic resonance imaging. J Cereb Blood Flow Metab 2004;24(12):1369–1381.

    Article  PubMed  Google Scholar 

  126. Lu H, Soltysik DA, Ward BD, Hyde JS. Temporal evolution of the CBV-fMRI signal to rat whisker stimulation of variable duration and intensity: A linearity analysis. Neuroimage 2005;26(2):432–440.

    Article  PubMed  Google Scholar 

  127. Lythgoe MF, Sibson NR, Harris NG. Neuroimaging of animal models of brain disease. Br Med Bull 2003;65:235–257.

    Article  PubMed  Google Scholar 

  128. van der Weerd L, Thomas DL, Thornton JS, Lythgoe MF. MRI of animal models of brain disease. Methods Enzymol 2004;386: 149–177.

    PubMed  Google Scholar 

  129. Sauter A, Rudin M. Experimental studies with isradipine in stroke. Drugs 1990;40(Suppl. 2):44–51.

    PubMed  Google Scholar 

  130. Sauter A, Rudin M. Prevention of stroke and brain damage with calcium antagonists in animals. Am J Hypertens 1991;4(2Pt. 2):121S–127S.

    PubMed  CAS  Google Scholar 

  131. de Crespigny AJ, Tsuura M, Moseley ME, Kucharczyk J. Perfusion and diffusion MR imaging of thromboembolic stroke. J Magn Reson Imaging 1993;3(5):746–754.

    Article  PubMed  Google Scholar 

  132. Sauter A, Rudin M. Strain-dependent drug effects in rat middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther 1995;274(2): 1008–1013.

    PubMed  CAS  Google Scholar 

  133. Quast MJ, Wei J, Huang NC, Brunder DG, Sell SL, Gonzalez JM, et al. Perfusion deficit parallels exacerbation of cerebral ischemia/ reperfusion injury in hyperglycemic rats. J Cereb Blood Flow Metab 1997;17(5):553–559.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang Z, Zhang RL, Jiang Q, Raman SB, Cantwell L, Chopp M. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab 1997;17(2):123–135.

    Article  PubMed  Google Scholar 

  135. Pierce AR, Lo EH, Mandeville JB, Gonzalez RG, Rosen BR, Wolf GL. MRI measurements of water diffusion and cerebral perfusion: Their relationship in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 1997;17(2):183–190.

    PubMed  CAS  Google Scholar 

  136. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: Comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 1990;14(2):330–346.

    Article  PubMed  CAS  Google Scholar 

  137. Moonen CTW, Pekar J, deVleeschouwer MH, van Gelderen P, van ZP, DesPres DJ. Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR diffusion imaging. Magn Reson Med 1991;19(2):327–332.

    Article  PubMed  CAS  Google Scholar 

  138. Kucharczyk J, Mintorovitch J, Asgari HS, Moseley ME. Diffusion/ perfusion MR imaging of acute cerebral ischemia. Magn Reson Med 1991;19(2):311–315.

    Article  PubMed  CAS  Google Scholar 

  139. van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT. Water diffusion and acute stroke. Magn Reson Med 1994;31(2):154–163.

    Article  PubMed  Google Scholar 

  140. Kobayashi H, Ide H, Kodera T, Handa Y, Kabuto M, Kubota T, et al. Effect of mannitol on focal cerebral ischemia evaluated by magnetic resonance imaging. Acta Neurochir Suppl (Wien) 1994; 60:228–230.

    CAS  Google Scholar 

  141. Davis D, Ulatowski J, Eleff SM, Izuta M, Mori S, Shungu D, et al. Rapid monitoring of changes in water diffusion coefficients during reversible ischemia in cat and rat brain. Magn Reson Med 1994; 31:454–460.

    Article  PubMed  CAS  Google Scholar 

  142. Kobayashi H, Ide H, Kabuto M, Handa Y, Kubota T, Ishii Y. Effect of mannitol on focal cerebral ischemia evaluated by somatosensoryevoked potentials and magnetic resonance imaging. Surg Neurol 1995;44(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  143. Hossmann KA. Experimental models for the investigation of brain ischemia. Cardiovasc Res 1998;39(1):106–120.

    Article  PubMed  CAS  Google Scholar 

  144. Hoehn M, Nicolay K, Franke C, van der SB. Application of magnetic resonance to animal models of cerebral ischemia. J Magn Reson Imaging 2001;14(5):491–509.

    Article  PubMed  CAS  Google Scholar 

  145. Weber R, Ramos-Cabrer P, Hoehn M. Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 2006;26(5):591–604.

    Article  PubMed  Google Scholar 

  146. Zivin JA, Grotta JC. Animal stroke models. They are relevant to human disease. Stroke 1990;21(7):981–983.

    PubMed  CAS  Google Scholar 

  147. Wiebers DO, Adams HP Jr, Whisnant JP. Animal models of stroke: Are they relevant to human disease? Stroke 1990;21(1): 1–3.

    PubMed  CAS  Google Scholar 

  148. Rosenblum WI. Criteria for valid preclinical trials using animal stroke models. Stroke 1993;24(10):1601–1602.

    PubMed  CAS  Google Scholar 

  149. Sauter A, Reese T, Porszasz R, Baumann D, Rausch M, Rudin M. Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI. Magn Reson Med 2002; 47(4):759–765.

    Article  PubMed  Google Scholar 

  150. Reese T, Porszasz R, Baumann D, Bochelen D, Boumezbeur F, McAllister KH, et al. Cytoprotection does not preserve brain functionality in rats during the acute post-stroke phase despite evidence of non-infarction provided by MRI. NMR Biomed 2000;13(6): 361–370.

    Article  PubMed  CAS  Google Scholar 

  151. Rudin M, Baumann D, Ekatodramis D, Stirnimann R, McAllister KH, Sauter A. MRI analysis of the changes in apparent water diffusion coefficient, T(2) relaxation time, and cerebral blood flow and volume in the temporal evolution of cerebral infarction following permanent middle cerebral artery occlusion in rats. Exp Neurol 2001;169(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  152. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci USA 2001;98(22):12766–12771.

    Article  PubMed  CAS  Google Scholar 

  153. Dijkhuizen RM, Singhai AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: A functional magnetic resonance imaging study. J Neurosci 2003;23(2):510–517.

    PubMed  CAS  Google Scholar 

  154. Reese T, Bochelen D, Baumann D, Rausch M, Sauter A, Rudin M. Impaired functionality of reperfused brain tissue following short transient focal ischemia in rats. Magn Reson Imaging 2002; 20(6):447–454.

    Article  PubMed  CAS  Google Scholar 

  155. Shen Q, Ren H, Cheng H, Fisher M, Duong TQ. Functional, perfusion and diffusion MRI of acute focal ischemic brain injury. J Cereb Blood Flow Metab 2005;25(10): 1265–1279.

    Article  PubMed  Google Scholar 

  156. Kim YR, Huang IJ, Lee SR, Tejima E, Mandeville JB, van Meer MP, et al. Measurements of BOLD/CBV ratio show altered fMRI hemodynamics during stroke recovery in rats. J Cereb Blood Flow Metab 2005;25(7):820–829.

    Article  PubMed  Google Scholar 

  157. Fisher RS. Animal models of the epilepsies. Brain Res Brain Res Rev 1989;14(3):245–278.

    Article  PubMed  CAS  Google Scholar 

  158. Engel J Jr. Experimental animal models of epilepsy: Classification and relevance to human epileptic phenomena. Epilepsy Res Suppl 1992;8:9–20.

    PubMed  Google Scholar 

  159. Buchhalter JR. Animal models of inherited epilepsy. Epilepsia 1993;34(Suppl. 3):S31–S41.

    PubMed  Google Scholar 

  160. Hosford DA. Models of primary generalized epilepsy. Curr Opin Neurol 1995;8(2): 121–125.

    Article  PubMed  CAS  Google Scholar 

  161. Lason W. Genetic animal models of epilepsy. Pol J Pharmacol 1998;50(1):77–79.

    PubMed  CAS  Google Scholar 

  162. Toth M, Tecott L. Transgenic approaches to epilepsy. Adv Neurol 1999;79:291–296.

    PubMed  CAS  Google Scholar 

  163. Coenen AM, Van Luijtelaar EL. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behav Genet 2003;33(6):635–655.

    Article  PubMed  CAS  Google Scholar 

  164. Fariello RG. Critical review of the animal models of generalized epilepsies. Ital J Neurol Sci 1995;16(l–2):69–72.

    Article  PubMed  CAS  Google Scholar 

  165. Zhong J, Petroff OA, Prichard JW, Gore JC. Barbituratereversible reduction of water diffusion coefficient in flurothylinduced status epilepticus in rats. Magn Reson Med 1995;33(2): 253–256.

    Article  PubMed  CAS  Google Scholar 

  166. Nersesyan H, Hyder F, Rothman DL, Blumenfeld H. Dynamic fMRI and EEG recordings during spike-wave Scizures and generalized tonic-clonic Scizures in WAG/Rij rats. J Cereb Blood Flow Metab 2004;24(6):589–599.

    Article  PubMed  Google Scholar 

  167. Nersesyan H, Herman P, Erdogan E, Hyder F, Blumenfeld H. Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized Scizures. J Cereb Blood Flow Metab 2004;24(9): 1057–1068.

    Article  PubMed  Google Scholar 

  168. Fabene PF, Sbarbati A. In vivo MRI in different models of experimental epilepsy. Curr Drug Targets 2004;5(7):629–636.

    Article  PubMed  CAS  Google Scholar 

  169. Kaakkola S, Teravainen H. Animal models of parkinsonism. Pharmacol Toxicol 1990;67(2):95–100.

    PubMed  CAS  Google Scholar 

  170. Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K. Experimental models of Parkinson’s disease: Insights from many models. Lab Anim Sci 1999;49(4):363–371.

    PubMed  CAS  Google Scholar 

  171. Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. Bioessays 2002;24(4):308–318.

    Article  PubMed  CAS  Google Scholar 

  172. Colpaert FC. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 1987;26(9): 1431–1440.

    Article  PubMed  CAS  Google Scholar 

  173. Hall S, Rutledge JN, Schallert T. MRI, brain iron and experimental Parkinson’s disease. J Neurol Sci 1992;113(2):198–208.

    Article  PubMed  CAS  Google Scholar 

  174. Pelled G, Bergman H, Goelman G. Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson’s disease—a functional magnetic resonance imaging study. Eur J Neurosci 2002;15(2):389–394.

    Article  PubMed  Google Scholar 

  175. Kondoh T, Bannai M, Nishino H, Torii K. 6-Hydroxydopamineinduced lesions in a rat model of hemi-Parkinson’s disease monitored by magnetic resonance imaging. Exp Neurol 2005;192(1):194–202.

    Article  PubMed  CAS  Google Scholar 

  176. Pelled G, Bergman H, Ben Hur T, Goelman G. Reduced basal activity and increased functional homogeneity in sensorimotor and striatum of a Parkinson’s disease rat model: A functional MRI study. Eur J Neurosci 2005;21(8):2227–2232.

    Article  PubMed  Google Scholar 

  177. Brownell AL, Jenkins BG, Isacson O. Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson’s disease. Biomed Pharmacother 1999; 53(3):131–140.

    Article  PubMed  CAS  Google Scholar 

  178. Zhang Z, Zhang M, Ai Y, Avison C, Gash DM. MPTP-induced pallidal lesions in rhesus monkeys. Exp Neurol 1999;155(1):140–149.

    Article  PubMed  CAS  Google Scholar 

  179. Brownell AL, Canales K, Chen YI, Jenkins BG, Owen C, Livni E, et al. Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson’s disease model. Neuroimage 2003;20(2): 1064–1075.

    Article  PubMed  Google Scholar 

  180. Podell M, Hadjiconstantinou M, Smith MA, Neff NH. Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol 2003;179(2):159–166.

    Article  PubMed  CAS  Google Scholar 

  181. Chen Q, Andersen AH, Zhang Z, Ovadia A, Gash DM, Avison MJ. Mapping drug-induced changes in cerebral R2* by multiple gradient recalled echo functional MRI. Magn Reson Imaging 1996; 14(5):469–476.

    Article  PubMed  CAS  Google Scholar 

  182. Chen Q, Andersen AH, Zhang Z, Ovadia A, Cass WA, Gash DM, et al. Functional MRI of basal ganglia responsiveness to levodopa in parkinsonian rhesus monkeys. Exp Neurol 1999;158(1):63–75.

    Article  PubMed  CAS  Google Scholar 

  183. Jenkins BG, Sanchez-Pernaute R, Brownell AL, Chen YC, Isacson O. Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci 2004;24(43):9553–9560.

    Article  PubMed  CAS  Google Scholar 

  184. Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG. Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 2005;180:705–715.

    Article  CAS  Google Scholar 

  185. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002;99(4):2344–2349.

    Article  PubMed  CAS  Google Scholar 

  186. Sturchler-Pierrat C, Sommer B. Transgenic animals in Alzheimer’s disease research. Rev Neurosci 1999;10(1):15–24.

    PubMed  CAS  Google Scholar 

  187. Yamada K, Nabeshima T. Animal models of Alzheimer’s disease and evaluation of anti-dementia drugs. Pharmacol Ther 2000;88(2):93–113.

    Article  PubMed  CAS  Google Scholar 

  188. Bornemann KD, Staufenbiel M. Transgenic mouse models of Alzheimer’s disease. Ann NY Acad Sci 2000, 908:260–266.

    Article  PubMed  CAS  Google Scholar 

  189. Duff K. Transgenic mouse models of Alzheimer’s disease: Phenotype and mechanisms of pathogenesis. Biochem Soc Symp 2001;(67):195–202.

    Google Scholar 

  190. Phinney AL, Home P, Yang J, Janus C, Bergeron C, Westaway D. Mouse models of Alzheimer’s disease: The long and filamentous road. Neurol Res 2003;25(6):590–600.

    Article  PubMed  CAS  Google Scholar 

  191. Higgins G A, Jacobsen H. Transgenic mouse models of Alzheimer’s disease: Phenotype and application. Behav Pharmacol 2003; 14(5_6):419–438.

    PubMed  CAS  Google Scholar 

  192. Sankaranarayanan S. Genetically modified mice models for Alzheimer’s disease. Curr Top Med Chem 2006;6(6):609–627.

    Article  PubMed  CAS  Google Scholar 

  193. McGowan E, Eriksen J, Hutton M. A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 2006;22(5): 281–289.

    Article  PubMed  CAS  Google Scholar 

  194. Dhenain M, Michot JL, Volk A, Picq JL, Boiler F. T2-weighted MRI studies of mouse lemurs: A primate model of brain aging. Neurobiol Aging 1997;18(5):517–521.

    Article  PubMed  CAS  Google Scholar 

  195. Coimbra A, Williams DS, Hostetler ED. The role of MRI and PET/ SPECT in Alzheimer’s disease. Curr Top Med Chem 2006;6(6): 629–647.

    Article  PubMed  CAS  Google Scholar 

  196. Helpern JA, Jensen J, Lee SP, Falangola MF. Quantitative MRI assessment of Alzheimer’s disease. J Mol Neurosci 2004;24(1): 45–48.

    Article  PubMed  CAS  Google Scholar 

  197. Zhang J, Yarowsky P, Gordon MN, Di Carlo G, Munireddy S, van Zijl PC, et al. Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging. Magn Reson Med 2004;51(3):452–457.

    Article  PubMed  Google Scholar 

  198. Lee SP, Falangola MF, Nixon RA, Duff K, Helpern JA. Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer’s disease using MR microscopy without contrast reagents. Magn Reson Med 2004;52(3):538–544.

    Article  PubMed  Google Scholar 

  199. Jack CR Jr, Garwood M, Wengenack TM, Borowski B, Curran GL, Lin J, et al. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 2004;52(6):1263–1271.

    Article  PubMed  Google Scholar 

  200. Wadghiri YZ, Sigurdsson EM, Wisniewski T, Turnbull DH. Magnetic resonance imaging of amyloid plaques in transgenic mice. Methods Mol Biol 2005;299:365–379.

    PubMed  Google Scholar 

  201. Jack CR Jr, Wengenack TM, Reyes DA, Garwood M, Curran GL, Borowski BJ, et al. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 2005;25(43):10041–10048.

    Article  PubMed  CAS  Google Scholar 

  202. Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA. Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 2005;30(2):201–205.

    Article  PubMed  CAS  Google Scholar 

  203. Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der LA. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 2005;53(3):607–613.

    Article  PubMed  CAS  Google Scholar 

  204. Bartlett S. MRI for in vivo detection of amyloid plaques. Lancet Neurol 2005;4(5):276.

    Article  PubMed  Google Scholar 

  205. Harms MP, Kotyk JJ, Merchant KM. Evaluation of white matter integrity in ex vivo brains of amyloid plaque-bearing APPsw transgenic mice using magnetic resonance diffusion tensor imaging. Exp Neurol 2006;199(2):408–415.

    Article  PubMed  Google Scholar 

  206. Dhenain M, Delatour B, Walczak C, Volk A. Passive staining: A novel ex vivo MRI protocol to detect amyloid deposits in mouse models of Alzheimer’s disease. Magn Reson Med 2006;55(3): 687–693.

    Article  PubMed  CAS  Google Scholar 

  207. Beckmann N, Schuler A, Mueggler T, Meyer EP, Wiederhold KH, Staufenbiel M, et al. Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 2003;23(24):8453–8459.

    PubMed  CAS  Google Scholar 

  208. Krucker T, Schuler A, Meyer EP, Staufenbiel M, Beckmann N. Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: Application to transgenic mice modeling Alzheimer’s disease. Neurol Res 2004;26(5):507–516.

    Article  PubMed  Google Scholar 

  209. Hu ZH, Wang XC, Li LY, Liu ML, Liu R, Ling Z, et al. Correla-tion of behavior changes and BOLD signal in Alzheimer-like rat model. Acta Biochim Biophys Sin (Shanghai) 2004;36:803–810.

    CAS  Google Scholar 

  210. Van Camp N, Verhoye M, De Zeeuw CI, Van der LA. Light stimulus frequency dependence of activity in the rat visual system as studied with high-resolution BOLD fMRI. J Neurophysiol 2006;95(5):3164–3170.

    Article  PubMed  Google Scholar 

  211. Masamoto K, Kim T, Fukuda M, Wang P, Kim SG. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex. Cereb Cortex 2007;17(4):942–950.

    Article  PubMed  Google Scholar 

  212. Lu H, Patel S, Luo F, Li SJ, Hillard CJ, Ward BD, et al. Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression. Magn Reson Med 2004;52(5): 1060–1068.

    Article  PubMed  Google Scholar 

  213. Kennerley AJ, Berwick J, Martindale J, Johnston D, Papadakis N, Mayhew JE. Concurrent fMRI and optical measures for the investigation of the hemodynamic response function. Magn Reson Med 2005;54(2):354–365.

    Article  PubMed  Google Scholar 

  214. Peeters RR, Verhoye M, Vos BP, Van Dyck D, Van der LA, De Schutter E. A patchy horizontal organization of the somatosensory activation of the rat cerebellum demonstrated by functional MRI. Eur] Neurosci 1999;11(8):27–30.

    Google Scholar 

  215. Van Camp N, Peeters RR, Van der LA. A comparison between blood oxygenation level-dependent and cerebral blood volume contrast in the rat cerebral and cerebellar somatosensoric cortex during electrical paw stimulation. J Magn Reson Imaging 2005;22(4): 483–491.

    Article  PubMed  Google Scholar 

  216. Xu F, Kida I, Hyder F, Shulman RG. Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc Natl Acad Sci USA 2000;97(19): 10601–10606.

    Article  PubMed  CAS  Google Scholar 

  217. Xu F, Schaefer M, Kida I, Schafer J, Liu N, Rothman DL, et al. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol 2005;489(4):491–500.

    Article  PubMed  Google Scholar 

  218. Schafer JR, Kida I, Rothman DL, Hyder F, Xu F. Adaptation in the rodent olfactory bulb measured by fMRI. Magn Reson Med 2005;54(2):443–448.

    Article  PubMed  Google Scholar 

  219. Jezzard P, Rauschecker JP, Malonek D. An in vivo model for functional MRI in cat visual cortex. Magn Reson Med 1997;38(5): 699–705.

    Article  PubMed  CAS  Google Scholar 

  220. Kim DS, Duong TQ, Kim SG. High-resolution mapping of isoorientation columns by fMRI. Nat Neurosci 2000;3(2): 164–169.

    Article  PubMed  CAS  Google Scholar 

  221. Duong TQ, Kim DS, Ugurbil K, Kim SG. Spatiotemporal dynamics of the BOLD fMRI signals: Toward mapping submillimeter cortical columns using the early negative response. Magn Reson Med 2000;44(2):231–242.

    Article  PubMed  CAS  Google Scholar 

  222. Duong TQ, Kim DS, Ugurbil K, Kim SG. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 2001;98(19):10904–10909.

    Article  PubMed  CAS  Google Scholar 

  223. Harel N, Lee SP, Nagaoka T, Kim DS, Kim SG. Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 2002;22(8):908–917.

    Article  PubMed  Google Scholar 

  224. Kim DS, Kim M, Ronen I, Formisano E, Kim KH, Ugurbil K, et al. In vivo mapping of functional domains and axonal connectivity in cat visual cortex using magnetic resonance imaging. Magn Reson Imaging 2003;21(10):1131–1140.

    Article  PubMed  Google Scholar 

  225. Zhao F, Wang P, Kim SG. Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T. Magn Reson Med 2004; 51(3):518–524.

    Article  PubMed  Google Scholar 

  226. Kim DS, Ronen I, Olman C, Kim SG, Ugurbil K, Toth LJ. Spatial relationship between neuronal activity and BOLD functional MRI. Neuroimage 2004;21(3):876–885.

    Article  PubMed  Google Scholar 

  227. Nagaoka T, Zhao F, Wang P, Harel N, Kennan RP, Ogawa S, et al. Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition. J Cereb Blood Flow Metab 2006;26(8):1043–1051.

    Article  PubMed  Google Scholar 

  228. Zhao F, Wang P, Hendrich K, Ugurbil K, Kim SG. Cortical layerdependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation. Neuroimage 2006;30(4):1149–1160.

    Article  PubMed  Google Scholar 

  229. Bolan PJ, Yacoub E, Garwood M, Ugurbil K, Harel N. In vivo micro-MRI of intracortical neurovasculature. Neuroimage 2006; 32(1):62–69.

    Article  PubMed  Google Scholar 

  230. Van der Linden A, Van Meir V, Tindemans I, Verhoye M, Balthazart J. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 2004;17(8):602–612.

    Article  PubMed  CAS  Google Scholar 

  231. Van Meir V, Boumans T, De Groof G, Van Audekerke J, Smolders A, Scheunders P, et al. Spatiotemporal properties of the BOLD response in the songbirds’ auditory circuit during a variety of listening tasks. Neuroimage 2005;25(4):1242–1255.

    Article  PubMed  Google Scholar 

  232. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, et al. fMRI of monkey visual cortex. Neuron 1998;20(6):1051–1057.

    Article  PubMed  CAS  Google Scholar 

  233. Dubowitz DJ, Chen DY, Atkinson DJ, Grieve KL, Gillikin B, Bradley WG Jr, et al. Functional magnetic resonance imaging in macaque cortex. Neuroreport 1998;9(10):2213–2218.

    Article  PubMed  CAS  Google Scholar 

  234. Logothetis NK, Guggenberger H, Peled S, Pauls J. Functional imaging of the monkey brain. Nat Neurosci 1999;2(6):555–562.

    Article  PubMed  CAS  Google Scholar 

  235. Disbrow E, Roberts TP, Slutsky D, Krubitzer L. The use of fMRI for determining the topographic organization of cortical fields in human and nonhuman primates. Brain Res 1999;829(1–2):167–173.

    Article  PubMed  CAS  Google Scholar 

  236. Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, et al. Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 2001;32(4):565–577.

    Article  PubMed  CAS  Google Scholar 

  237. Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K. Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron 2002;35(2):227–242.

    Article  PubMed  CAS  Google Scholar 

  238. Barinaga M. fMRI provides new view of monkey brains. Science 1998;282(5393):1397.

    Article  PubMed  CAS  Google Scholar 

  239. Disbrow EA, Slutsky DA, Roberts TP, Krubitzer LA. Functional MRI at 1.5 Tesla: A comparison of the blood oxygenation leveldependent signal and electrophysiology. Proc Natl Acad Sci USA 2000;97(17):9718–9723.

    Article  PubMed  CAS  Google Scholar 

  240. Hayashi T, Konishi S, Hasegawa I, Miyashita Y. Short communication: Mapping of somatosensory cortices with functional magnetic resonance imaging in anaesthetized macaque monkeys. Fur J Neurosci 1999;11(12):4451–4456.

    CAS  Google Scholar 

  241. Lipton ML, Fu KM, Branch CA, Schroeder CE. Ipsilateral hand input to area 3b revealed by converging hemodynamic and electrophysiological analyses in macaque monkeys. J Neurosci 2006;26(1): 180–185.

    Article  PubMed  CAS  Google Scholar 

  242. Pfeuffer J, Merkle H, Beyerlein M, Steudel T, Logothetis NK. Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn Reson Imaging 2004;22(10):1343–1359.

    Article  PubMed  Google Scholar 

  243. Rainer G, Augath M, Trinath T, Logothetis NK. Nonmonotonic noise tuning of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey. Curr Biol 2001;11(11):846–854.

    Article  PubMed  CAS  Google Scholar 

  244. Tolias AS, Smirnakis SM, Augath MA, Trinath T, Logothetis NK. Motion processing in the macaque: Revisited with functional magnetic resonance imaging. J Neurosci 2001;21(21):8594–8601.

    PubMed  CAS  Google Scholar 

  245. Sereno ME, Trinath T, Augath M, Logothetis NK. Three-dimensional shape representation in monkey cortex. Neuron 2002;33(4): 635–652.

    Article  PubMed  CAS  Google Scholar 

  246. Dubowitz DJ, Bernheim KA, Chen DY, Bradley WG Jr, Andersen RA. Enhancing fMRI contrast in awake-behaving primates using intravascular magnetite dextran nanoparticles. Neuroreport 2001; 12(11):2335–2340.

    Article  PubMed  CAS  Google Scholar 

  247. Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, et al. Extracting 3D from motion: Differences in human and monkey intraparietal cortex. Science 2002;298(5592):413–415.

    Article  PubMed  CAS  Google Scholar 

  248. Fize D, Vanduffel W, Nelissen K, Denys K, Chef dC, Faugeras O, et al. The retinotopic organization of primate dorsal V4 and surrounding areas: A functional magnetic resonance imaging study in awake monkeys. J Neurosci 2003;23(19):7395–7406.

    PubMed  CAS  Google Scholar 

  249. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK. Integration of local features into global shapes: Monkey and human FMRI studies. Neuron 2003;37(2):333–346.

    Article  PubMed  CAS  Google Scholar 

  250. Denys K, Vanduffel W, Fize D, Nelissen K, Sawamura H, Georgieva S, et al. Visual activation in prefrontal cortex is stronger in monkeys than in humans. J Cogn Neurosci 2004;16(9):1505–1516.

    Article  PubMed  Google Scholar 

  251. Orban GA, Van Essen D, Vanduffel W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 2004;8(7):315–324.

    Article  PubMed  Google Scholar 

  252. Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y. Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: Comparison of cortical eye fields with humans. Neuron 2004;41(5):795–807.

    Article  PubMed  CAS  Google Scholar 

  253. Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA. Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. J Neurosci 2005;25(17):4294–4306.

    Article  PubMed  CAS  Google Scholar 

  254. King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, et al. Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 2005;148(2):154–160.

    Article  PubMed  Google Scholar 

  255. Kannurpatti SS, Biswal BB. Effect of anesthesia on CBF, MAP and fMRI-BOLD signal in response to apnea. Brain Res 2004;1011(2): 141–147.

    Article  PubMed  CAS  Google Scholar 

  256. Martin C, Martindale J, Berwick J, Mayhew J. Investigating neuralhemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 2006;32(1):33–48.

    Article  PubMed  Google Scholar 

  257. Peeters RR, Tindemans I, De Schutter E, Van der Linden A. Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn Reson Imaging 2001;19(6):821–826.

    Article  PubMed  CAS  Google Scholar 

  258. Austin VC, Blamire AM, Allers KA, Sharp T, Styles P, Matthews PM, et al. Confounding effects of anesthesia on functional activation in rodent brain: A study of halothane and alpha-chloralose anesthesia. Neuroimage 2005;24(1):92–100.

    Article  PubMed  CAS  Google Scholar 

  259. Willis CK, Quinn RP, McDonell WM, Gati J, Parent J, Nicolle D. Functional MRI as a tool to assess vision in dogs: The optimal anesthetic. Vet Ophthalmol 2001;4(4):243–253.

    Article  PubMed  CAS  Google Scholar 

  260. Heinke W, Schwarzbauer C. Subanesthetic isoflurane affects taskinduced brain activation in a highly specific manner: A functional magnetic resonance imaging study. Anesthesiology 2001;94(6): 973–981.

    Article  PubMed  CAS  Google Scholar 

  261. Liu ZM, Schmidt KF, Sicard KM, Duong TQ. Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn Reson Med 2004;52(2):277–285.

    Article  PubMed  Google Scholar 

  262. Abo M, Suzuki M, Senoo A, Miyano S, Yamauchi H, Yonemoto K, et al. Influence of isoflurane concentration and hypoxia on functional magnetic resonance imaging for the detection of bicuculline-induced neuronal activation. Neurosignals 2004;13(3):144–149.

    Article  PubMed  CAS  Google Scholar 

  263. Dashti M, Geso M, Williams J. The effects of anaesthesia on cortical stimulation in rats: A functional MRI study. Australas Phys Eng Sci Med 2005;28(1):21–25.

    Article  PubMed  CAS  Google Scholar 

  264. Scanley BE, Kennan RP, Cannan S, Skudlarski P, Innis RB, Gore JC. Functional magnetic resonance imaging of median nerve stimulation in rats at 2.0 T. Magn Reson Med 1997;37(6):969–972.

    Article  PubMed  CAS  Google Scholar 

  265. Lahti KM, Ferris CF, Li F, Sotak CH, King JA. Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med 1999;41(2):412–416.

    Article  PubMed  CAS  Google Scholar 

  266. Kalisch R, Elbel GK, Gossl C, Czisch M, Auer DP. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 Tesla: Implications for pharmacologic MRI. Neuroimage 2001;14(4):891–898.

    Article  PubMed  CAS  Google Scholar 

  267. Makiranta MJ, Lehtinen S, Jauhiainen JP, Oikarinen JT, Pyhtinen J, Tervonen O. MR perfusion, diffusion and BOLD imaging of methotrexate-exposed swine brain. J Magn Reson Imaging 2002;15(5):511–519.

    Article  PubMed  Google Scholar 

  268. Ferris CF, Snowdon CT, King JA, Duong TQ, Ziegler TE, Ugurbil K, et al. Functional imaging of brain activity in conscious monkeys responding to sexually arousing cues. Neuroreport 2001;12(10):2231–2236.

    Article  PubMed  CAS  Google Scholar 

  269. Weber R, Ramos-Cabrer P, Wiedermann D, Van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006;29(4): 1303–1310.

    Article  PubMed  Google Scholar 

  270. Crosby G, Crane AM, Sokoloff L. Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 1982;56(6): 437–443.

    Article  PubMed  CAS  Google Scholar 

  271. Crosby G, Crane AM, Jehle J, Sokoloff L. The local metabolic effects of somatosensory stimulation in the central nervous system of rats given pentobarbital or nitrous oxide. Anesthesiology 1983; 58(1):38–43.

    Article  PubMed  CAS  Google Scholar 

  272. Crosby G, Crane AM, Sokoloff L. A comparison of local rates of glucose utilization in spinal cord and brain in conscious and nitrous oxideorpentobarbital-treated rats. Anesthesiology 1984;61(4):434–438.

    Article  PubMed  CAS  Google Scholar 

  273. Ueki M, Mies G, Hossmann KA. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol Scand 1992;36(4):318–322.

    PubMed  CAS  Google Scholar 

  274. Nakao Y, Itoh Y, Kuang TY, Cook M, Jehle J, Sokoloff L. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci USA 2001;98(13):7593–7598.

    Article  PubMed  CAS  Google Scholar 

  275. Rojas MJ, Navas JA, Rector DM. Evoked response potential markers for anesthetic and behavioral states. Am J Physiol Regul Integr Comp Physiol 2006;291(1):R189–R196.

    PubMed  CAS  Google Scholar 

  276. Littlewood CL, Cash D, Dixon AL, Dix SL, White CT, O’neill MJ, et al. Using the BOLD MR signal to differentiate the stereoisomers of ketamine in the rat. Neuroimage 2006;32(4):1733–1746.

    Article  PubMed  Google Scholar 

  277. Steward CA, Marsden CA, Prior MJ, Morris PG, Shah YB. Methodological considerations in rat brain BOLD contrast pharmacological MRI. Psychopharmacology (Berl) 2005;180:687–704.

    Article  CAS  Google Scholar 

  278. Wise RG, Tracey I. The role of fMRI in drug discovery. J Magn Reson Imaging 2006;23(6):862–876.

    Article  PubMed  Google Scholar 

  279. Schwarz A, Gozzi A, Reese T, Bertani S, Crestan V, Hagan J, et al. Selective dopamine D(3) receptor antagonist SB-277011-A potentiates phMRI response to acute amphetamine challenge in the rat brain. Synapse 2004;54(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  280. Ireland MD, Lowe AS, Reavill C, James MF, Leslie RA, Williams SC. Mapping the effects of the selective dopamine D2/D3 receptor agonist quinelorane using pharmacological magnetic resonance imaging. Neuroscience 2005;133(1):315–326.

    Article  PubMed  CAS  Google Scholar 

  281. Zhang Z, Andersen AH, Ai Y, Loveland A, Hardy PA, Gerhardt GA, et al. Assessing nigrostriatal dysfunctions by pharmacological MRI in parkinsonian rhesus macaques. Neuroimage 2006;33(2): 636–643.

    Article  PubMed  Google Scholar 

  282. Choi JK, Mandeville JB, Chen YI, Kim YR, Jenkins BG. High resolution spatial mapping of nicotine action using pharmacologic magnetic resonance imaging. Synapse 2006;60(2):152–157.

    Article  PubMed  CAS  Google Scholar 

  283. Gozzi A, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A. Region-specific effects of nicotine on brain activity: A pharmacological MRI study in the drug-naive rat. Neuropsychopharmacology 2006;31(8):1690–1703.

    Article  PubMed  CAS  Google Scholar 

  284. Kalisch R, Salome N, Platzer S, Wigger A, Czisch M, Sommer W, et al. High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: A combined phMRI and Fos study in rats. Neuroimage 2004;23(1):382–391.

    Article  PubMed  Google Scholar 

  285. Schwarz AJ, Zocchi A, Reese T, Gozzi A, Garzotti M, Varnier G, et al. Concurrent pharmacological MRI and in situ microdialysis of cocaine reveal a complex relationship between the central hemodynamic response and local dopamine concentration. Neuroimage 2004;23(1):296–304.

    Article  PubMed  CAS  Google Scholar 

  286. Chen YC, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, et al. Detection of dopaminergic neurotransmitter activity using pharmacologie MRI: Correlation with PET, microdialysis, and behavioral data. Magn Reson Med 1997;38(3):389–398.

    Article  PubMed  CAS  Google Scholar 

  287. Flecknell PA. Laboratory Animal Anesthesia, 2nd ed. London: Academic Press, 1996:91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Silva, A.C., Stefanovic, B. (2008). Animal Models in Functional Magnetic Resonance Imaging. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_51

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics