Skip to main content

Establishing and Maintaining a Xenopus laevis Colony for Research Laboratories

  • Chapter
Sourcebook of Models for Biomedical Research

Abstract

This Chapter describes in detail the construction and maintenance of a Xenopus laevis colony. It covers Xenopus husbandry, facility design and construction, necessary maintenance protocols, and monitoring/disaster recovery procedures. Facility components and management protocols described within this chapter are based on our experience with the frog colony at The Forsyth Center for Regeneration and Developmental Biology as well as the information obtained from many other investigators. The system described in this chapter is AAALAC accredited and provides a steady supply of embryology-quality eggs and ensures excellent water quality and adult frog care. This information is a complete guide, allowing a new investigator to begin work with this powerful model species that has resulted in profound advances in developmental, cell, and cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deuchar EM. Xenopus: The South African Clawed Frog. New York: Wiley, 1975.

    Google Scholar 

  2. Schade H. [Possibility of definite pregnancy diagnosis with Xenopus laevis.] Z Geburtshilfe Gynakol 1951;134(3):300–303.

    PubMed  CAS  Google Scholar 

  3. Vercammen-Grandjean PH. [Xenopus test in pregnancy diagnosis at the Costermansville laboratories.] Ann Soc Belg Med Trop 1950;30(2):313–321.

    CAS  Google Scholar 

  4. Manfredi P. [The dependability of the biological diagnosis of pregnancy by means of Xenopus laevis.] Ann Ostet Ginecol 1950;72(2): 153–164.

    PubMed  CAS  Google Scholar 

  5. Harjola O, Toivonen S. Finnish experience of the care and use of the clawed frog (Xenopus laevis Daudin) in the diagnosis of pregnancy. Ann Chir Gynaecol Fenn 1949;38(Suppl. 3):68–82.

    CAS  Google Scholar 

  6. Sive HL, Grainger RM, Harland RM. Early Development of Xenopus Laevis. New York: Cold Spring Harbor Laboratory Press, 2000.

    Google Scholar 

  7. Nieuwkoop PD, Faber J. Normal Table of Xenopus laevis (Daudin), 2nd ed. Amsterdam: North-Holland Publishing Company, 1967.

    Google Scholar 

  8. Bernardini G. Atlas of Xenopus Development. New York: Springer, 1999.

    Google Scholar 

  9. McDiarmid RW, Altig R. Tadpoles: The Biology of Anuran Larvae. Chicago, IL: University of Chicago Press, 1999.

    Google Scholar 

  10. Hilken G, Dimigen J, Iglauer F. Growth of Xenopus laevis under different laboratory rearing conditions. Lab Anim 1995;29(2): 152–162.

    Article  PubMed  CAS  Google Scholar 

  11. Dawson D, Schultz TW, Shroeder EC. Laboratory care and breeding of the African clawed frog. Lab Anim 1992;21(4):31–36.

    Google Scholar 

  12. Schultz TW, Dawson DA. Housing and husbandry of Xenopus for oocyte production. Lab Anim 2003;32(2):34–39.

    Article  Google Scholar 

  13. Parker F, Robbins SL, Loveridge A. Breeding, rearing and care of the South African clawed frog. Am Nat 1997;81(796):38–49.

    Article  Google Scholar 

  14. Major N, Wassersug RJ. Survey of current techniques in the care and maintenance of the African clawed frog (Xenopus laevis). Contemp Top Lab Anim Sci 1998;37(5):57–60.

    PubMed  Google Scholar 

  15. Levin M, Mercola M. Expression of connexin 30 in Xenopus embryos and its involvement in hatching gland function. Dev Dyn 2000; 219(1):96–101.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng SM, Chen I, Levin M. KATP channel activity is required for hatching in Xenopus embryos. Dev Dyn 2002;225(4):588–591.

    Article  PubMed  CAS  Google Scholar 

  17. Chen I, Levin M. The role of KATP channels in development of left-right asymmetry in Xenopus. J Dent Res 2004;83:A1340.

    Google Scholar 

  18. Bunney TD, De Boer AH, Levin M. Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development 2003;130:4847–4858.

    Article  PubMed  CAS  Google Scholar 

  19. Rutenberg J, Cheng SM, Levin M. Early embryonic expression of ion channels and pumps in chick and Xenopus development. Dev Dyn 2002;225(4):469–484.

    Article  PubMed  CAS  Google Scholar 

  20. Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 2002;111(1):77–89.

    Article  PubMed  CAS  Google Scholar 

  21. Fukumoto T, Kema IP, Levin M. Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 2005;15(9):794–803.

    Article  PubMed  CAS  Google Scholar 

  22. Fukumoto T, Blakely R, Levin M. Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Dev Neurosci 2005;27(6):349–363.

    Article  PubMed  CAS  Google Scholar 

  23. Adams DS, Levin M. Strategies and techniques for investigation of biophysical signals in patterning. In: Whitman M, Sater AK, Eds. Analysis of Growth Factor Signaling in Embryos. London: Taylor and Francis Books, 2006:177–262.

    Google Scholar 

  24. Scharf SR, Rowning B, Wu M, Gerhart JC. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O. Dev Biol 1989; 134(1):175–188.

    Article  PubMed  CAS  Google Scholar 

  25. Hedberg E. [Breeding and use of Xenopus laevis in pregnancy tests.] Nord Med 1951;45(6):200–201.

    PubMed  CAS  Google Scholar 

  26. Davys JS. The breeding of Xenopus laevis on a large scale in the laboratory. Anim Technol J Instit Anim Technol 1986;37(3): 217–223.

    Google Scholar 

  27. Major N, Wassersug RJ. Survey of current techniques in the care and maintenance of the African clawed frog (Xenopus laevis). Cont Top Lab Anim Sci 1998;37(5):57–60.

    Google Scholar 

  28. Kaplan ML. An enriched environment for the African clawed frog (Xenopus laevis). Lab Anim 1993;22(5):25–27.

    Google Scholar 

  29. Kobel HR, Tinsley RC. The Biology of Xenopus. Oxford: Published for the Zoological Society of London by Clarendon Press, 1996.

    Google Scholar 

  30. Hydroserve. Hydro’s Water Index: A Manual for Ultrapure Water System Design. Research Triangle Park, NC: Hydro Service and Supplies Inc., 1999.

    Google Scholar 

  31. Godfrey EW, Sanders GE. Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis). Comp Med 2004;54(2):170–175.

    PubMed  CAS  Google Scholar 

  32. Volunteers WA. Dissolved Oxygen: Aquatic Life Depends on It. Madison, WI: University of Wisconsin, 2003.

    Google Scholar 

  33. Carmingnani GM, Bennett JP. Rapid start-up of a biological filter in a closed aquaculture system. Aquaculture 1977;11:85–88.

    Article  Google Scholar 

  34. Brown LE, Rosati RR. Effects of three different diets on survival and growth of larvae of the African clawed frog Xenopus laevis. Progr Fish Cult 1997;59(1):54–58.

    Article  Google Scholar 

  35. Able DJ. An economical, balanced diet for Xenopus. ILAR News 1988;3:20–21.

    Google Scholar 

  36. Parker JM, Mikaelian I, Hahn N, Diggs HE. Clinical diagnosis and treatment of epidermal chytridiomycosis in African clawed frogs (Xenopus tropicalis). Comp Med 2002;52(3):265–268.

    PubMed  CAS  Google Scholar 

  37. Hubbard GB. Aeromonas hydrophila infection in Xenopus laevis water borne bacillus. Lab Anim Sci 1981;31(3):297–300.

    PubMed  CAS  Google Scholar 

  38. Reilly DS, Tomassini N, Zasloff M. Expression of magainin antimicrobial peptide genes in the developing granular glands of Xenopus skin and induction by thyroid hormone. Dev Biol 1994;162(1): 123–133.

    Article  PubMed  CAS  Google Scholar 

  39. James S, Gibbs BF, Toney K, Bennett HP. Purification of antimicrobial peptides from an extract of the skin of Xenopus laevis using heparin-affinity HPLC: Characterization by ion-spray mass spectrometry. Anal Biochem 1994;217(1):84–90.

    Article  PubMed  CAS  Google Scholar 

  40. Moore KS, Bevins CL, Tomassini N, et al. A novel peptide-producing cell in Xenopus: Multinucleated gastric mucosal cell strikingly similar to the granular gland of the skin. J Histochem Cytochem 1992;40(3):367–378.

    PubMed  CAS  Google Scholar 

  41. Moore KS, Bevins CL, Brasseur MM, et al. Antimicrobial peptides in the stomach of Xenopus laevis. J Biol Chem 1991;266(29): 19851–19857.

    PubMed  CAS  Google Scholar 

  42. Soravia E, Martini G, Zasloff M. Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Lett 1988;228(2): 337–340.

    Article  PubMed  CAS  Google Scholar 

  43. Iglauer F, Willmann F, Hilken G, Huisinga E, Dimigen J. Antihelmintic treatment to eradicate cutaneous capillariasis in a colony of South African clawed frogs (Xenopus laevis). Lab Anim Sci 1997;47(5):477–482.

    PubMed  CAS  Google Scholar 

  44. Marchant JS, Parker I. Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca(2+) signalling. Br J Pharmacol 2001;132(7):1396–1410.

    Article  PubMed  CAS  Google Scholar 

  45. Kenwrick S, Amaya E, Papalopulu N. Pilot morpholino screen in Xenopus tropicalis identifies a novel gene involved in head development. Dev Dyn 2004;229(2):289–299.

    Article  PubMed  CAS  Google Scholar 

  46. Grammer TC, Khokha MK, Lane MA, Lam K, Harland RM. Identification of mutants in inbred Xenopus tropicalis. Mech Dev 2005;122(3):263–272.

    Article  PubMed  CAS  Google Scholar 

  47. Gilchrist MJ, Zorn AM, Voigt J, Smith JC, Papalopulu N, Amaya E. Defining a large set of full-length clones from a Xenopus tropicalis EST project. Dev Biol 2004;271(2):498–516.

    Article  PubMed  Google Scholar 

  48. Ishii Y, Asakawa S, Taguchi Y, Ishibashi S, Yagi T, Shimizu N. Construction of BAC library for the amphibian Xenopus tropicalis. Genes Genet Syst 2004;79(1):49–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Koustubhan, P., Sorocco, D., Levin, M.S. (2008). Establishing and Maintaining a Xenopus laevis Colony for Research Laboratories. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics