Skip to main content

Membrane Technology: Past, Present and Future

  • Chapter
  • First Online:

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 13))

Abstract

Membrane science and technology have experienced a long historical development in laboratory study before realizing their first significant industrial application in the 1960s. With nearly 50 years of rapid advancement, today, membrane-based processes enjoy numerous industrial applications and have brought great benefits to improve human life. In this chapter a general introduction is given to membrane technology in terms of the historical development, current status and future prospects. It begins with a description of the basic terms such as membrane, membrane structures, membrane classifications and membrane configurations. Membrane processes based on the different driving forces applied, the operation modes for filtration and membrane fouling are also briefly introduced. Section 2 is an overview of the historical development of membranes and membrane processes, including reverse osmosis, ultrafiltration, nanofiltration, microfiltration, gas separation, pervaporation and membrane bioreactors. Section 3 describes major applications and commercial relevance of the above-mentioned processes. In Sect. 4, future market development trends for membrane technology are indicated and critical technical challenges for further growth of the membrane industry are addressed. In addition, some promising novel applications of membrane technology are pointed out in the final section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker RW (2004) Overview of membrane science and technology. In: Membrane technology and applications, 2nd edn., Wiley, England, pp 1–14

    Google Scholar 

  2. Mulder M (1996) Basic principles of membrane technology, Kluwer, Netherlands

    Google Scholar 

  3. Brennan MB (2001) Research accelerates on advanced water-treatment technologies as their use in purification grows. Sci Technol 79(15):32–38

    Google Scholar 

  4. Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AIChE J 47(5):1077–1087

    CAS  Google Scholar 

  5. Ferry JD (1936) Ultrafilter membranes and ultrafiltration. Chem Rev 18(3):373–455

    CAS  Google Scholar 

  6. Milisic V (1986) Anti-fouling techniques in cross-flow microfiltration. Filtration & Separation 23:347–349

    CAS  Google Scholar 

  7. Henry JD (1972) Cross flow filtration. In: Li NN (ed) Recent developments in separation science, vol 2. CRC Press, Cleveland, OH, pp 205–225

    Google Scholar 

  8. Fane AG, Fell CJD (1987) A review of fouling and fouling control in ultrafiltration. Desalination 62:117–136

    CAS  Google Scholar 

  9. Wei X, Wang R, Fane AG (2006) Development of a novel electrophoresis-UV grafting method to modify PES UF membranes used for NOM removal. J Memb Sci 273:47–57

    CAS  Google Scholar 

  10. Lonsdale HK (1982) Review: the growth of membrane technology. J Memb Sci 10:81–181

    CAS  Google Scholar 

  11. Mason EA (1991) Review: from pig bladders and cracked jars to polysulfones: an historical perspective on membrane transport. J Memb Sci 60:125–145

    CAS  Google Scholar 

  12. Riley RL (1991) Reverse osmosis. In: Baker RW, Cussler EL, Eykamp W, Koros WJ, Riley RL, Strathmann H (eds) Membrane separation systems, vol. 2. Noyes Data Corporation, Park Ridge, NJ, pp 276–328

    Google Scholar 

  13. Powell JH, Guild ME (1961) Salinity problems in the arid zones: Field operation of electric membrane equipment for water desalinating. Proceedings of the Teheran Symposium, UNESCO, 363–370

    Google Scholar 

  14. Loeb S, Sourirajan S (1962) Sea water demineralization by means of an osmotic membrane. Adv Chem Ser 38:117–132

    Google Scholar 

  15. Reid C, Breton E (1959) Water and ion flow across cellulosic membranes. J Appl Polym Sci 1:133

    CAS  Google Scholar 

  16. Cadotte JE, Petersen RI (1981) Thin film reverse osmosis membranes: origin, development, and recent advances. In: Turbak AF (ed) Synthetic membranes, ACS Symposium Series 153, vol. I: Desalination. American Chemical Society, Washington, DC, pp 305–325

    Google Scholar 

  17. Cabasso I (1987) Membranes. In: Encyclopedia of Polymer Science and Engineering, 9. Wiley, New York, pp 509–579

    Google Scholar 

  18. Kesting R (1985) Synthetic polymeric membranes: a structural perspective, Wiley, New York

    Google Scholar 

  19. Strathmann H (1990) Synthetic membranes and their preparation. In: Porter M (ed) Handbook of industrial membrane technology. Noyes, Park Ridge, NJ, pp 1–60

    Google Scholar 

  20. Petersen RI, Cadotte JE (1990) Thin film composite reverse osmosis membranes. In: Porter M (ed) Handbook of industrial membrane technology. Noyes, Park Ridge, NJ, pp 307–348

    Google Scholar 

  21. Bhattacharyya D, Williams M, Ray R, McCray S (1992) Reverse osmosis. In: Ho W, Sirkar K (eds) Membrane handbook. Van Nostrand Reinhold, New York, pp 263–390

    Google Scholar 

  22. Montgomery JM (1985) Facilities design. In: Water treatment principles and design. Wiley, New York

    Google Scholar 

  23. Argo DG et al. (1979) Evaluation of membrane processes and their role in wastewater reclamation, Report to US department of Interior, Office of Water Research an Technology Vol. 1:November

    Google Scholar 

  24. Schrantz J (1973) Rock island arsenal’s zero discharge, Industrial Finishing June

    Google Scholar 

  25. Haralson RN, Jondahl KE (1983) Ultrafiltration aids in production of high quality water for electronics manufacture, A case history, Proceedings of the 44th International Water Conference, Pittsburgh, PA, October 24–26

    Google Scholar 

  26. Kohn PM (1978) Photo-processing facility achieves zero discharge. Chemical engineering, McGraw-Hill, New York, December 4

    Google Scholar 

  27. Bechhold H (1907) Kolloidstudien mit Filtrationsmethode. Z Phys Chem 60:257–318

    Google Scholar 

  28. Baker RW (2004) Ultrafiltration. In: Membrane technology and applications, 2nd edn. Wiley, England, pp 237–274

    Google Scholar 

  29. Strathmann H (1981) Membrane separation processes. J Memb Sci 9:121–189

    CAS  Google Scholar 

  30. Strathmann H (1992) Economic assessment of membrane processes. In: Li NN, Calo JM (eds) Separation and purification technology. Marcel Dekker, New York

    Google Scholar 

  31. Gekas V, Hallstrom B, TrBgardh G (1985) Food and dairy applications: the state of the art. Desalination 53:95–127

    Google Scholar 

  32. Schafer AI, Fane AG, Waite TD (eds) (2005) Nanofiltration – principles and applications. Elsevier, Oxford

    Google Scholar 

  33. Eriksson P (1988) Nanofiltration extends the range of membrane filtration. Environ Prog 7(1): 58–62

    CAS  Google Scholar 

  34. Conlon WJ (1985) Pilot field test data for prototype ultra low pressure reverse osmosis elements. Desalination 56:203–226

    CAS  Google Scholar 

  35. Kurihara M, Uemura T, Nakagawa Y, Tonomura T (1985) The thin-film composite low-pressure reverse osmosis membranes. Desalination 54:75–88

    CAS  Google Scholar 

  36. Bhattacharyya D, McCarthy JM, Grieves RB (1974) Charged membrane ultrafiltration of inorganic ion in single and multi-salt systems. AIChE J 20:1206–1212

    CAS  Google Scholar 

  37. Jitsuhara I, Kimura S (1983) Structure and properties of charged ultrafiltration membranes made of sulfonated polysulfone. J Chem Eng Jpn 16:389–393

    CAS  Google Scholar 

  38. Tsuru T, Nakao SI, Kimura S (1990) Effective charge-density and pore structure of charged ultrafiltration membranes. J Chem Eng Jpn 23:604–610

    CAS  Google Scholar 

  39. Rautenbach R, Gröschl A (1990) Separation potential of nanofiltration membranes. Desalination 77:73–84

    CAS  Google Scholar 

  40. Bhattacharyya D, Adams R, Williams M (1989) Separation of selected organic and inorganic solutes by low pressure reverse osmosis membranes. Prog Clin Biol Res 292:153–167

    CAS  PubMed  Google Scholar 

  41. Watson BM, Hornburg CD (1989) Low-energy membrane nanofiltration for removal of color organics and hardness from drinking water supplies. Desalination 72:11–22

    CAS  Google Scholar 

  42. Reddy KK, Kawakatsu T, Snape JB, Nakajima M (1996) Membrane concentration and separation of L-aspartic acid and L-phenylalanine derivates in organic solvents. Sep Sci Technol 31(8):1161–1178

    CAS  Google Scholar 

  43. Baker RW (2004) Microfiltration. In: Membrane technology and applications, 2nd edn. Wiley, England, pp 275–300

    Google Scholar 

  44. Gelman C (1965) Microporous membrane technology, Part 1: historical development and development. Anal Chem 37:29

    Google Scholar 

  45. Mitchell JK (1833) On the penetration of gases. Am J Med Sci 25:100–112

    Google Scholar 

  46. Graham T (1866) On the absorption and dialytic separation of gases by colloid septa. Part I. action of a septum of cauotchouc. Philos Mag 32:401

    Google Scholar 

  47. Graham T (1866) Philos Mag 32:503

    Google Scholar 

  48. Barrer RM (1939) Permeation, diffusion and solution of gases in organic polymers. Trans Faraday Soc 35:628–656

    CAS  Google Scholar 

  49. Barrer RM (1943) The zone of activation in rate processes. Trans Faraday Soc 39:237–241

    CAS  Google Scholar 

  50. Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Memb Sci 193:1–18

    CAS  Google Scholar 

  51. Stern SA (1994) Polymers for gas separations: the next decade. J Memb Sci 94:1–65

    Google Scholar 

  52. Henis JMS, Tripodi MK (1980) U.S. Patent 4230463

    Google Scholar 

  53. Kesting RE, Fritzsche AK (1993) Polymeric gas separation membranes. Wiley, New York

    Google Scholar 

  54. Kesting RE, Fritzsche AK, Murphy MK, Handermann AC, Cruse CA, Malon RF (1989) U.S. Patent 4,871,494

    Google Scholar 

  55. Pinnau I, Koros WJ (1990) U.S. Patent 4902422

    Google Scholar 

  56. Chung TS, Kafchinski ER, Vora RH (1995) U.S. Patent 5,413,852

    Google Scholar 

  57. Baker RW (2004) Pervaporation. In: Membrane technology and applications, 2nd edn. Wiley, England, pp 355–392

    Google Scholar 

  58. Kahlenberg L (1906) On the nature of the process of osmosis and osmotic pressure with. observations concerning dialysis. J Phys Chem 10:141–209

    CAS  Google Scholar 

  59. Kober PA (1917) Pervaporation, perstillation and percrystallization. J Am Chem Soc 39:944

    CAS  Google Scholar 

  60. Binning RC (1961) Separation of mixtures. U.S. Patent 2,981,680, April 25

    Google Scholar 

  61. Ballweg AH, Brüschke HEA, Schneider WH, Tüsel GF, Böddeker KW (1982) Pervaporation membranes. In: Proceedings of Fifth International Alcohol Fuel Technology Symposium, Auckland, New Zealand, pp. 97–106

    Google Scholar 

  62. Baker RW (1991) Pervaporation. In: Baker RW, Cussler EL, Eykamp W, Koros WJ, Riley RL, Strathmann H (eds) Membrane separation systems, vol. 2. Noyes Data Corporation, Park Ridge, NJ, pp 151–188

    Google Scholar 

  63. Feng X, Huang RYM (1997) Liquid separation by membrane pervaporation: a review. Ind Eng Chem Res 36:1048–1066

    CAS  Google Scholar 

  64. Smith CV, Gregorio DO, Talcott RM (1969) The use of ultrafiltration membrane for activated sludge separation, Proceedings of 24th Industrial Waste Conference, Purdue, IN

    Google Scholar 

  65. Hardt FW, Cleseri LS, Nemerow N, Washington D (1970) Solids separation by ultrafiltration for concentrated activated sludge. J Water Pollut Control Fed 42:2135–2148

    Google Scholar 

  66. Bemberis I, Hubbard PJ, Leonard FB (1971) Membrane sewage treatment systems – potential for complete wastewater treatment. Am Soc Agric Engineers Winter Meeting 71–878:1–28

    Google Scholar 

  67. Cheryan M, Mehaia MA (1985) Membrane bioreactors for high-performance fermentations. In: Sourirajan S, Matsura T (eds) Reverse osmosis and ultrafiltration. ACS Symposium Series Number 281. American Chemical Society, Washington, DC, pp 231–246

    Google Scholar 

  68. Kanazek RA, Gullino PM, Kohler PO, Dedrick RC (1972) Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178:65–72

    Google Scholar 

  69. Hu WS, Dodge TC (1985) Cultivation of mammalian cells in bioreactors. Biotechnol Prog 1:209–215

    CAS  PubMed  Google Scholar 

  70. Yamamoto K, Hiasa M, Mahmood T, Matsuo T (1989) Direct solid-liquid separation using hollow fiber membrane in an activated-sludge aeration tank. Water Sci Technol 21:43–54

    CAS  Google Scholar 

  71. Fane AG (2008) Chapter 10. Submerged membranes. In: Li N, Fane AG, Ho W, Matsuura T (eds) Advanced Membrane Technology and Applications. John Wiley & Sons, Inc. NY pp 239–270

    Google Scholar 

  72. Wenten IG (2002) Recent development in membrane science and its industrial applications. J Sci Technol Membrane Sci Technol 24(Suppl):1010–1024

    Google Scholar 

  73. Ye Y, Le CP, Chen V, Fane AG (2005) Evolution of fouling during crossflow filtration of model EPS solutions. J Memb Sci 264(1–2):190–199

    CAS  Google Scholar 

  74. Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AIChE J 47:1077–1087

    CAS  Google Scholar 

  75. Wangnick K (2002) 2002 IDA Worldwide Desalting Plants Inventory Report, No. 17

    Google Scholar 

  76. Fell CJD (2003) Membrane technology: past successes – futureopportunities, IMSTEC’03 International Membrane Science & Technology Conference, Sydney, November

    Google Scholar 

  77. Semiat R (2000) Desalination: present and future, International Water Resources Association. Water International 25(1):54–65

    CAS  Google Scholar 

  78. Baker RW (2004) Reverse osmosis. In: Membrane technology and applications, 2nd edn. Wiley, England, pp 191–235

    Google Scholar 

  79. Schwinge J, Neal PR, Wiley DE, Fletcher DF, Fane AG (2004) Spiral wound modules and spacers: Review and analysis. J Memb Sci 242:129–153

    CAS  Google Scholar 

  80. Wade NM (2001) Desalination plant development and cost update. Desalination 136:3–12

    CAS  Google Scholar 

  81. Leitner GF (1998) Breaking the cost barrier for seawater desalting. Desalination Water Reuse 81(1):15–20

    Google Scholar 

  82. Redondo JH, Lanzarote IV (2001) A new concept for two pass SWRO at low O&M cost using the new high flow FilmTec SW 30–380. Desalination 138:231–236

    CAS  Google Scholar 

  83. MacHarg JP (2002) The evaluation of SWRO energy recovery systems. Energy Recovery Inc, USA. www.energy-recovery.com

  84. Avlonitis SA, Kouroumbas K, Vlachakis N (2003) Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 157:151–158

    CAS  Google Scholar 

  85. Hilal N, Al-Abri M (2006) Enhanced membrane pre-treatment processes using macromolecular adsorption and coagulation in desalination plants: a review. Sep Sci Technol 41:403–453

    CAS  Google Scholar 

  86. Truby R (2001) Desalination processes enhanced by multiple membrane systems, European Conference On Desalination And The Environment, EDS Newsletter Issue 12, http://www.edsoc.com, May

  87. Voutchkov NV (2004) The ocean – a new resource for drinking water. Public Works 30–33, June

    Google Scholar 

  88. Dunivin W, Lange P, Sudak R, Wilf M (1991) Reclamation of ground water using RO technology, Proceedings of IDA World Conference on Desalination and Water Reuse, Washington, August

    Google Scholar 

  89. Overview of WATER FACTORY 21 (2001) Orange County Water District, http://www.Ocwd.com

  90. Thompson M, Powell D (2003) Case study – Kranji high grade water reclamation plant, Singapore, IMSTEC’03, Sydney, Australia, September

    Google Scholar 

  91. Guendert D Comparing MR/RO performance on secondary and tertiary effluents in reclamation/reuse applications, IDS-Water – White Paper, http://www.idswater.com/water/us/conference.html

  92. Duran FE, Dunkelberger GW (1995) A comparison of membrane softening on three South Florida groundwaters. Desalination 102(1):27–34

    CAS  Google Scholar 

  93. Tanninen J, Nyström M (2002) Separation of ions in acidic conditions using NF. Desalination 147:295–299

    CAS  Google Scholar 

  94. Schaep J, Van der Bruggen B, Uytterhoeven S, Croux R, Vandecasteele C, Wilms D, Van Houtte E, Vanlerberghe F (1998) Removal of hardness from groundwater by nanofiltration. Desalination 119:295–302

    CAS  Google Scholar 

  95. Van der Bruggen B, Everaert K, Wilms D, Vandecasteele C (2001) Application of nanofiltration for the removal of pesticides, nitrate and hardness from ground water: retention properties and economic evaluation. J Memb Sci 193(2):239–248

    CAS  Google Scholar 

  96. Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2005) Performance of commercial nanofiltration membranes in the removal of nitrate ions. Desalination 185:281–287

    Google Scholar 

  97. Kettunen R, Keskitalo P (2000) Combination of membrane technology and limestone filtration to control drinking water quality. Desalination 131:271–283

    CAS  Google Scholar 

  98. Alborzfar M, Jonsson G, Grén C (1998) Removal of natural organic matter from two types of humic ground waters by nanofiltration. Water Res 32(10):2983–2994

    CAS  Google Scholar 

  99. Fu P, Ruiz H, Lozier J, Thompson K, Spangenberg C (1995) A pilot study on groundwater natural organics removal by low-pressure membranes. Desalination 102:47–56

    CAS  Google Scholar 

  100. Gorenflo A, Veliizquez-Padrón D, Frimmel FH (2002) Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs. Desalination 151:253–265

    Google Scholar 

  101. Berg P, Hagmeyer G, Gimbel R (1997) Removal of pesticides and other micropollutants by nanofiltration. Desalination 113(2–3):205–208

    CAS  Google Scholar 

  102. Cyna B, Chagneau G, Bablon G, Tanghe N (2002) Two years of nanofiltration at the Mery-sur-Oise plant, France. Desalination 147:69–75

    CAS  Google Scholar 

  103. Ventresque C, Gisclon V, Bablon G, Chagneau G (2000) An outstanding feat of modem technology: the Mery-sur-Oise nanofiltration treatment plant (340,000 ml/day). Desalination 131:1–16

    CAS  Google Scholar 

  104. Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110

    CAS  Google Scholar 

  105. Braeken L, Van der Bruggen B, Vandecasteele C (2004) Regeneration of brewery waste water using nanofiltration. Water Res 38:3075–3082

    CAS  PubMed  Google Scholar 

  106. Voigt I, Stahn M, Wohner St, Junghans A, Rost J, Voigt W (2001) Integrated cleaning of colored waste water by ceramic NF membranes. Sep Purif Technol 25:509–512

    CAS  Google Scholar 

  107. Cuperus P, Ebert K (2002) Non-aqueous applications of NF. In: Nanofiltration – principles and applications. Elsevier, Oxford, pp 521–536

    Google Scholar 

  108. Van Gestel T, Van der Bruggen B, Buekenhoudt A, Dotremont C, Luyten J, Vandecasteele C, Maes G (2003) Surface modification of γ-Al2O3/TiO2 multilayer membranes for applications in nonpolar solvents. J Memb Sci 224:3–10

    CAS  Google Scholar 

  109. Tsuru T, Sudoh T, Yoshioka T, Asaeda M (2001) Nanofiltration in non-aqueous solutions by porous silica-zirconia membranes. J Memb Sci 185:253–261

    CAS  Google Scholar 

  110. Webar R, Chmiel H, Mavrov V (2003) Characteristics and application of new ceramic nanofiltration membrane. Desalination 157:113–125

    Google Scholar 

  111. Hassan A, Al-So M, Al-Amoudi A, Jamaluddin A, Farooque A, Rowaili A, Dalvi A, Kither N, Mustafa G, AI-Tisan I (1998) A new approach to thermal seawater desalination processes using nanofiltration membranes (Part 1). Desalination 118:35–51

    CAS  Google Scholar 

  112. Hassan AM, Farooque A, Jamaluddin A, Al-Amoudi A, Al-Sofi M, AI-Rubaian A, Kither N, Al-Tisan I, Rowaili A (2000) A demonstration plant based on the new NF-SWRO process. Desalination 131:157–171

    CAS  Google Scholar 

  113. Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M (2004) A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modeling, and atomic force microscopy. Desalination 170:281–308

    CAS  Google Scholar 

  114. Nystrom M, Kaipia L, Luque S (1995) Fouling and retention of nanofiltration membranes. J Memb Sci 98(3):249–262

    Google Scholar 

  115. Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanoflltration membranes. J Memb Sci 132:159–181

    CAS  Google Scholar 

  116. Seungkwan H, Menachem E (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Memb Sci 132(2):159–181

    Google Scholar 

  117. Schafer AI, Fane AG, Waite TD (1998) Nanofiltration of natural organic matter: removal, fouling and the influence of multivalent ions. Desalination 118(1–3):109–122

    CAS  Google Scholar 

  118. Shaalan HF (2002) Development of fouling control strategies pertinent to nanofiltration membranes. Desalination 153:125–131

    Google Scholar 

  119. Laine JM, Vial D (2000) Pierre Moulart, Status after 10 years of operation – overview of UF technology today. Desalination 131:17–25

    CAS  Google Scholar 

  120. Wohlsen T, Bates J, Gray B, Katouli M (2004) Evaluation of five membrane filtration methods for recovery of Cryptosporidium and Giardia isolates from water samples. Appl Environ Microbiol April:2318–2322

    Google Scholar 

  121. Falk CC, Karanis P, Schoenen D, Seitz HM (1998) Bench scale experiments for the evaluation of a membrane filtration method for the recovery efficiency of Giarida nad Cryptosporidium from water. Water Res 32(3):565–568

    CAS  Google Scholar 

  122. EPA (2001) Low-pressure membrane filtration for pathogen removal: application, implementation, and regulatory issues, EPA 815-C-01–001, April

    Google Scholar 

  123. Hanft S (2006) The membrane microfiltrations market, BCC Research Pub ID: WA1271760, http://www.bccresearch.com/mst/, March 1

  124. Schäfer AI, Schwicker U, Fischer MM, Fane AG, Waite TD (2000) Microfiltration of colloids and natural organic matter. J Memb Sci 171:151–172

    Google Scholar 

  125. Amy G, Cho J (1999) Interactions between natural organic matter (NOM) and membranes: rejection and fouling. Water Sci Technol 40(9):131–139

    CAS  Google Scholar 

  126. Bersillon JL (1998) Fouling analysis and control in future industrial prospects of membrane processes. Elsevier, Oxford

    Google Scholar 

  127. Fane AG, Wei X, Wang R (2006) Membrane filtration processes and fouling. In: Newcombe G, Dixon D (eds) Interface science in drinking water treatment: theory and applications. Elsevier, USA,.ISBN: 0120883805, September, pp 107–132

    Google Scholar 

  128. Pirbazari M, Badriyha BN (1992) MF-PAC for treating waters contaminated with natural and synthetic organics. J Am Water Works Assoc 84(12):95–103

    CAS  Google Scholar 

  129. Guigui C, Rouch JC, Durand-Bourlier L, Bonnelye V, Aptel P (2002) Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production. Desalination 147:95–100

    CAS  Google Scholar 

  130. Abdessemed D, Nezzal G (2002) Treatment of primary effluent by coagulation-adsorption-ultrafiltration for reuse. Desalination 152:367–373

    Google Scholar 

  131. Campos C, Mariñas BJ, Snoeyink VL, Baudin I, Laîné JM (1998) Adsorption of trace organic compounds in CRISTAIJ® processes. Desalination 117:265–271

    CAS  Google Scholar 

  132. Chang S, Waite TD, Ong PEA, Schäfer AI, Fane AG (2004) Assessment of trace estrogenic contaminants removal by coagulant addition, powdered activated carbon adsorption and powdered activated carbon/microfiltration processes. J Environ Eng 130(7):736–742

    CAS  Google Scholar 

  133. Fu J, Ji M, Wang Z, Jin L, An D (2006) A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. J Hazard Mater B 131:238–242

    CAS  Google Scholar 

  134. Lee J, Kwon T, Ramesh T, Moon I (2006) Adsorption and photocatalytic degradation of bisphenol A using TiO2 and its separation by submerged hollowfiber ultrafiltration membrane. J Environ Sci 18(1):193–200

    CAS  Google Scholar 

  135. Judd S, Judd C (2006) The MBR book: principles and applications of membrane bioreactors in water and wastewater treatment. Elsevier, Amsterdam

    Google Scholar 

  136. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    CAS  Google Scholar 

  137. Noble RD, Stern SA (1995) Membranes separation technology. Principles and applications. Elsevier, Amsterdam

    Google Scholar 

  138. Prasad R, Notaro F, Thompson DR (1994) Evolution of membranes in commercial air separation. J Memb Sci 94:225–248

    CAS  Google Scholar 

  139. Jonquières A, Clément R, Lochon P, Néel J, Dresch M, Chrétien B (2002) Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. J Memb Sci 206:87–117

    Google Scholar 

  140. Lipnizki F, Field RW, Ten PK (1999) Pervaporation-based hybrid process: a review of process design, applications and economics. J Memb Sci 153:183–210

    CAS  Google Scholar 

  141. Fell CJD (2003) Membrane technology: past successes – future opportunities, IMSTEC’03 International Membrane Science & Technology Conference, Sydney, November

    Google Scholar 

  142. Fane AG (2007) Membranes achievements, challenges and the future. Proceedings of IWA, Leading Edge Technology Conference, Singapore, June 4–6

    Google Scholar 

  143. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Memb Sci 281:70–87

    CAS  Google Scholar 

  144. Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci U S A 104:20719–20724

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Liao BQ, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research direction. Crit Rev Environ Sci Technol 36:489–530

    CAS  Google Scholar 

  146. Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    CAS  PubMed  Google Scholar 

  147. van Voorthuizen EM, Zwijnenburg A, Wessling M (2005) Nutrient removal by NF and RO membranes in a decentralized sanitation system. Water Res 39:3657–3667

    CAS  PubMed  Google Scholar 

  148. Fane AG (2004) Exploration of the potential of membrane technology for sustainable decentralized sanitation (Editorial). J Memb Sci 228:127–128

    CAS  Google Scholar 

  149. Wang LK, Wang MHS (2008) Development and applications of membrane bioreactor technologies. 2008 National Engineers Week Conference, Albany Marriott, Albany, NY. Feb. 14–15

    Google Scholar 

  150. Wang LK, Wang MHS (2008) Application of Membrane Filtration Technologies in Food Processing Industry. 2008 National Engineers Week Conference, Albany Marriott, Albany, NY. Feb. 14–15

    Google Scholar 

  151. Wang LK, Wang MHS, Suozzo T, Dixon RA, Wright TL, Sarraino S (2009) Chemical and Biochemical Technologies for Environmental Infrastructure Sustainability. 2009 National Engineers Week Conference, Albany Marriott, Albany, NY. Feb. 5–6

    Google Scholar 

  152. Levesque S, Wallis-Large C, Hemken B, Bontrager S, Kreuzwiesner S (2009) Plan ahead with MBRs. Water Environ Technol 21(1):34–37

    Google Scholar 

  153. Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental biotechnology. Humana, Totowa, NJ

    Google Scholar 

  154. Nadeeshani Nanayakkara KG, Wei Y, Zheng YM, Chen JP (2010) Food Industry wastewater treatment. In: Wang LK, Hung YT, Shammas NK (eds) Handbook of advanced industrial and hazardous wastes treatment. CRC Press, Boca Raton, FL, pp 1233–1254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fane, A.G.(., Wang, R., Jia, Y. (2011). Membrane Technology: Past, Present and Future. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics