Skip to main content

Methods to Identify and Characterize Inhibitors of Bacterial RNA Polymerase

  • Protocol
New Antibiotic Targets

Part of the book series: Methods In Molecular Medicineā„¢ ((MIMM,volume 142))

Summary

RNA polymerase is essential to the viability of bacteria in all phases of growth and development and is a proven chemotherapeutic target as the cellular target of the rifamycin class of antibiotics. However, despite the characterization of multiple different classes of natural products that selectively target bacterial RNA polymerase, and the identification of a limited number of synthetic compound inhibitors, only agents of the rifamycin class have been developed and approved for human clinical use as antibiotics. Herein we describe a scintillation proximity assay (SPA) for identifying and characterizing inhibitors of bacterial RNA polymerases and that is applicable to de novo drug discovery programs through application of automated high-throughput screening methods. In addition, we describe gel electrophoresis-based methods that are applicable to the detailed characterization of inhibitors of transcriptional initiation or elongation by bacterial RNA polymerases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mooney, R. A., Darst, S. A., and Landick, R. (2005) Sigma and RNA polymerase: An on-again, off-again relationship? Mol. Cell 20, 335ā€“345.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Adelman, K., Yuzenkova, J., La Porta, A., Zenkin, N., Lee, J., Lis, J. T., Borukhov,S., Wang, M. D., and Severinov, K. (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol. Cell 14, 753ā€“762.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Mukhopadhyay, J., Sineva, E., Knight, J., Levy, R. M., and Ebright, R. H. (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol. Cell 14, 739ā€“751.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., and Darst, S. A. (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell Microbiol, 104, 901ā€“912.

    CASĀ  Google ScholarĀ 

  5. Doundoulakis, T., Xiang, A. X., Lira, R., Agrios, K. A., Webber, S. E., Sisson,W., Aust, R. M., Shah, A. M., Showalter, R. E., Appleman, J. R., and Simonsen, K. B. (2004) Myxopyronin B analogs as inhibitors of RNA polymerase, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 14, 5667ā€“5672.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Babcock, M. J., Buttner, M. J., Keler, C. H., Clarke, B. R., Morris, R. A., Lewis,C.G., and Brawner, M. E. (1997) Characterization of the rpoC gene of Streptomyces coelicolor A3(2) and its use to develop a simple and rapid method for the purification of RNA polymerase. Gene 196, 31ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Tuske, S., Sarafianos, S. G., Wang, X., Hudson, B., Saineva, E., Mukhopadhyay,J., Birktoft, J. J., Leroy, O., Ismail, S., Clark, A. D. J., Dharia, C., Napoli, A., Laptenko, O., Lee, J., Borukhov, S., Ebright, R. H., and Arnold, E. (2005) Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. Cell 122, 541ā€“552.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Campbell, E. A., Pavlova, O., Zenkin, N., Leon, F., Irschik, H., Jansen, R., Severinov, K., and Darst, S. A. (2005) Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J. 24, 674ā€“682.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Sarubbi, E., Monti, F., Corti, E., Miele, A., and Selva, V. (2004) Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase. Eur. J. Biochem. 271, 3146ā€“3154.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Andre, E., Bastide, L., Michaux-Charachon, S., Gouby, A., Villain-Guillot, P., Latouche, J., Bouchet, A., Gualtieri, M., and Leonetti, J. P. (2006) Novel synthetic molecules targeting the bacterial RNA polymerase assembly. J. Antimicrob. Chemother. 57, 245ā€“251.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Arhin, F., Belanger, O., Ciblat, S., Dehbi, M., Delorme, D., Dietrich, E., Dixit, D., Lafontaine, Y., Lehoux, D., Liu, J., McKay, G. A., Moeck, G., Reddy, R., Rose, Y., Srikumar, R., Tanaka, K. S., Williams, D. M., Gros, P., Pelletier, J. , Parr, T. R. J., and Far, A. R. (2006) A new class of small molecule RNA polymerase inhibitors with activity against Rifampicin-resistant Staphylococcus aureus. Bioorg. Med. Chem. 14, 5812ā€“5832.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. I. Artsimovitch, C. Chu, A. S. Lynch, R. Landick, (2003) A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science. 302, 650ā€“654

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Darst, S. A. (2004)New inhibitors targeting bacterial RNA polymerase. Trends Biochem. Sci. 29, 159ā€“160.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Lee, M. S., and Morrison, D. A. (1999) Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 181, 5004ā€“5016.

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. Qi, Y., and Hulett, F. M. (1998) PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 28, 1187ā€“1197.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Gualtieri, M., Villain-Guillot, P., Latouche, J., Leonetti, J. P., and Bastide, L. (2006)Mutation in the Bacillus subtilis RNA polymerase betaā€™ subunit confers resistance to lipiarmycin. Antimicrob. Agents Chemother. 50, 401ā€“402.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Garcia-Martinez, L. F., Bilter, G. K., Wu, J., Oā€™Neill, J., Barbosa, M. S., and Kovelman, R. (2002) In vitro high-throughput screening assay for modulators of transcription. Anal. Biochem. 301, 103ā€“110.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Wu, P., Daniel-Issakani, S., LaMarco, K., and Strulovici, B. (1997) An automated high throughput filtration assay: Application to polymerase inhibitor identification. Anal. Biochem. 245, 226ā€“230.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Liu, J., Feldman, P. A., Lippy, J. S., Bobkova, E., Kurilla, M. G., and Chung,T.D. (2001) A scintillation proximity assay for RNA detection. Anal. Biochem. 289, 239ā€“245.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Zheng, W., Carroll, S. S., Inglese, J., Graves, R., Howells, L., and Strulovici, B. (2001) Miniaturization of a hepatitis C virus RNA polymerase assay using a -102 degrees C cooled CCD camera-based imaging system. Anal. Biochem. 290, 214ā€“220.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Liu, J., Feldman, P., and Chung, T. D. (2002) Real-time monitoring it in vitro transcription using molecular beacons. Anal. Biochem. 300, 40ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Marras, S. A., Gold, B., Kramer, F. R., Smith, I., and Tyagi, S. (2004) Real-time measurement of in vitro transcription. Nucleic Acids Res. 32, e72.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  23. Adhya, S. (1996) RNA polymerase and associated factors: Parts A and B; Methods in Enzymology 273 & 274, Academic Press, San Diego.

    Google ScholarĀ 

  24. Sawadogo, M., and Roeder, R. G. (1985) Factors involved in specific transcription by human RNA polymerase II: Analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82, 4394ā€“4398.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Maeda, H., Fujita, N., and Ishihama, A. (2000) Competition among seven Escherichia coli subunits: Relative binding affinities to the core RNA polymerase Nucleic Acids Res. 28, 3497ā€“3503.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

The authors wish to thank both present and past colleagues at Tularik Inc. and Cumbre Pharmaceuticals Inc. who have contributed to programs focused on the identification and characterization of inhibitors of bacterial RNA polymerases; in particular, Kelly LaMarco, Pengguang Wu, Mohan Sivaraja, Gary H. Dallmann, Daniel Roche, and Len Duncan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Lynch, A.S., Du, Q. (2008). Methods to Identify and Characterize Inhibitors of Bacterial RNA Polymerase. In: Champney, W.S. (eds) New Antibiotic Targets. Methods In Molecular Medicineā„¢, vol 142. Humana Press. https://doi.org/10.1007/978-1-59745-246-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-246-5_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-915-4

  • Online ISBN: 978-1-59745-246-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics