Skip to main content

Formation and Immunological Properties of Aldehyde-derived Protein Adducts following Alcohol Consumption

  • Protocol
Alcohol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 447))

Summary

Most ingested ethanol is eliminated from the body through oxidative metabolism in the liver. Alcohol dehydrogenase is the enzyme that is most important in the oxidation of ethanol to acetaldehyde. However, it has also been demonstrated that cytochrome P4502E1 also can contribute to this process. However, this is not the only aldehyde that is produced after chronic ethanol consumption because oxidative stress and lipid peroxidation can be induced in the liver, which results in the production of malondialdehyde and 4-hydroxy-2-nonenal. These aldehydes are highly reactive and have the ability to react with (adduct) many macromolecules to alter their structure and play a major role in the derangements of hepatic function. Therefore, the formation of these types of adducts in the liver has been proposed as key events leading to the development and/or progression of alcoholic liver disease. In this chapter, methods for the production and detection of these modified proteins will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Tsutsumi, M., Lasker, J. M., Shimizu, M., Rosman, A. S., and Lieber, C. S. (1989) The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology. 10, 437–446.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Niemela, O., Parkkila, S., Pasanen, M., Viitala, K., Villanueva, J. A., and Halsted, C. H. (1999) Induction of cytochrome P450 enzymes and generation of protein-aldehyde adducts are associated with sex-dependent sensitivity to alcohol-induced liver disease in micropigs. Hepatology. 30, 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Cederbaum, A. I. (2001) Introduction-serial review: alcohol, oxidative stress and cell injury. Free Radic. Biol. Med. 31, 1524–1516.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Tuma, D. J. (2002) Role of malondialdehyde-acetaldehyde adducts in liver injury. Free Radic. Biol. Med. 32, 303–308.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Tuma, D. J., and Sorrel, M. F. (1995) The role of acetaldehyde adducts in liver injury. in Alcoholic Liver Disease: Pathology and Pathogenesis (Hall, P., ed) pp. 89–99, Edward Arnold, London.

    Google Scholar 

  6. 6. Niemela, O. (2001) Distribution of ethanol-induced protein adducts in vivo: Relationship to tissue injury. Free Radic. Biol. Med. 31, 1533–8.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Lieber, C. S. (1988) Metabolic effects of ethanol and its interaction with other drugs, hepatotoxic agents, vitamins, and carcinogens: a 1988 update. Semin. Liver Dis. 8, 47–68.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Donohue, T. M., Jr., Tuma, D. J., and Sorrell, M. F. (1983) Acetaldehyde adducts with proteins: binding of [14C]acetaldehyde to serum albumin. Arch. Biochem. Biophys. 220, 239–246.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Israel, Y., Hurwitz, E., Niemela, O., and Arnon, R. (1986) Monoclonal and polyclonal antibodies against acetaldehyde- containing epitopes in acetaldehyde-protein adducts. Proc. Natl. Acad. Sci. U.S.A. 83, 7923–7927.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Stevens, V. J., Fantl, W. J., Newman, C. B., Sims, R. V., Cerami, A., and Peterson, C. M. (1981) Acetaldehyde adducts with hemoglobin. J. Clin. Invest. 67, 361–369.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Jennett, R. B., Sorrell, M. F., Saffari-Fard, A., Ockner, J. L., and Tuma, D. J. (1989) Preferential covalent binding of acetaldehyde to the alpha-chain of purified rat liver tubulin. Hepatology. 9, 57–62.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Tuma, D. J., Newman, M. R., Donohue, T. M., Jr., and Sorrell, M. F. (1987) Covalent binding of acetaldehyde to proteins: participation of lysine residues. Alcohol. Clin. Exp. Res. 11, 579–584.

    Article  PubMed  CAS  Google Scholar 

  13. 13. San George, R. C., and Hoberman, H. D. (1986) Reaction of acetaldehyde with hemoglobin. J. Biol. Chem. 261, 6811–21.

    PubMed  CAS  Google Scholar 

  14. 14. Fowles, L. F., Beck, E., Worrall, S., Shanley, B. C., and de Jersey, J. (1996) The formation and stability of imidazolidinone adducts from acetaldehyde and model peptides. A kinetic study with implications for protein modification in alcohol abuse. Biochem. Pharmacol. 51, 1259–67.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Esterbauer, H., Schaur, R. J., and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Palinski, W., Yla-Herttuala, S., Rosenfeld, M. E., Butler, S. W., Socher, S. A., Parthasarathy, S., Curtiss, L. K., and Witztum, J. L. (1990) Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10, 325–335.

    PubMed  CAS  Google Scholar 

  17. 17. Stadtman, E. R. (1992) Protein oxidation and aging. Science 257, 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witztum, J. L. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–24.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Haberland, M. E., Fong, D., and Cheng, L. (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241, 215–218.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Niemela, O., Parkkila, S., Yla-Herttuala, S., Halsted, C., Witztum, J. L., Lanca, A., and Israel, Y. (1994) Covalent protein adducts in the liver as a result of ethanol metabolism and lipid peroxidation. Lab. Invest. 70, 537–546.

    PubMed  CAS  Google Scholar 

  21. 21. Parkkila, S., Niemela, O., Britton, R. S., Brown, K. E., Yla-Herttuala, S., O'Neill, R., and Bacon, B. R. (1996) Vitamin E decreases hepatic levels of aldehyde-derived peroxidation products in rats with iron overload. Am. J. Physiol. 270, G376–384.

    PubMed  CAS  Google Scholar 

  22. 22. Houglum, K., Filip, M., Witztum, J. L., and Chojkier, M. (1990) Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. J. Clin. Invest. 86, 1991–1998.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Tuma, D. J., Thiele, G. M., Xu, D., Klassen, L. W., and Sorrell, M. F. (1996) Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration. Hepatology 23, 872–880.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Clot, P., Bellomo, G., Tabone, M., Arico, S., and Albano, E. (1995) Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology 108, 201–207.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Moncada, C., Torres, V., Varghese, G., Albano, E., and Israel, Y. (1994) Ethanol-derived immunoreactive species formed by free radical mechanisms. Mol. Pharmacol. 46, 786–791.

    PubMed  CAS  Google Scholar 

  26. 26. Willis, M. S., Klassen, L. W., Tuma, D. J., Sorrell, M. F., and Thiele, G. M. (2002) Adduction of soluble proteins with malondialdehyde-acetaldehyde (MAA) induces antibody production and enhances T-cell proliferation. Alcohol. Clin. Exp. Res. 26, 94–106.

    PubMed  CAS  Google Scholar 

  27. 27. Tuma, D. J., Kearley, M. L., Thiele, G. M., Worrall, S., Haver, A., Klassen, L. W., and Sorrell, M. F. (2001) Elucidation of reaction scheme describing malondialdehyde-acetaldehyde-protein adduct formation. Chem. Res. Toxicol. 14, 822–32.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Friedman, M. (2004) Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 52, 385–406.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Thiele, G. M., Tuma, D. J., J.A., M., Wegter, K. M., McDonald, T. L., and Klassen, L. W. (1998) Monoclonal and polyclonal antibodies recognizing acetaldehyde-protein adducts. Biochem. Pharmacol. 56, 1515–1523.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Habeeb, A. F. (1966) Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 14, 328–336.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Thiele, G. M., Miller, C., Miller, J. A., McDonald, T. L., Tuma, D. J., and Klassen, L. W. (1996) Polyclonal and Monoclonal antibodies to an epitope made by the combination of malondialdehyde and acetaldehyde. Clin. Exp. Res. Suppl. 20, 119A.

    Google Scholar 

  32. 32. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Groves, W. E., Davis, F. C., Jr., and Sells, B. H. (1968) Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal. Biochem. 22, 195–210.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Cominacini, L., Garbin, U., De Santis, A., Campagnola, M., Davoli, A., Pasini, A. F., Faccini, G., Pasqualini, E., Bertozzo, L., Micciolo, R., et al. (1996) Mechanisms involved in the in vitro modification of low density lipoprotein by human umbilical vein endothelial cells and copper ions. J. Lipid Media.t Cell Signal. 13, 19–33.

    Article  CAS  Google Scholar 

  35. 35. Tuma, D. J., and Sorrell, M. F. (1985) Covalent binding of acetaldehyde to hepatic proteins: role in alcoholic liver injury. Prog. Clin. Biol. Res. 183, 3–17.

    PubMed  CAS  Google Scholar 

  36. 36. Xu, D., Thiele, G. M., Kearley, M. L., Haugen, M. D., Klassen, L. W., Sorrell, M. F., and Tuma, D. J. (1997) Epitope characterization of malondialdehyde-acetaldehyde adducts using an enzyme-linked immunosorbent assay. Chem. Res. Toxicol. 10, 978–986.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Xu, D., Thiele, G. M., Beckenhauer, J. L., Klassen, L. W., Sorrell, M. F., and Tuma, D. J. (1998) Detection of circulating antibodies to malondialdehyde-acetaldehyde adducts in ethanol-fed rats. Gastroenterology 115, 686–692.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Gupta, R. K., and Siber, G. R. (1995) Method for quantitation of IgG subclass antibodies in mouse serum by enzyme-linked immunosorbent assay. J. Immunol. Methods 181, 75–81.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Mattila, P. S. (1985) Quantitation of antibody isotypes in solid-phase assays. Comparison of myeloma protein and monoisotypic antibody standards. J. Immunol. Methods 83, 43–53.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Esparza, I., and Kissel, T. (1992) Parameters affecting the immunogenicity of microencapsulated tetanus toxoid. Vaccine 10, 714–720.

    Article  PubMed  CAS  Google Scholar 

  41. 41. German-Fattal, M., Bizzini, B., and German, A. (1987) Immunity to tetanus: tetanus antitoxin and anti-BIIb in human sera. J. Biol. Stand. 15, 223–230.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Willis, M. S., Klassen, L. W., Tuma, D. J., and Thiele, G. M. (1997) Different levels of protein adduction by alcohol metabolites induce antibody and T cell responses specific to the carrier protein in a dose response manner. Hepatology 26(4, Pt. 2), 254A.

    Google Scholar 

  43. 43. Willis, M. S., Klassen, L. W., Tuma, D. J., and Thiele, G. M. (1998) T cell immunogenicity induced by malondialdehyde-acetaldehyde protein adduction without the use of adjuvant. Hepatology 28, 639A-639A.

    Article  Google Scholar 

  44. 44. Kohler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Monte S. Willis, Michael J. Duryee, Karen C. Easterling, Carlos D. Hunter, and Bartlett C. Hamilton III for their valuable technical assistance. Also, we would like to thank all of those who have worked on various aspects of these procedures throughout the years, and are too numerous to mention individually. This work has been supported by The Alcohol Center at the Omaha VA Medical Center, Department of Veterans Affairs; VA Merit Reviews, Department of Veterans Affairs; and NIH/NIAAA grants, R01 AA10435 (to Thiele), R01 AA07818 (to Klassen), R01 AA04691 (to Tuma).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thiele, G.M., Klassen, L.W., Tuma, D.J. (2008). Formation and Immunological Properties of Aldehyde-derived Protein Adducts following Alcohol Consumption. In: Nagy, L.E. (eds) Alcohol. Methods in Molecular Biology™, vol 447. Humana Press. https://doi.org/10.1007/978-1-59745-242-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-242-7_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-906-2

  • Online ISBN: 978-1-59745-242-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics