Skip to main content

The Emergence of 5-HT2B Receptors as Targets to Avoid in Designing and Refining Pharmaceuticals

  • Chapter
The Serotonin Receptors

Part of the book series: The Receptors ((REC))

  • 1939 Accesses

Abstract

The long-term use of certain drugs, such as fenfluramine, dihydroergotamine, and pergolide, has been associated with an increased risk for valvular heart disease (VHD) and pulmonary hypertension (PH). Recent investigations have implicated the 5-hydroxytryptamine2B (5-HT2B) receptor in the pathogenesis of VHD and PH. Specifically, the activation of 5-HT2B receptors by VHD- and PH-associated drugs leads to proliferative lesions in the valves of the heart and the pulmonary arterial wall, respectively. For heart valve interstitial cells in vitro, mitotic responses to fenfluramine and its metabolite norfenfluramine have been demonstrated and shown to be mediated almost exclusively by 5-HT2B receptor activation. Furthermore, the activity at recombinant 5-HT2B receptors appears sufficient to predict the ability of a drug to induce mitosis in heart valve interstitial cells in vitro and, likely, VHD-inducing potential in humans.

In mice, hypoxia-induced smooth muscle cell proliferation that gives rise to pulmonary hypertension has been shown genetically and pharmacologically to require 5-HT2B receptors. Additionally, hypoxia-induced pulmonary artery remodeling in mice is significantly exacerbated by prolonged treatment with the PH-associated drug fenfluramine, likely the result of high plasma levels of the metabolite norfenfluramine, a more potent and efficacious 5-HT2B receptor agonist than the parent compound. Thus, drug-induced PH and VHD both seem to result from activation ofmitogenic 5-HT2B receptors by the parent compound and/or an active metabolite. As such, current and novel pharmaceuticals and their metabolites that are 5-HT2B receptor agonists should not be used in humans because of their likelihood to induce fenfluraminelike VHD and PH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Diener HC. A review of current treatments for migraine. Eur Neurol 1994;34(Suppl2):18–25.

    Article  Google Scholar 

  2. Roth BL, Craigo SC, Choudhary MS, et al. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 1994;268:1403–1410.

    PubMed  CAS  Google Scholar 

  3. Lindner MD, Hodges DBJr, Hogan JB, et al. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning. J Pharmacol Exp Ther 2003;307:682–691.

    Article  PubMed  CAS  Google Scholar 

  4. Woolley ML, Bentley JC, Sleight AJ, Marsden CA, Fone KC. A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology 2001;41:210–219.

    Article  PubMed  CAS  Google Scholar 

  5. Rogers DC, Hagan JJ. 5-HT6 receptor antagonists enhance retention of a water maze task in the rat. Psychopharmacology (Berl) 2001;158:114–119.

    Article  CAS  Google Scholar 

  6. Leng A, Ouagazzal A, Feldon J, Higgins GA. Effect of the 5-HT6 receptor antagonists Ro04-6790 and Ro65-7199 on latent inhibition and prepulse inhibition in the rat: comparison to clozapine. Pharmacol Biochem Behav 2003;75:281–288.

    Article  PubMed  CAS  Google Scholar 

  7. Liebmann C. G Protein-coupled receptors and their signaling pathways: classical therapeutical targets susceptible to novel therapeutic concepts. Curr Pharm Des 2004;10:1937–1958.

    Article  PubMed  CAS  Google Scholar 

  8. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004;3:353–359.

    Article  PubMed  CAS  Google Scholar 

  9. Van Gaal LF, Vansant GA, Steijaert MC, De Leeuw IH. Effects of dexfenfluramine on resting metabolic rate and thermogenesis in premenopausal obese women during therapeutic weight reduction. Metabolism 1995;44:42–45.

    Article  PubMed  Google Scholar 

  10. Guy-Grand B, Apfelbaum M, Crepaldi G, Gries A, Lefebvre P, Turner P. International trial of long-term dexfenfluramine in obesity. Lancet 1989;2:1142–1145.

    Article  PubMed  CAS  Google Scholar 

  11. Ranquin R, Brems HM. Metabolic effects and anti-obesity action of fenfluramine in prolonged-acting form. Curr Med Res Opin 1977;5:341–346.

    PubMed  Google Scholar 

  12. Stunkard AJ, Craighead LW, O’Brien R. Controlled trial of behaviour therapy, pharmacotherapy, and their combination in the treatment of obesity. Lancet 1980;2:1045–1047.

    Article  PubMed  CAS  Google Scholar 

  13. Weintraub M, Sriwatanakul K, Sundaresan PR, Weis OF, Dorn M. Extendedrelease fenfluramine: patient acceptance and efficacy of evening dosing. Clin Pharmacol Ther 1983;33:621–627.

    PubMed  CAS  Google Scholar 

  14. Weintraub M, Hasday JD, Mushlin AI, Lockwood DH. A double-blind clinical trial in weight control. Use of fenfluramine and phentermine alone and in combination. Arch Intern Med 1984;144:1143–1148.

    Article  PubMed  CAS  Google Scholar 

  15. Ditschuneit HH, Flechtner-Mors M, Adler G. The effects of dexfenfluramine on weight loss and cardiovascular risk factors in female patients with upper and lower body obesity. J Cardiovasc Risk 1996;3:397–403.

    Article  PubMed  CAS  Google Scholar 

  16. Mathus-Vliegen EM. Prolonged surveillance of dexfenfluramine in severe obesity. Neth J Med 1993;43:246–253.

    PubMed  CAS  Google Scholar 

  17. Pedrinola F, Sztejnsznajd C, Lima N, Halpern A, Medeiros-Neto G. The addition of dexfenfluramine to fluoxetine in the treatment of obesity: a randomized clinical trial. Obes Res 1996;4:549–554.

    PubMed  CAS  Google Scholar 

  18. Finer N. Body weight evolution during dexfenfluramine treatment after initial weight control. Int J Obes Relat Metab Disord 1992;16(Suppl 3):S25–S29.

    PubMed  Google Scholar 

  19. O’Connor HT, Richman RM, Steinbeck KS, Caterson ID. Dexfenfluramine treatment of obesity: a double blind trial with post trial follow up. Int J Obes Relat Metab Disord 1995;19:181–189.

    PubMed  CAS  Google Scholar 

  20. Breum L, Moller SE, Andersen T, Astrup A. Long-term effect of dexfenfluramine on amino acid profiles and food selection in obese patients during weight loss. Int J Obes Relat Metab Disord 1996;20:147–153.

    PubMed  CAS  Google Scholar 

  21. Finer N, Craddock D, Lavielle R, Keen H. Effect of 6 months therapy with dexfenfluramine in obese patients: studies in the United Kingdom. Clin Neuro-pharmacol 1988;11(Suppl 1):S179–186.

    Google Scholar 

  22. Chow CC, Ko GT, Tsang LW, Yeung VT, Chan JC, Cockram CS. Dexfenfluramine in obese Chinese NIDDM patients. A placebo-controlled investigation of the effects on body weight, glycemic control, and cardiovascular risk factors. Diabetes Care 1997;20:1122–1127.

    Article  PubMed  CAS  Google Scholar 

  23. Stewart GO, Stein GR, Davis TM, Findlater P. Dexfenfluramine in type II diabetes: effect on weight and diabetes control. Med J Aust 1993;158:167–169.

    PubMed  CAS  Google Scholar 

  24. Ditschuneit HH, Flechtner-Mors M, Adler G. The effect of withdrawal and re-introduction of dexfenfluramine in the treatment of obesity. Int J Obes Relat Metab Disord 1996;20:280–282.

    PubMed  CAS  Google Scholar 

  25. Andersson B, Zimmermann ME, Hedner T, Bjorntorp P. Haemodynamic, metabolic and endocrine effects of short-term dexfenfluramine treatment in young, obese women. Eur J Clin Pharmacol 1991;40:249–254.

    Article  PubMed  CAS  Google Scholar 

  26. Ditschuneit HH, Flechtner-Mors M, Dolderer M, Fulda U, Ditschuneit H. Endocrine and metabolic effects of dexfenfluramine in patients with android obesity. Horm Metab Res 1993;25:573–578.

    PubMed  CAS  Google Scholar 

  27. Blouin AG, Blouin JH, Perez EL, Bushnik T, Zuro C, Mulder E. Treatment of bulimia with fenfluramine and desipramine. J Clin Psychopharmacol 1988;8:261–269.

    Article  PubMed  CAS  Google Scholar 

  28. Russell GF, Checkley SA, Feldman J, Eisler I. A controlled trial of d-fenflur-amine in bulimia nervosa. Clin Neuropharmacol 1988;11(Suppl 1):S146–S159.

    PubMed  Google Scholar 

  29. Selikowitz M, Sunman J, Pendergast A, Wright S. Fenfluramine in Prader-Willi syndrome: a double blind, placebo controlled trial. Arch Dis Child 1990;65:112–114.

    PubMed  CAS  Google Scholar 

  30. Dexfenfluramine influences dietary compliance and eating behaviors of obese subjects. Nutr Rev 1994;52:65–68.

    Google Scholar 

  31. Munro JF, MacCuish AC, Wilson EM, Duncan LJ. Comparison of continuous and intermittent anorectic therapy in obesity. Br Med J 1968;1:352–354.

    PubMed  CAS  Google Scholar 

  32. Pinder RM, Brogden RN, Sawyer PR, Speight TM, Avery GS. Fenfluramine: a review of its pharmacological properties and therapeutic efficacy in obesity. Drugs 1975;10:241–323.

    Article  PubMed  CAS  Google Scholar 

  33. Weintraub M, Sundaresan PR, Cox C. Long-term weight control study. VI. Individual participant response patterns. Clin Pharmacol Ther 1992;51:619–633.

    PubMed  CAS  Google Scholar 

  34. Groenewoud G, Schall R, Hundt HK, Muller FO, van Dyk M. Steady-state pharmacokinetics of phentermine extended-release capsules. Int J Clin Pharmacol Ther Toxicol 1993;31:368–372.

    PubMed  CAS  Google Scholar 

  35. Weintraub M, Sundaresan PR, Madan M, et al. Long-term weight control study. I (weeks 0 to 34). The enhancement of behavior modification, caloric restriction, and exercise by fenfluramine plus phentermine versus placebo. Clin Pharmacol Ther 1992;51:586–594.

    PubMed  CAS  Google Scholar 

  36. Weintraub M, Sundaresan PR, Schuster B, et al. Long-term weight control study. II (weeks 34 to 104). An open-label study of continuous fenfluramine plus phentermine versus targeted intermittent medication as adjuncts to behavior modification, caloric restriction, and exercise. Clin Pharmacol Ther 1992;51:595–601.

    PubMed  CAS  Google Scholar 

  37. Kolata G. 2 popular diet pills linked to problems with heart valves. The New York Times, p. 1.

    Google Scholar 

  38. Connolly HM, Crary JL, McGoon MD, et al. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 1997;337:581–588.

    Article  PubMed  CAS  Google Scholar 

  39. Steffee CH, Singh HK, Chitwood WR. Histologic changes in three explanted native cardiac valves following use of fenfluramines. Cardiovasc Pathol 1999;8:245–253.

    Article  PubMed  CAS  Google Scholar 

  40. Cardiac valvulopathy associated with exposure to fenfluramine or dexfenfluramine: U.S. Department of Health and Human Services interim public health recommendations, November 1997. Morb Mortal Wkly Rep 1997;46:1061–1066.

    Google Scholar 

  41. Singh JP, Evans JC, Levy D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol 1999;83:897–902.

    Article  PubMed  CAS  Google Scholar 

  42. Loke YK, Derry S, Pritchard-Copley A. Appetite suppressants and valvular heart disease: a systematic review. BMC Clin Pharmacol 2002;2:6.

    Article  PubMed  Google Scholar 

  43. Burger AJ, Sherman HB, Charlamb MJ, et al. Low prevalence of valvular heart disease in 226 phentermine-fenfluramine protocol subjects prospectively followed for up to 30 months. J Am Coll Cardiol 1999;34:1153–1158.

    Article  PubMed  CAS  Google Scholar 

  44. Gardin JM, Schumacher D, Constantine G, Davis KD, Leung C, Reid CL. Valvular abnormalities and cardiovascular status following exposure to dexfenfluramine or phentermine/fenfluramine. JAMA 2000;283:1703–1709.

    Article  PubMed  CAS  Google Scholar 

  45. Jollis JG, Landolfo CK, Kisslo J, Constantine GD, Davis KD, Ryan T. Fenfluramine and phentermine and cardiovascular findings: effect of treatment duration on prevalence of valve abnormalities. Circulation 2000;101:2071–2077.

    PubMed  CAS  Google Scholar 

  46. Khan MA, Herzog CA, St Peter JV, et al. The prevalence of cardiac valvular insufficiency assessed by transthoracic echocardiography in obese patients treated with appetite-suppressant drugs. N Engl J Med 1998;339:713–718.

    Article  PubMed  CAS  Google Scholar 

  47. Weissman NJ, Tighe JFJr, Gottdiener JS, Gwynne JT. An assessment of heartvalve abnormalities in obese patients taking dexfenfluramine, sustained-release dexfenfluramine, or placebo. Sustained-Release Dexfenfluramine Study Group. N Engl J Med 1998;339:725–732.

    Article  PubMed  CAS  Google Scholar 

  48. Brenot F, Herve P, Petitpretz P, Parent F, Duroux P, Simonneau G. Primary pulmonary hypertension and fenfluramine use. Br Heart J 1993;70:537–541.

    Article  PubMed  CAS  Google Scholar 

  49. Abenhaim L, Moride Y, Brenot F, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 1996;335:609–616.

    Article  PubMed  CAS  Google Scholar 

  50. Tomita T, Zhao Q. Autopsy findings of heart and lungs in a patient with primary pulmonary hypertension associated with use of fenfluramine and phentermine. Chest 2002;121:649–652.

    Article  PubMed  Google Scholar 

  51. Mark EJ, Patalas ED, Chang HT, Evans RJ, Kessler SC. Fatal pulmonary hypertension associated with short-term use of fenfluramine and phentermine. N Engl J Med 1997;337:602–606.

    Article  PubMed  CAS  Google Scholar 

  52. Strother J, Fedullo P, Yi ES, Masliah E. Complex vascular lesions at autopsy in a patient with phentermine-fenfluramine use and rapidly progressing pulmonary hypertension. Arch Pathol Lab Med 1999;123:539–540.

    PubMed  CAS  Google Scholar 

  53. Hendrikx M, Van Dorpe J, Flameng W, Daenen W. Aortic and mitral valve disease induced by ergotamine therapy for migraine: a case report and review of the literature. J Heart Valve Dis 1996;5:235–237.

    PubMed  CAS  Google Scholar 

  54. Hauck AJ, Edwards WD, Danielson GK, Mullany CJ, Bresnahan DR. Mitral and aortic valve disease associated with ergotamine therapy for migraine. Report of two cases and review of literature. Arch Pathol Lab Med 1990;114:62–64.

    PubMed  CAS  Google Scholar 

  55. Serratrice J, Disdier P, Habib G, Viallet F, Weiller PJ. Fibrotic valvular heart disease subsequent to bromocriptine treatment. Cardiol Rev 2002;10:334–336.

    Article  PubMed  Google Scholar 

  56. Pritchett AM, Morrison JF, Edwards WD, Schaff HV, Connolly HM, Espinosa RE. Valvular heart disease in patients taking pergolide. Mayo Clin Proc 2002;77:1280–1286.

    Article  PubMed  Google Scholar 

  57. Bana DS, MacNeal PS, LeCompte PM, Shah Y, Graham JR. Cardiac murmurs and endocardial fibrosis associated with methysergide therapy. Am Heart J 1974;88:640–655.

    Article  PubMed  CAS  Google Scholar 

  58. Fuxe K, Farnebo LO, Hamberger B, Ogren SO. On the in vivo and in vitro actions of fenfluramine and its derivatives on central monoamine neurons, especially 5-hydroxytryptamine neurons, and their relation to the anorectic activity of fenfluramine. Postgrad Med J 1975;51(Suppl 1):35–45.

    PubMed  Google Scholar 

  59. Garattini S, Buczko W, Jori A, Samanin R. The mechanism of action of fenfluramine. Postgrad Med J 1975;51(Suppl 1):27–35.

    PubMed  Google Scholar 

  60. Carboni E, Di Chiara G. Serotonin release estimated by transcortical dialysis in freely-moving rats. Neuroscience 1989;32:637–645.

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz D, Hernandez L, Hoebel BG. Fenfluramine administered systemically or locally increases extracellular serotonin in the lateral hypothalamus as measured by microdialysis. Brain Res 1989;482:261–270.

    Article  PubMed  CAS  Google Scholar 

  62. Series HG, Cowen PJ, Sharp T. p-Chloroamphetamine (PCA), 3,4-methylene-dioxy-methamphetamine (MDMA) and d-fenfluramine pretreatment attenuates d-fenfluramine-evoked release of 5-HT in vivo. Psychopharmacology (Berl) 1994;116:508–514.

    Article  CAS  Google Scholar 

  63. Fishman AP. Aminorex to fen/phen: an epidemic foretold. Circulation 1999;99:156–161.

    PubMed  CAS  Google Scholar 

  64. Celada P, Perez J, Alvarez E, Artigas F. Monoamine oxidase inhibitors phenelzine and brofaromine increase plasma serotonin and decrease 5-hydroxyindoleacetic acid in patients with major depression: relationship to clinical improvement. J Clin Psychopharmacol 1992;12:309–315.

    Article  PubMed  CAS  Google Scholar 

  65. Celada P, Sarrias MJ, Artigas F. Serotonin and 5-hydroxyindoleacetic acid in plasma. Potential use as peripheral measures of MAO-A activity. J Neural Transm 1990;32(Suppl 1):149–154.

    CAS  Google Scholar 

  66. Artigas F, Sarrias MJ, Martinez E, Gelpi E, Alvarez E, Udina C. Increased plasma free serotonin but unchanged platelet serotonin in bipolar patients treated chronically with lithium. Psychopharmacology (Berl) 1989;99:328–332.

    Article  CAS  Google Scholar 

  67. Raleigh MJ, Brammer GL, Ritvo ER, Geller E, McGuire MT, Yuwiler A. Effects of chronic fenfluramine on blood serotonin, cerebrospinal fluid metabolites, and behavior in monkeys. Psychopharmacology (Berl) 1986;90:503–508.

    Article  CAS  Google Scholar 

  68. Celada P, Martin F, Artigas F. Effects of chronic treatment with dexfenfluramine on serotonin in rat blood, brain and lung tissue. Life Sci 1994;55:1237–1243.

    Article  PubMed  CAS  Google Scholar 

  69. Redmon B, Raatz S, Bantle JP. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 1997;337:1773–1774;author reply 1775.

    PubMed  CAS  Google Scholar 

  70. Rothman RB, Redmon JB, Raatz SK, et al. Chronic treatment with phentermine combined with fenfluramine lowers plasma serotonin. Am J Cardiol 2000;85:913–915 [Erratum in Am J Cardiol 2000;15:1511].

    Article  PubMed  CAS  Google Scholar 

  71. Rothman RB, Baumann MH, Savage JE, et al. Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 2000;102:2836–2841.

    PubMed  CAS  Google Scholar 

  72. Fitzgerald LW, Burn TC, Brown BS, et al. Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 2000;57:75–81.

    PubMed  CAS  Google Scholar 

  73. Setola V, Hufeisen SJ, Grande-Allen KJ, et al. 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 2003;63:1223–1229.

    Article  PubMed  CAS  Google Scholar 

  74. Launay JM, Herve P, Peoc’h K, et al. Function of the serotonin 5-hydroxy-tryptamine 2B receptor in pulmonary hypertension. Nat Med 2002;8:1129–1135.

    Article  PubMed  CAS  Google Scholar 

  75. Tucker A, Rhodes J. Role of vascular smooth muscle in the development of high altitude pulmonary hypertension: an interspecies evaluation. High Alt Med Biol 2001;2:173–189.

    Article  PubMed  CAS  Google Scholar 

  76. Loscalzo J. Genetic clues to the cause of primary pulmonary hypertension. N Engl J Med 2001;345:367–371.

    Article  PubMed  CAS  Google Scholar 

  77. Bhasin N, Kernick E, Luo X, Seidel HE, Weiss ER, Lauder JM. Differential regulation of chondrogenic differentiation by the serotonin2B receptor and retinoic acid in the embryonic mouse hindlimb. Dev Dyn 2004;230:201–209.

    Article  PubMed  CAS  Google Scholar 

  78. Fiorica-Howells E, Maroteaux L, Gershon MD. Serotonin and the 5-HT(2B) receptor in the development of enteric neurons. J Neurosci 2000;20:294–305.

    PubMed  CAS  Google Scholar 

  79. Nebigil CG, Etienne N, Messaddeq N, Maroteaux L. Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling. FASEB J 2003;17:1373–1375.

    PubMed  CAS  Google Scholar 

  80. Nebigil CG, Launay JM, Hickel P, Tournois C, Maroteaux L. 5-Hydroxy-tryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci USA 2000;97:2591–2596.

    Article  PubMed  CAS  Google Scholar 

  81. Launay JM, Birraux G, Bondoux D, et al. Ras involvement in signal transduction by the serotonin 5-HT2B receptor. J Biol Chem 1996;271:3141–3147.

    Article  PubMed  CAS  Google Scholar 

  82. Nebigil CG, Choi DS, Dierich A, et al. Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 2000;97:9508–9513.

    Article  PubMed  CAS  Google Scholar 

  83. Choi DS, Ward SJ, Messaddeq N, Launay JM, Maroteaux L. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 1997;124:1745–1755.

    PubMed  CAS  Google Scholar 

  84. Setola V, Dukat M, Glennon RA, Roth BL. Molecular determinants for the interaction of the valvulopathic anorexigen norfenfluramine with the 5-HT2B receptor. Mol Pharmacol 2005;68(1):20–33.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Setola, V., Roth, B.L. (2006). The Emergence of 5-HT2B Receptors as Targets to Avoid in Designing and Refining Pharmaceuticals. In: Roth, B.L. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-080-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-080-5_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-568-2

  • Online ISBN: 978-1-59745-080-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics