Skip to main content

Group I Metabotropic Glutamate Receptors (mGlu1 and mGlu5)

  • Chapter
The Glutamate Receptors

Part of the book series: The Receptors ((REC))

Summary

The metabotropic glutamate (mGlu) receptors are a family of eight G protein-coupled receptors that modulate cell excitability and synaptic transmission in the nervous system. Group I mGlu receptors are generally coupled to Gq stimulation of phospholipase C and the release of intracellular calcium. The physiologic effects of group I mGlu receptors in the brain are diverse and highlight the importance of these receptors in normal brain function. This chapter describes what is known about the structure, signaling, regulation, and function of the group I mGlu receptors in the nervous system, as well as the roles of these receptors in disease. It also discusses emerging roles in both central and peripheral nonneural tissues. Because the group I mGlu receptors modulate rather than mediate excitatory neurotransmission, they are exciting targets for new therapeutic strategies. However, further understanding of the complex regulatory mechanisms associated with these receptors is required to design more beneficial therapies for neurodegenerative and neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37:205–237.

    PubMed  CAS  Google Scholar 

  2. Nicoletti F, Meek JL, Iadarola MJ, et al. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem 1986;46(1):40–46.

    PubMed  CAS  Google Scholar 

  3. Nicoletti F, Wroblewski JT, Novelli A, et al. The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 1986;6(7):1905–1911.

    PubMed  CAS  Google Scholar 

  4. Houamed KM, Kuijper JL, Gilbert TL, et al. Cloning, expression, and gene structure of a G protein–coupled glutamate receptor from rat brain. Science 1991;252(5010):1318–1321.

    PubMed  CAS  Google Scholar 

  5. Masu M, Tanabe Y, Tsuchida K, et al. Sequence and expression of a metabotropic glutamate receptor. Nature 1991;349(6312):760–765.

    PubMed  CAS  Google Scholar 

  6. Abe T, Sugihara H, Nawa H, et al. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 1992;267(19):13361–13368.

    PubMed  CAS  Google Scholar 

  7. Hinrichs AS, Karolchik D, Baertsch R, et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 2006;34(Database issue):D590–D598.

    Google Scholar 

  8. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res 2002;12(4): 656–664.

    PubMed  CAS  Google Scholar 

  9. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005;33(Database issue):D501–D504.

    Google Scholar 

  10. Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and func\-tions. Neuropharmacology 1995;34(1):1–26.

    PubMed  CAS  Google Scholar 

  11. Tanabe Y, Masu M, Ishii T, et al. A family of metabotropic glutamate receptors. Neuron 1992;8(1):169–179.

    PubMed  CAS  Google Scholar 

  12. Pin JP, Waeber C, Prezeau L, et al. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci USA 1992;89(21):10331–10335.

    PubMed  CAS  Google Scholar 

  13. Mary S, Stephan D, Gomeza J, et al. The rat mGlu1d receptor splice variant shares functional properties with the other short isoforms of mGlu1 receptor. Eur J Pharmacol 1997;335(1):65–72.

    PubMed  CAS  Google Scholar 

  14. Soloviev MM, Ciruela F, Chan WY, v. Identification, cloning and analysis of expression of a new alternatively spliced form of the metabotropic glutamate receptor mGluR1 mRNA1. Biochim Biophys Acta 1999;1446(1–2):161–166.

    PubMed  CAS  Google Scholar 

  15. Minakami R, Katsuki F, Sugiyama H. A variant of metabotropic glutamate receptor subtype 5: an evolutionally conserved insertion with no termination codon. Biochem Biophys Res Commun 1993;194(2):622–627.

    PubMed  CAS  Google Scholar 

  16. Malherbe P, Kew JN, Richards JG, et al. Identification and characterization of a novel splice variant of the metabotropic glutamate receptor 5 gene in human hippocampus and cerebellum. Brain Res Mol Brain Res 2002;109(1–2):168–178.

    PubMed  CAS  Google Scholar 

  17. Wheeler DL, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2006;34(Database issue):D173–D180.

    Google Scholar 

  18. Bhave G, Nadin BM, Brasier DJ, et al. Membrane topology of a metabotropic glutamate receptor. J Biol Chem 2003;278(32):30294–30301.

    PubMed  CAS  Google Scholar 

  19. O’Hara PJ, Sheppard PO, Thogersen H, et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993;11(1):41–52.

    PubMed  CAS  Google Scholar 

  20. Kunishima N, Shimada Y, Tsuji Y, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000;407(6807):971–977.

    PubMed  CAS  Google Scholar 

  21. Peltekova V, Han G, Soleymanlou N, et al. Constraints on proper folding of the amino terminal domains of group III metabotropic glutamate receptors. Brain Res Mol Brain Res 2000;76(1):180–190.

    PubMed  CAS  Google Scholar 

  22. Marchler-Bauer A, Anderson JB, Cherukuri PF, et al. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 2005;33(Database issue):D192–D196.

    Google Scholar 

  23. Romano C, Yang WL, O’Malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 1996;271(45):28612–28616.

    PubMed  CAS  Google Scholar 

  24. Tsuji Y, Shimada Y, Takeshita T, et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J Biol Chem 2000;275(36):28144–28151.

    PubMed  CAS  Google Scholar 

  25. Romano C, Miller JK, Hyrc K, et al. Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. Mol Pharmacol 2001;59(1):46–53.

    PubMed  CAS  Google Scholar 

  26. Suzuki Y, Moriyoshi E, Tsuchiya D, et al. Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor subtype 1. J Biol Chem 2004;279(34):35526–35534.

    PubMed  CAS  Google Scholar 

  27. Tateyama M, Abe H, Nakata H, et al. Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1alpha. Nat Struct Mol Biol 2004;11(7):637–642.

    PubMed  CAS  Google Scholar 

  28. Abe H, Tateyama M, Kubo Y. Functional identification of Gd3+ binding site of metabotropic glutamate receptor 1alpha. FEBS Lett 2003;545(2–3):233–238.

    PubMed  CAS  Google Scholar 

  29. Tateyama M, Kubo Y. Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1alpha. Proc Natl Acad Sci USA 2006;103(4):1124–1128.

    PubMed  CAS  Google Scholar 

  30. Gama L, Wilt SG, Breitwieser GE. Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem 2001;276(42):39053–39059.

    PubMed  CAS  Google Scholar 

  31. Brown EM, Chattopadhyay N, Vassilev PM, et al. The calcium-sensing receptor (CaR) permits Ca2+ to function as a versatile extracellular first messenger. Recent Prog Horm Res 1998;53:257–280; discussion, 80–81.

    PubMed  CAS  Google Scholar 

  32. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993;366(6455):575–580.

    PubMed  CAS  Google Scholar 

  33. Shigemoto R, Nakanishi S, Mizuno N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 1992;322(1):121–135.

    PubMed  CAS  Google Scholar 

  34. Martin LJ, Blackstone CD, Huganir RL, et al. Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 1992;9(2):259–270.

    PubMed  CAS  Google Scholar 

  35. Romano C, Sesma MA, McDonald CT, et al. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 1995;355(3):455–469.

    PubMed  CAS  Google Scholar 

  36. Shigemoto R, Nomura S, Ohishi H, et al. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 1993;163(1):53–57.

    PubMed  CAS  Google Scholar 

  37. Hartveit E, Brandstatter JH, Enz R, et al. Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci 1995;7(7):1472–1483.

    PubMed  CAS  Google Scholar 

  38. Kreimborg KM, Lester ML, Medler KF, et al. Group I metabotropic glutamate receptors are expressed in the chicken retina and by cultured retinal amacrine cells. J Neurochem 2001;77(2):452–465.

    PubMed  CAS  Google Scholar 

  39. Dong J, Cioffi GA, Saugstad JA. Metabotropic glutamate receptors in retinal ganglion cells: expression and role in excitotoxic cell death. In preparation; 2006.

    Google Scholar 

  40. Jeffery G, Sharp C, Malitschek B, et al. Cellular localisation of metabotropic glutamate receptors in the mammalian optic nerve: a mechanism for axon–glia communication. Brain Res 1996;741(1–2):75–81.

    PubMed  CAS  Google Scholar 

  41. Valerio A, Rizzonelli P, Paterlini M, et al. mGluR5 metabotropic glutamate receptor distribution in rat and human spinal cord: a developmental study. Neurosci Res 1997;28(1):49–57.

    PubMed  CAS  Google Scholar 

  42. Shigemoto R, Kinoshita A, Wada E, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 1997;17(19):7503–7522.

    PubMed  CAS  Google Scholar 

  43. Paquet M, Smith Y. Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci 2003;23(20):7659–7669.

    PubMed  CAS  Google Scholar 

  44. Croucher MJ, Thomas LS, Ahmadi H, et al. Endogenous sulphur-containing amino acids: potent agonists at presynaptic metabotropic glutamate autoreceptors in the rat central nervous system. Br J Pharmacol 2001;133(6):815–824.

    PubMed  CAS  Google Scholar 

  45. Gereau RWt, Conn PJ. Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1. J Neurosci 1995;15(10):6879–6889.

    Google Scholar 

  46. van Hooft JA, Giuffrida R, Blatow M, et al. Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons. J Neurosci 2000;20(10):3544–3551.

    PubMed  Google Scholar 

  47. van den Pol AN, Romano C, Ghosh P. Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J Comp Neurol 1995;362(1):134–150.

    PubMed  Google Scholar 

  48. Karim F, Wang CC, Gereau RW. Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 2001;21(11):3771–3779.

    PubMed  CAS  Google Scholar 

  49. Cai Z, Schools GP, Kimelberg HK. Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia 2000;29(1):70–80.

    PubMed  CAS  Google Scholar 

  50. Colonnier M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 1968;9(2):268–287.

    PubMed  CAS  Google Scholar 

  51. Gray EG. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 1959;93:420–433.

    PubMed  CAS  Google Scholar 

  52. Baude A, Nusser Z, Roberts JD, et al. The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 1993;11(4):771–787.

    PubMed  CAS  Google Scholar 

  53. Lujan R, Nusser Z, Roberts JD, et al. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 1996;8(7):1488–1500.

    PubMed  CAS  Google Scholar 

  54. O’Malley KL, Jong YJ, Gonchar Y, et al. Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons. J Biol Chem 2003;278(30):28210–28219.

    PubMed  CAS  Google Scholar 

  55. Biber K, Laurie DJ, Berthele A, et al. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 1999;72(4):1671–1680.

    PubMed  CAS  Google Scholar 

  56. Bence K, Ma W, Kozasa T, et al. Direct stimulation of Bruton’s tyrosine kinase by G(q)-protein alpha-subunit. Nature 1997;389(6648):296–299.

    PubMed  CAS  Google Scholar 

  57. Landry Y, Niederhoffer N, Sick E, et al. Heptahelical and other G-protein–coupled receptors (GPCRs) signaling. Curr Med Chem 2006;13(1):51–63.

    PubMed  CAS  Google Scholar 

  58. Hermans E, Saunders R, Selkirk JV, et al. Complex involvement of pertussis toxin–sensitive G proteins in the regulation of type 1alpha metabotropic glutamate receptor signaling in baby hamster kidney cells. Mol Pharmacol 2000;58(2):352–360.

    PubMed  CAS  Google Scholar 

  59. Saugstad JA, Segerson TP, Westbrook GL. Metabotropic glutamate receptors activate G-protein–coupled inwardly rectifying potassium channels in Xenopus oocytes. J Neurosci 1996;16(19):5979–5985.

    PubMed  CAS  Google Scholar 

  60. Sharon D, Vorobiov D, Dascal N. Positive and negative coupling of the metabotropic glutamate receptors to a G protein–activated K+ channel, GIRK, in Xenopus oocytes. J Gen Physiol 1997;109(4):477–490.

    PubMed  CAS  Google Scholar 

  61. Joly C, Gomeza J, Brabet I, et al. Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluR1. J Neurosci 1995;15(5 Pt 2):3970–3981.

    PubMed  CAS  Google Scholar 

  62. Miyashita T, Kubo Y. Extracellular Ca2+ sensitivity of mGluR1alpha induces an increase in the basal cAMP level by direct coupling with Gs protein in transfected CHO cells. Receptors Channels 2000;7(2):77–91.

    PubMed  CAS  Google Scholar 

  63. Boss V, Conn PJ. Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J Neurochem 1992;59(6):2340–2343.

    PubMed  CAS  Google Scholar 

  64. Holler T, Cappel E, Klein J, et al. Glutamate activates phospholipase D in hippocampal slices of newborn and adult rats. J Neurochem 1993;61(4):1569–1572.

    PubMed  CAS  Google Scholar 

  65. Klein J, Reymann KG, Riedel G. Activation of phospholipases C and D by the novel metabotropic glutamate receptor agonist tADA. Neuropharmacology 1997;36(2):261–263.

    PubMed  CAS  Google Scholar 

  66. Pellegrini-Giampietro DE, Torregrossa SA, Moroni F. Pharmacological characterization of metabotropic glutamate receptors coupled to phospholipase D in the rat hippocampus. Br J Pharmacol 1996;118(4):1035–1043.

    PubMed  CAS  Google Scholar 

  67. Pastorino L, Colciaghi F, Gardoni F, et al. (+)-MCPG induces PKCepsilon translocation in cortical synaptosomes through a PLD-coupled mGluR. Eur J Neurosci 2000;12(4):1310–1318.

    PubMed  CAS  Google Scholar 

  68. Servitja JM, Masgrau R, Sarri E, et al. Group I metabotropic glutamate receptors mediate phospholipase D stimulation in rat cultured astrocytes. J Neurochem 1999;72(4):1441–1447.

    PubMed  CAS  Google Scholar 

  69. Shinomura T, del Rio E, Breen KC, Downes CP, et al. Activation of phospholipase D by metabotropic glutamate receptor agonists in rat cerebrocortical synaptosomes. Br J Pharmacol 2000;131(5):1011–1018.

    Google Scholar 

  70. Kanumilli S, Toms NJ, Venkateswarlu K, et al. Functional coupling of rat metabotropic glutamate 1a receptors to phospholipase D in CHO cells: involvement of extracellular Ca2+, protein kinase C, tyrosine kinase and Rho-A. Neuropharmacology 2002;42(1):1–8.

    PubMed  CAS  Google Scholar 

  71. Liu F, Ma XH, Ule J, et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc Natl Acad Sci USA 2001;98(20):11062–11068.

    PubMed  CAS  Google Scholar 

  72. Liu F, Virshup DM, Nairn AC, et al. Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors. J Biol Chem 2002;277(47):45393–45399.

    PubMed  CAS  Google Scholar 

  73. Valjent E, Caboche J, Vanhoutte P. Mitogen-activated protein kinase/extracellular signal–regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol Neurobiol 2001;23(2–3):83–99.

    PubMed  CAS  Google Scholar 

  74. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001;76(1):1–10.

    PubMed  CAS  Google Scholar 

  75. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004;14(3):311–317.

    PubMed  CAS  Google Scholar 

  76. Xiong WC, Mei L. Roles of FAK family kinases in nervous system. Front Biosci 2003;8:s676–s682.

    Google Scholar 

  77. Shinohara Y, Nakajima Y, Nakanishi S. Glutamate induces focal adhesion kinase tyrosine phosphorylation and actin rearrangement in heterologous mGluR1-expressing CHO cells via calcium/calmodulin signaling. J Neurochem 2001;78(2):365–373.

    PubMed  CAS  Google Scholar 

  78. Peavy RD, Conn PJ. Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J Neurochem 1998;71(2):603–612.

    PubMed  CAS  Google Scholar 

  79. Peavy RD, Chang MS, Sanders-Bush E, et al. Metabotropic glutamate receptor 5–induced phosphorylation of extracellular signal-regulated kinase in astrocytes depends on transactivation of the epidermal growth factor receptor. J Neurosci 2001;21(24):9619–9628.

    PubMed  CAS  Google Scholar 

  80. Thandi S, Blank JL, Challiss RA. Group-I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signalling pathways. J Neurochem 2002;83(5):1139–1153.

    PubMed  CAS  Google Scholar 

  81. Roberson ED, English JD, Adams JP, et al. The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci 1999;19(11):4337–4348.

    PubMed  CAS  Google Scholar 

  82. Adams JP, Roberson ED, English JD, et al. MAPK regulation of gene expression in the central nervous system. Acta Neurobiol Exp (Warsaw) 2000;60(3):377–394.

    CAS  Google Scholar 

  83. Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 2004;5(3):173–183.

    PubMed  CAS  Google Scholar 

  84. Sassone-Corsi P. Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol 1995;11:355–377.

    PubMed  CAS  Google Scholar 

  85. Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995;42(4):459–467.

    PubMed  CAS  Google Scholar 

  86. Choe ES, Wang JQ. Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum. Neurosci Lett 2001;313(3):129–132.

    PubMed  CAS  Google Scholar 

  87. Choe ES, Wang JQ. Group I metabotropic glutamate receptor activation increases phosphorylation of cAMP response element–binding protein, Elk-1, and extracellular signal-regulated kinases in rat dorsal striatum. Brain Res Mol Brain Res 2001;94(1–2):75–84.

    PubMed  CAS  Google Scholar 

  88. Choe ES, Wang JQ. Regulation of transcription factor phosphorylation by metabotropic glutamate receptor–associated signaling pathways in rat striatal neurons. Neuroscience 2002;114(3):557–565.

    PubMed  CAS  Google Scholar 

  89. Choe ES, Parelkar NK, Kim JY, et al. The protein phosphatase 1/2A inhibitor okadaic acid increases CREB and Elk-1 phosphorylation and c-fos expression in the rat striatum in vivo. J Neurochem 2004;89(2):383–390.

    PubMed  CAS  Google Scholar 

  90. Warwick HK, Nahorski SR, Challiss RA. Group I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to cyclic AMP response element binding protein (CREB) through a common Ca2+-and protein kinase C–dependent pathway. J Neurochem 2005;93(1):232–245.

    PubMed  CAS  Google Scholar 

  91. Harris SL, Cho K, Bashir ZI, et al. Metabotropic glutamate receptor signalling in perirhinal cortical neurons. Mol Cell Neurosci 2004;25(2):275–287.

    PubMed  CAS  Google Scholar 

  92. Muyderman H, Angehagen M, Sandberg M, et al. Alpha 1-adrenergic modulation of metabotropic glutamate receptor–induced calcium oscillations and glutamate release in astrocytes. J Biol Chem 2001;276(49):46504–46514.

    PubMed  CAS  Google Scholar 

  93. Voulalas PJ, Holtzclaw L, Wolstenholme J, et al. Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons. J Neurosci 2005;25(15):3763–3773.

    PubMed  CAS  Google Scholar 

  94. Ferre S, Karcz-Kubicha M, Hope BT, et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 2002;99(18):11940–11945.

    PubMed  CAS  Google Scholar 

  95. Nishi A, Liu F, Matsuyama S, et al. Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci USA 2003;100(3):1322–1327.

    PubMed  Google Scholar 

  96. Choe ES, Chung KT, Mao L, et al. Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsychopharmacology 2002;27(4):565–575.

    PubMed  CAS  Google Scholar 

  97. Mao L, Wang JQ. Interactions between ionotropic and metabotropic glutamate receptors regulate cAMP response element–binding protein phosphorylation in cultured striatal neurons. Neuroscience 2002;115(2):395–402.

    PubMed  CAS  Google Scholar 

  98. Lachowicz-Ochedalska A. Membrane receptors for estradiol—new way of biological action [in Polish]. Endokrynol Pol 2005;56(3):322–326.

    PubMed  Google Scholar 

  99. Boulware MI, Weick JP, Becklund BR, et al. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element–binding protein. J Neurosci 2005;25(20):5066–5078.

    PubMed  CAS  Google Scholar 

  100. Sahara Y, Westbrook GL. Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons. J Neurosci 1993;13(7):3041–3050.

    PubMed  CAS  Google Scholar 

  101. Yu SP, Sensi SL, Canzoniero LM, et al. Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol 1997;499(Pt 3):721–732.

    PubMed  CAS  Google Scholar 

  102. Chavis P, Fagni L, Bockaert J, et al. Modulation of calcium channels by metabotropic glutamate receptors in cerebellar granule cells. Neuropharmacology 1995;34(8):929–937.

    PubMed  CAS  Google Scholar 

  103. Sayer RJ, Schwindt PC, Crill WE. Metabotropic glutamate receptor–mediated suppression of L-type calcium current in acutely isolated neocortical neurons. J Neurophysiol 1992;68(3):833–842.

    PubMed  CAS  Google Scholar 

  104. Choi S, Lovinger DM. Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons. J Neurosci 1996;16(1):36–45.

    PubMed  CAS  Google Scholar 

  105. Takahashi T, Forsythe ID, Tsujimoto T, et al. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 1996;274(5287):594–597.

    PubMed  CAS  Google Scholar 

  106. Rothe T, Bigl V, Grantyn R. Potentiating and depressant effects of metabotropic glutamate receptor agonists on high-voltage–activated calcium currents in cultured retinal ganglion neurons from postnatal mice. Pflugers Arch 1994;426(1–2):161–170.

    PubMed  CAS  Google Scholar 

  107. Chavis P, Nooney JM, Bockaert J, et al. Facilitatory coupling between a glutamate metabotropic receptor and dihydropyridine-sensitive calcium channels in cultured cerebellar granule cells. J Neurosci 1995;15(1 Pt 1):135–143.

    PubMed  CAS  Google Scholar 

  108. Endoh T. Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 2004;1024(1–2):212–224.

    PubMed  CAS  Google Scholar 

  109. Abdul-Ghani MA, Valiante TA, Carlen PL, et al. Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. J Neurophysiol 1996;76(4):2691–2700.

    PubMed  CAS  Google Scholar 

  110. Charpak S, Gahwiler BH, Do KQ, et al. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 1990;347(6295):765–767.

    PubMed  CAS  Google Scholar 

  111. Netzeband JG, Parsons KL, Sweeney DD, et al. Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. J Neurophysiol 1997;78(1):63–75.

    PubMed  CAS  Google Scholar 

  112. Glaum SR, Miller RJ. Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J Neurosci 1992;12(6): 2251–2258.

    PubMed  CAS  Google Scholar 

  113. Harata N, Katayama J, Takeshita Y, et al. Two components of metabotropic glutamate responses in acutely dissociated CA3 pyramidal neurons of the rat. Brain Res 1996;711(1–2):223–233.

    PubMed  CAS  Google Scholar 

  114. Cox CL, Sherman SM. Glutamate inhibits thalamic reticular neurons. J Neurosci 1999;19(15):6694–6699.

    PubMed  CAS  Google Scholar 

  115. Guerineau NC, Gahwiler BH, Gerber U. Reduction of resting K+ current by metabotropic glutamate and muscarinic receptors in rat CA3 cells: mediation by G-proteins. J Physiol 1994;474(1):27–33.

    PubMed  CAS  Google Scholar 

  116. Chavis P, Fagni L, Lansman JB, et al. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 1996;382(6593):719–722.

    PubMed  CAS  Google Scholar 

  117. Chavis P, Ango F, Michel JM, et al. Modulation of big K+ channel activity by ryanodine receptors and L-type Ca2+ channels in neurons. Eur J Neurosci 1998;10(7):2322–2327.

    PubMed  CAS  Google Scholar 

  118. Shirasaki T, Harata N, Akaike N. Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat. J Physiol 1994;475(3):439–453.

    PubMed  CAS  Google Scholar 

  119. Premkumar L, Chung SH. Activation of K+ channels by stimulation of metabotropic glutamate receptors. Neuroreport 1995;6(5):765–768.

    PubMed  CAS  Google Scholar 

  120. Greene C, Schwindt P, Crill W. Metabotropic receptor mediated afterdepolarization in neocortical neurons. Eur J Pharmacol 1992;226(3):279–280.

    PubMed  CAS  Google Scholar 

  121. Greene CC, Schwindt PC, Crill WE. Properties and ionic mechanisms of a metabotropic glutamate receptor–mediated slow afterdepolarization in neocortical neurons. J Neurophysiol 1994;72(2):693–704.

    PubMed  CAS  Google Scholar 

  122. Libri V, Constanti A, Zibetti M, et al. Metabotropic glutamate receptor subtypes mediating slow inward tail current (IADP) induction and inhibition of synaptic transmission in olfactory cortical neurones. Br J Pharmacol 1997;120(6):1083–1095.

    PubMed  CAS  Google Scholar 

  123. Congar P, Leinekugel X, Ben-Ari Y, et al. A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 1997;17(14):5366–5379.

    PubMed  CAS  Google Scholar 

  124. Crepel V, Aniksztejn L, Ben-Ari Y, et al. Glutamate metabotropic receptors increase a Ca(2+)-activated nonspecific cationic current in CA1 hippocampal neurons. J Neurophysiol 1994;72(4):1561–1569.

    PubMed  CAS  Google Scholar 

  125. Gereau RW, Conn PJ. Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J Neurophysiol 1995;74(1):122–129.

    PubMed  CAS  Google Scholar 

  126. Caeser M, Brown DA, Gahwiler BH, et al. Characterization of a calcium-dependent current generating a slow afterdepolarization of CA3 pyramidal cells in rat hippocampal slice cultures. Eur J Neurosci 1993;5(6): 560–569.

    PubMed  CAS  Google Scholar 

  127. Knopfel T, Vranesic I, Staub C, et al. Climbing fibre responses in olivo–cerebellar slice cultures. II. Dynamics of cytosolic calcium in Purkinje cells. Eur J Neurosci 1991;3(4):343–348.

    PubMed  Google Scholar 

  128. Keele NB, Arvanov VL, Shinnick-Gallagher P. Quisqualate-preferring meta\-botropic glutamate receptor activates Na(+)–Ca2+ exchange in rat basolateral amygdala neurones. J Physiol 1997;499(Pt 1):87–104.

    PubMed  CAS  Google Scholar 

  129. Lee K, Boden PR. Characterization of the inward current induced by metabotropic glutamate receptor stimulation in rat ventromedial hypothalamic neurones. J Physiol 1997;504(Pt 3):649–663.

    PubMed  CAS  Google Scholar 

  130. Staub C, Vranesic I, Knopfel T. Responses to metabotropic glutamate receptor activation in cerebellar Purkinje cells: induction of an inward current. Eur J Neurosci 1992;4(9):832–839.

    PubMed  Google Scholar 

  131. Guerineau NC, Bossu JL, Gahwiler BH, et al. Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus. J Neurosci 1995;15(6):4395–4407.

    PubMed  CAS  Google Scholar 

  132. Faber ES, Sedlak P, Vidovic M, et al. Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 2006;137(3):781–794.

    PubMed  CAS  Google Scholar 

  133. Kim SJ, Kim YS, Yuan JP, et al. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 2003;426(6964):285–291.

    PubMed  CAS  Google Scholar 

  134. Bengtson CP, Tozzi A, Bernardi G, et al. Transient receptor potential–like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J Physiol 2004;555(Pt 2):323–330.

    PubMed  CAS  Google Scholar 

  135. Clapham DE. Sorting out MIC, TRP, and CRAC ion channels. J Gen Physiol 2002;120(2):217–220.

    PubMed  CAS  Google Scholar 

  136. Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev 2002;82(2):429–472.

    PubMed  CAS  Google Scholar 

  137. Canepari M, Ogden D. Evidence for protein tyrosine phosphatase, tyrosine kinase, and G-protein regulation of the parallel fiber metabotropic slow EPSC of rat cerebellar Purkinje neurons. J Neurosci 2003;23(10):4066–4071.

    PubMed  CAS  Google Scholar 

  138. Glaum SR, Miller RJ. Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat. J Neurosci 1993;13(4):1636–1641.

    PubMed  CAS  Google Scholar 

  139. Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by group I mGluR in spinal cord motoneurons. Neuropharmacology 1997;36(8): 1047–1055.

    PubMed  CAS  Google Scholar 

  140. Fitzjohn SM, Irving AJ, Palmer MJ, et al. Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci Lett 1996;203(3): 211–213.

    PubMed  CAS  Google Scholar 

  141. Aniksztejn L, Otani S, Ben-Ari Y. Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur J Neurosci 1992;4(6):500–505.

    PubMed  Google Scholar 

  142. Homayoun H, Moghaddam B. Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: rate-dependent influence and interaction with NMDA receptors. Cereb Cortex 2006;16(1):93–105.

    PubMed  Google Scholar 

  143. Stoop R, Conquet F, Zuber B, et al. Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections. J Neurosci 2003;23(13):5634–5644.

    PubMed  CAS  Google Scholar 

  144. Harvey J, Palmer MJ, Irving AJ, et al. NMDA receptor dependence of mGlu-mediated depression of synaptic transmission in the CA1 region of the rat hippocampus. Br J Pharmacol 1996;119(6):1239–1247.

    PubMed  CAS  Google Scholar 

  145. Colwell CS, Levine MS. Metabotropic glutamate receptors modulate N-methyl-D-aspartate receptor function in neostriatal neurons. Neuroscience 1994;61(3):497–507.

    PubMed  CAS  Google Scholar 

  146. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 1999;29(1):83–120.

    PubMed  CAS  Google Scholar 

  147. Batchelor AM, Madge DJ, Garthwaite J. Synaptic activation of metabotropic glutamate receptors in the parallel fibre–Purkinje cell pathway in rat cerebellar slices. Neuroscience 1994;63(4):911–915.

    PubMed  CAS  Google Scholar 

  148. Shen KZ, Johnson SW. A slow excitatory postsynaptic current mediated by G-protein–coupled metabotropic glutamate receptors in rat ventral tegmental dopamine neurons. Eur J Neurosci 1997;9(1):48–54.

    PubMed  CAS  Google Scholar 

  149. Fiorillo CD, Williams JT. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 1998;394(6688):78–82.

    PubMed  CAS  Google Scholar 

  150. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989;29:365–402.

    PubMed  CAS  Google Scholar 

  151. Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 1981;21:165–204.

    PubMed  CAS  Google Scholar 

  152. Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at sub\-types of metabotropic glutamate receptors. Neuropharmacology 1999;38(10):1431–1476.

    PubMed  CAS  Google Scholar 

  153. Ito I, Kohda A, Tanabe S, et al. 3,5-Dihydroxyphenyl-glycine: a potent agonist of metabotropic glutamate receptors. Neuroreport 1992;3(11):1013–1016.

    PubMed  CAS  Google Scholar 

  154. Mistry R, Golding N, Challiss RA. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I– and II–selective metabotropic glutamate receptor agonists. Br J Pharmacol 1998;123(3):581–589.

    PubMed  CAS  Google Scholar 

  155. Palmer MJ, Irving AJ, Seabrook GR, et al. The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 1997;36(11–12):1517–1532.

    PubMed  CAS  Google Scholar 

  156. Schoepp DD, Goldsworthy J, Johnson BG, et al. 3,5-Dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem 1994;63(2):769–772.

    PubMed  CAS  Google Scholar 

  157. Sekiyama N, Hayashi Y, Nakanishi S, et al. Structure–activity relationships of new agonists and antagonists of different metabotropic glutamate receptor subtypes. Br J Pharmacol 1996;117(7):1493–1503.

    PubMed  CAS  Google Scholar 

  158. Wisniewski K, Carr H. (S)-3,5-DHPG: a review. CNS Drug Rev 2002;8(1):101–116.

    PubMed  CAS  Google Scholar 

  159. Annoura H, Fukunaga A, Uesuga M, et al. A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxylate. Bioorg Med Chem Lett 1996;6:763–766.

    CAS  Google Scholar 

  160. Hermans E, Nahorski SR, Challiss RA. Reversible and non-competitive antagonist profile of CPCCOEt at the human type 1alpha metabotropic glutamate receptor. Neuropharmacology 1998;37(12):1645–1647.

    PubMed  CAS  Google Scholar 

  161. Casabona G, Knopfel T, Kuhn R, et al. Expression and coupling to polyphosphoinositide hydrolysis of group I metabotropic glutamate receptors in early postnatal and adult rat brain. Eur J Neurosci 1997;9(1):12–17.

    PubMed  CAS  Google Scholar 

  162. Litschig S, Gasparini F, Rueegg D, et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 1999;55(3):453–461.

    PubMed  CAS  Google Scholar 

  163. Kohara A, Toya T, Tamura S, et al. Radioligand binding properties and pharmacological characterization of 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM298198), a high-affinity, selective, and noncompetitive antagonist of metabotropic glutamate receptor type 1. J Pharmacol Exp Ther 2005;315(1):163–169.

    PubMed  CAS  Google Scholar 

  164. Gasparini F, Lingenhohl K, Stoehr N, et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 1999;38(10):1493–1503.

    PubMed  CAS  Google Scholar 

  165. Malherbe P, Kratochwil N, Zenner MT, et al. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 2003;64(4): 823–832.

    PubMed  CAS  Google Scholar 

  166. Salt TE, Binns KE, Turner JP, et al. Antagonism of the mGlu5 agonist 2-chloro-5-hydroxyphenylglycine by the novel selective mGlu5 antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) in the thalamus. Br J Pharmacol 1999;127(5):1057–1059.

    PubMed  CAS  Google Scholar 

  167. Kuhn R, Pagano A, Stoehr N, et al. In vitro and in vivo characterization of MPEP, an allosteric modulator of the metabotropic glutamate receptor subtype 5: review article. Amino Acids 2002;23(1–3):207–211.

    PubMed  CAS  Google Scholar 

  168. Cosford ND, Tehrani L, Roppe J, et al. 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 2003;46(2):204–206.

    PubMed  CAS  Google Scholar 

  169. Varty GB, Grilli M, Forlani A, et al. The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology (Berl) 2005;179(1):207–217.

    CAS  Google Scholar 

  170. Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, et al. Antidepressant-like and anxiolytic-like actions of the mGlu5 receptor antagonist MTEP, microinjected into lateral septal nuclei of male Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:1129–1135.

    PubMed  CAS  Google Scholar 

  171. Ossowska K, Konieczny J, Wolfarth S, et al. MTEP, a new selective antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5), produces antiparkinsonian-like effects in rats. Neuropharmacology 2005;49(4):447–455.

    PubMed  CAS  Google Scholar 

  172. Porter RH, Jaeschke G, Spooren W, et al. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 2005;315(2):711–721.

    PubMed  CAS  Google Scholar 

  173. O’Brien JA, Lemaire W, Chen TB, et al. A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol Pharmacol 2003;64(3):731–740.

    PubMed  CAS  Google Scholar 

  174. O’Brien JA, Lemaire W, Wittmann M, et al. A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J Pharmacol Exp Ther 2004;309(2):568–577.

    PubMed  CAS  Google Scholar 

  175. Zhang Y, Rodriguez AL, Conn PJ. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J Pharmacol Exp Ther 2005;315(3):1212–1219.

    PubMed  CAS  Google Scholar 

  176. Mannaioni G, Marino MJ, Valenti O, et al. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci 2001;21(16):5925–5934.

    PubMed  CAS  Google Scholar 

  177. Pellegrini-Giampietro DE. The distinct role of mGlu1 receptors in post-ischemic neuronal death. Trends Pharmacol Sci 2003;24(9):461–470.

    PubMed  CAS  Google Scholar 

  178. Valenti O, Conn PJ, Marino MJ. Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors co-expressed in the same neuronal populations. J Cell Physiol 2002;191(2):125–137.

    PubMed  CAS  Google Scholar 

  179. Pin JP, Joly C, Heinemann SF, et al. Domains involved in the specificity of G protein activation in phospholipase C–coupled metabotropic glutamate receptors. EMBO J 1994;13(2):342–348.

    PubMed  CAS  Google Scholar 

  180. Brakeman PR, Lanahan AA, O’Brien R, et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997;386(6622):284–288.

    PubMed  CAS  Google Scholar 

  181. Tu JC, Xiao B, Yuan JP, et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 1998;21(4):717–726.

    PubMed  CAS  Google Scholar 

  182. McCool BA, Pin JP, Harpold MM, et al. Rat group I metabotropic glutamate receptors inhibit neuronal Ca2+ channels via multiple signal transduction pathways in HEK 293 cells. J Neurophysiol 1998;79(1):379–391.

    PubMed  CAS  Google Scholar 

  183. Minakami R, Jinnai N, Sugiyama H. Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J Biol Chem 1997;272(32):20291–20298.

    PubMed  CAS  Google Scholar 

  184. Ciruela F, Robbins MJ, Willis AC, et al. Interactions of the C terminus of metabotropic glutamate receptor type 1alpha with rat brain proteins: evidence for a direct interaction with tubulin. J Neurochem 1999;72(1):346–354.

    PubMed  CAS  Google Scholar 

  185. Ciruela F, McIlhinney RAJ. Metabotropic glutamate receptor type 1 and tubulin assemble into dynamic interacting complexes. J Neurochem 2001;76(3):750–757.

    PubMed  CAS  Google Scholar 

  186. Ishikawa K, Nash SR, Nishimune A, et al. Competitive interaction of seven in absentia homolog-1A and Ca2+/calmodulin with the cytoplasmic tail of group 1 metabotropic glutamate receptors. Genes Cells 1999;4(7):381–390.

    PubMed  CAS  Google Scholar 

  187. Croci C, Sticht H, Brandstatter JH, et al. Group I metabotropic glutamate receptors bind to protein phosphatase 1C. Mapping and modeling of interacting sequences. J Biol Chem 2003;278(50):50682–50690.

    Google Scholar 

  188. Kammermeier PJ, Xiao B, Tu JC, et al. Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 2000;20(19):7238–7245.

    PubMed  CAS  Google Scholar 

  189. Kim D, Jun KS, Lee SB, et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 1997;389(6648):290–293.

    PubMed  CAS  Google Scholar 

  190. Ehlers MD. Synapse structure: glutamate receptors connected by the shanks. Curr Biol 1999;9(22):R848–R850.

    Google Scholar 

  191. Mundell SJ, Matharu AL, Pula G, et al. Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. J Neurochem 2001;78(3):546–551.

    PubMed  CAS  Google Scholar 

  192. Heuss C, Scanziani M, Gahwiler BH, et al. G-protein–independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 1999;2(12):1070–1077.

    PubMed  CAS  Google Scholar 

  193. Alagarsamy S, Saugstad J, Warren L, et al. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology 2005;49(Suppl 1):135–145.

    PubMed  CAS  Google Scholar 

  194. Shiraishi Y, Mizutani A, Bito H, et al. Cupidin, an isoform of Homer/Vesl, interacts with the actin cytoskeleton and activated rho family small GTPases and is expressed in developing mouse cerebellar granule cells. J Neurosci 1999;19(19):8389–8400.

    PubMed  CAS  Google Scholar 

  195. Serge A, Fourgeaud L, Hemar A, et al. Active surface transport of metabotropic glutamate receptors through binding to microtubules and actin flow. J Cell Sci 2003;116(Pt 24):5015–5022.

    PubMed  CAS  Google Scholar 

  196. Kato A, Fukuda T, Fukazawa Y, et al. Phorbol esters promote postsynaptic accumulation of Vesl-1S/Homer-1a protein. Eur J Neurosci 2001;13(7):1292–1302.

    PubMed  CAS  Google Scholar 

  197. Sala C, Piech V, Wilson NR, et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001;31(1):115–130.

    PubMed  CAS  Google Scholar 

  198. Usui S, Konno D, Hori K, et al. Synaptic targeting of PSD-Zip45 (Homer 1c) and its involvement in the synaptic accumulation of F-actin. J Biol Chem 2003;278(12):10619–19628.

    PubMed  CAS  Google Scholar 

  199. Ehrengruber MU, Kato A, Inokuchi K, et al. Homer/Vesl proteins and their roles in CNS neurons. Mol Neurobiol 2004;29(3):213–227.

    PubMed  CAS  Google Scholar 

  200. Beneken J, Tu JC, Xiao B, et al. Structure of the Homer EVH1 domain–peptide complex reveals a new twist in polyproline recognition. Neuron 2000;26(1):143–154.

    PubMed  CAS  Google Scholar 

  201. Ciruela F, Soloviev MM, McIlhinney RA. Co-expression of metabotropic glutamate receptor type 1alpha with Homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochem J 1999;341(Pt 3):795–803.

    PubMed  CAS  Google Scholar 

  202. Coutinho V, Kavanagh I, Sugiyama H, et al. Characterization of a metabotropic glutamate receptor type 5–green fluorescent protein chimera (mGluR5–GFP): pharmacology, surface expression, and differential effects of Homer-1a and Homer-1c. Mol Cell Neurosci 2001;18(3):296–306.

    PubMed  CAS  Google Scholar 

  203. Roche KW, Tu JC, Petralia RS, et al. Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem 1999;274(36):25953–25957.

    PubMed  CAS  Google Scholar 

  204. Tadokoro S, Tachibana T, Imanaka T, et al. Involvement of unique leucine-zipper motif of PSD-Zip45 (Homer 1c/vesl-1L) in group 1 metabotropic glutamate receptor clustering. Proc Natl Acad Sci USA 1999;96(24):13801–13806.

    PubMed  CAS  Google Scholar 

  205. Ciruela F, Soloviev MM, Chan WY, et al. Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1alpha: evidence for an anchoring function. Mol Cell Neurosci 2000;15(1):36–50.

    PubMed  CAS  Google Scholar 

  206. Ango F, Pin JP, Tu JC, et al. Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by Homer1 proteins and neuronal excitation. J Neurosci 2000;20(23):8710–8716.

    PubMed  CAS  Google Scholar 

  207. Ango F, Robbe D, Tu JC, et al. Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol Cell Neurosci 2002;20(2): 323–329.

    PubMed  CAS  Google Scholar 

  208. Ango F, Prezeau L, Muller T, et al. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 2001;411(6840): 962–965.

    PubMed  CAS  Google Scholar 

  209. Farr CD, Gafken PR, Norbeck AD, et al. Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J Neurochem 2004;91(2):438–450.

    PubMed  CAS  Google Scholar 

  210. Molloy SS, Thomas L, Kamibayashi C, et al. Regulation of endosome sorting by a specific PP2A isoform. J Cell Biol 1998;142(6):1399–1411.

    PubMed  CAS  Google Scholar 

  211. Wan L, Molloy SS, Thomas L, et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 1998;94(2):205–216.

    PubMed  CAS  Google Scholar 

  212. Kottgen M, Benzing T, Simmen T, et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 2005;24(4): 705–716.

    PubMed  Google Scholar 

  213. Simmen T, Aslan JE, Blagoveshchenskaya AD, et al. PACS-2 controls endoplasmic reticulum–mitochondria communication and Bid-mediated apoptosis. EMBO J 2005;24(4):717–729.

    PubMed  CAS  Google Scholar 

  214. Farr CD, Aslan JE, Six J, et al. Proteomic analysis of metabotropic glutamate receptor 5 (mGluR5) signaling complexes reveals an mGluR5-interaction with phosphofurin acidic cluster sorting proteins. In: Abstracts Society for Neuroscience 35th Annual Meeting 2005.

    Google Scholar 

  215. Farr CD, Minami M, Saugstad JA. Proteomic analysis of ischemic tolerant rat brain reveals distinct changes in group I metabotropic glutamate receptor signaling complexes. In: Abstracts Society for Neuroscience 34th Annual Meeting 2004.

    Google Scholar 

  216. Alagarsamy S, Sorensen SD, Conn PJ. Coordinate regulation of metabotropic glutamate receptors. Curr Opin Neurobiol 2001;11(3):357–362.

    PubMed  CAS  Google Scholar 

  217. De Blasi A, Conn PJ, Pin J, et al. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001;22(3):114–120.

    PubMed  Google Scholar 

  218. Francesconi A, Duvoisin RM. Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc Natl Acad Sci USA 2000;97(11):6185–6190.

    PubMed  CAS  Google Scholar 

  219. Gereau RW, Heinemann SF. Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5. Neuron 1998;20(1):143–151.

    PubMed  CAS  Google Scholar 

  220. Herrero I, Miras-Portugal MT, Sanchez-Prieto J. Functional switch from facilitation to inhibition in the control of glutamate release by metabotropic glutamate receptors. J Biol Chem 1998;273(4):1951–1958.

    PubMed  CAS  Google Scholar 

  221. Rodriguez-Moreno A, Sistiaga A, Lerma J, et al. Switch from facilitation to inhibition of excitatory synaptic transmission by group I mGluR desensitization. Neuron 1998;21(6):1477–1486.

    PubMed  CAS  Google Scholar 

  222. Tozzi A, Guatteo E, Caputi L, et al. Group I mGluRs coupled to G proteins are regulated by tyrosine kinase in dopamine neurons of the rat midbrain.J Neurophysiol 2001;85(6):2490–2497.

    PubMed  CAS  Google Scholar 

  223. Tang Z, El Far O, Betz H, et al. Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J Biol Chem 2005;280(46):38153–38159.

    PubMed  CAS  Google Scholar 

  224. Alaluf S, Mulvihill ER, McIlhinney RA. Palmitoylation of metabotropic glutamate receptor subtype 4 but not 1 alpha expressed in permanently transfected BHK cells. Biochem Soc Trans 1995;23(1):87S.

    PubMed  CAS  Google Scholar 

  225. Alaluf S, Mulvihill ER, McIlhinney RA. The metabotropic glutamate receptor mGluR4, but not mGluR1 alpha, is palmitoylated when expressed in BHK cells. J Neurochem 1995;64(4):1548–1555.

    PubMed  CAS  Google Scholar 

  226. Kammermeier PJ, Ikeda SR. A role for seven in absentia homolog (Siah1a) in metabotropic glutamate receptor signaling. BMC Neurosci 2001;2(1):15.

    PubMed  CAS  Google Scholar 

  227. Moriyoshi K, Iijima K, Fujii H, et al. Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors. Proc Natl Acad Sci USA 2004;101(23):8614–8619.

    PubMed  CAS  Google Scholar 

  228. Alaluf S, Mulvihill ER, McIlhinney RA. Rapid agonist mediated phosphorylation of the metabotropic glutamate receptor 1 alpha by protein kinase C in permanently transfected BHK cells. FEBS Lett 1995;367(3):301–305.

    PubMed  CAS  Google Scholar 

  229. Peavy RD, Sorensen SD, Conn PJ. Differential regulation of metabotropic glutamate receptor 5–mediated phosphoinositide hydrolysis and extracellular signal-regulated kinase responses by protein kinase C in cultured astrocytes. J Neurochem 2002;83(1):110–118.

    PubMed  CAS  Google Scholar 

  230. Kawabata S, Tsutsumi R, Kohara A, et al. Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 1996;383(6595): 89–92.

    PubMed  CAS  Google Scholar 

  231. Alagarsamy S, Rouse ST, Gereau RW, et al. Activation of N-methyl-D-aspartate receptors reverses desensitization of metabotropic glutamate receptor, mGluR5, in native and recombinant systems. Ann N Y Acad Sci 1999;868:526–530.

    PubMed  CAS  Google Scholar 

  232. Luthi A, Gahwiler BH, Gerber U. Potentiation of a metabotropic glutamatergic response following NMDA receptor activation in rat hippocampus. Pflugers Arch 1994;427(1–2):197–202.

    PubMed  CAS  Google Scholar 

  233. Alagarsamy S, Rouse ST, Junge C, et al. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol Biochem Behav 2002;73(2):299–306.

    PubMed  CAS  Google Scholar 

  234. Homayoun H, Stefani MR, Adams BW, et al. Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004;29(7):1259–1269.

    PubMed  CAS  Google Scholar 

  235. Heidinger V, Manzerra P, Wang XQ, et al. Metabotropic glutamate receptor 1–induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 2002;22(13):5452–5461.

    PubMed  CAS  Google Scholar 

  236. Aniksztejn L, Bregestovski P, Ben-Ari Y. Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur J Pharmacol 1991;205(3):327–8.

    PubMed  CAS  Google Scholar 

  237. Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002;22(22):9679–9686.

    PubMed  CAS  Google Scholar 

  238. Pisani A, Gubellini P, Bonsi P, et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 2001;106(3):579–587.

    PubMed  CAS  Google Scholar 

  239. Premont RT. Once and future signaling: G protein–coupled receptor kinase control of neuronal sensitivity. Neuromolecular Med 2005;7(1–2):129–147.

    PubMed  CAS  Google Scholar 

  240. Dale LB, Bhattacharya M, Anborgh PH, et al. G protein–coupled receptor kinase–mediated desensitization of metabotropic glutamate receptor 1A protects against cell death. J Biol Chem 2000;275(49):38213–38220.

    PubMed  CAS  Google Scholar 

  241. Sallese M, Salvatore L, D’Urbano E, et al. The G-protein–coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. Faseb J 2000;14(15):2569–2580.

    PubMed  CAS  Google Scholar 

  242. Dhami GK, Dale LB, Anborgh PH, et al. G protein–coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Galphaq to attenuate signaling. J Biol Chem 2004;279(16): 16614–16620.

    PubMed  CAS  Google Scholar 

  243. Dhami GK, Anborgh PH, Dale LB, et al. Phosphorylation-independent regulation of metabotropic glutamate receptor signaling by G protein–coupled receptor kinase 2. J Biol Chem 2002;277(28):25266–25372.

    PubMed  CAS  Google Scholar 

  244. Dhami GK, Babwah AV, Sterne-Marr R, et al. Phosphorylation-independent regulation of metabotropic glutamate receptor 1 signaling requires G protein–coupled receptor kinase 2 binding to the second intracellular loop. J Biol Chem 2005;280(26):24420–24427.

    PubMed  CAS  Google Scholar 

  245. Sorensen SD, Conn PJ. G protein–coupled receptor kinases regulate metabotropic glutamate receptor 5 function and expression. Neuropharmacology 2003;44(6):699–706.

    PubMed  CAS  Google Scholar 

  246. Neubig RR, Siderovski DP. Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 2002;1(3):187–197.

    PubMed  CAS  Google Scholar 

  247. De Vries L, Zheng B, Fischer T, et al. The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 2000;40:235–271.

    PubMed  Google Scholar 

  248. Saugstad JA, Marino MJ, Folk JA, et al. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci 1998;18(3):905–913.

    PubMed  CAS  Google Scholar 

  249. Kammermeier PJ, Ikeda SR. Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 1999;22(4):819–829.

    Google Scholar 

  250. Manzoni O, Bockaert J. Metabotropic glutamate receptors inhibiting excitatory synapses in the CA1 area of rat hippocampus. Eur J Neurosci 1995;7(12):2518–2523.

    PubMed  CAS  Google Scholar 

  251. Awad-Granko H, Conn PJ. Activation of groups I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus. Neuropharmacology 2001;41(1):32–41.

    PubMed  CAS  Google Scholar 

  252. Bonci A, Grillner P, Siniscalchi A, et al. Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur J Neurosci 1997;9(11):2359–2369.

    PubMed  CAS  Google Scholar 

  253. Wigmore MA, Lacey MG. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. Br J Pharmacol 1998;123(4):667–674.

    PubMed  CAS  Google Scholar 

  254. Parfitt KD, Madison DV. Phorbol esters enhance synaptic transmission by a presynaptic, calcium-dependent mechanism in rat hippocampus. J Physiol 1993;471:245–268.

    PubMed  CAS  Google Scholar 

  255. Sladeczek F, Momiyama A, Takahashi T. Presynaptic inhibitory action of a metabotropic glutamate receptor agonist on excitatory transmission in visual cortical neurons. Proc Biol Sci 1993;253(1338):297–303.

    PubMed  CAS  Google Scholar 

  256. Cochilla AJ, Alford S. Metabotropic glutamate receptor–mediated control of neurotransmitter release. Neuron 1998;20(5):1007–1016.

    PubMed  CAS  Google Scholar 

  257. Scanziani M, Gahwiler BH, Thompson SM. Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 1995;34(11):1549–1557.

    PubMed  CAS  Google Scholar 

  258. Moroni F, Cozzi A, Lombardi G, et al. Presynaptic mGlu1 type receptors potentiate transmitter output in the rat cortex. Eur J Pharmacol 1998;347(2–3):189–195.

    PubMed  CAS  Google Scholar 

  259. Schrader LA, Tasker JG. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus. J Neurophysiol 1997;78(6):3428–3437.

    PubMed  CAS  Google Scholar 

  260. Zheng F, Johnson SW. Dual modulation of GABAergic transmission by metabotropic glutamate receptors in rat ventral tegmental area. Neuroscience 2003;119(2):453–460.

    PubMed  CAS  Google Scholar 

  261. Zhou FM, Hablitz JJ. Metabotropic glutamate receptor enhancement of spontaneous IPSCs in neocortical interneurons. J Neurophysiol 1997;78(5):2287–2295.

    PubMed  CAS  Google Scholar 

  262. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44(1):5–21.

    PubMed  CAS  Google Scholar 

  263. Farkas RH, Chowers I, Hackam AS, et al. Increased expression of iron-regulating genes in monkey and human glaucoma. Invest Ophthalmol Vis Sci 2004;45(5):1410–1417.

    PubMed  Google Scholar 

  264. Gubellini P, Pisani A, Centonze D, et al. Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 2004;74(5):271–300.

    PubMed  CAS  Google Scholar 

  265. Riedel G, Reymann KG. Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand 1996;157(1):1–19.

    PubMed  CAS  Google Scholar 

  266. Fujii S, Sasaki H, Mikoshiba K, et al. A chemical LTP induced by co-activation of metabotropic and N-methyl-D-aspartate glutamate receptors in hippocampal CA1 neurons. Brain Res 2004;999(1):20–8.

    PubMed  CAS  Google Scholar 

  267. Musgrave MA, Ballyk BA, Goh JW. Coactivation of metabotropic and NMDA receptors is required for LTP induction. Neuroreport 1993;4(2):171–174.

    PubMed  CAS  Google Scholar 

  268. Lynch MA. Long-term potentiation and memory. Physiol Rev 2004;84(1):87–136.

    PubMed  CAS  Google Scholar 

  269. Hu GY, Hvalby O, Walaas SI, et al. Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 1987;328(6129):426–429.

    PubMed  CAS  Google Scholar 

  270. Linden DJ, Routtenberg A. The role of protein kinase C in long-term potentiation: a testable model. Brain Res Brain Res Rev 1989;14(3):279–296.

    PubMed  CAS  Google Scholar 

  271. Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 1989;245(4920):862–866.

    PubMed  CAS  Google Scholar 

  272. Yasuda H, Barth AL, Stellwagen D, et al. A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 2003;6(1):15–16.

    PubMed  CAS  Google Scholar 

  273. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002;3(3):175–190.

    PubMed  CAS  Google Scholar 

  274. Malenka RC, Nicoll RA. Long-term potentiation—a decade of progress? Science 1999;285(5435):1870–1874.

    PubMed  CAS  Google Scholar 

  275. Bortolotto ZA, Bashir ZI, Davies CH, et al. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 1994;368(6473):740–743.

    PubMed  CAS  Google Scholar 

  276. Bortolotto ZA, Collingridge GL. Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology 1993;32(1):1–9.

    PubMed  CAS  Google Scholar 

  277. Bortolotto ZA, Bashir ZI, Davies CH, et al. Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. J Neurosci Meth1995;59(1):19–24.

    Google Scholar 

  278. Breakwell NA, Rowan MJ, Anwyl R. Metabotropic glutamate receptor dependent EPSP and EPSP-spike potentiation in area CA1 of the submerged rat hippocampal slice. J Neurophysiol 1996;76(5):3126–3135.

    PubMed  CAS  Google Scholar 

  279. Collins DR, Scollon JM, Russell DC, et al. Indirect potentiation of synaptic transmission by metabotropic glutamate receptors in the rat hippocampal slice. Brain Res 1995;684(2):165–171.

    PubMed  CAS  Google Scholar 

  280. O’Connor JJ, Rowan MJ, Anwyl R. Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors. J Neurosci 1995;15(3 Pt 1):2013–2020.

    PubMed  CAS  Google Scholar 

  281. Impey S, Smith DM, Obrietan K, et al. Stimulation of cAMP response element (CRE)–mediated transcription during contextual learning. Nat Neurosci 1998;1(7):595–601.

    PubMed  CAS  Google Scholar 

  282. Cohen AS, Abraham WC. Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J Neurophysiol 1996;76(2):953–962.

    PubMed  CAS  Google Scholar 

  283. Cohen AS, Raymond CR, Abraham WC. Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Hippocampus 1998;8(2):160–170.

    PubMed  CAS  Google Scholar 

  284. Raymond CR, Thompson VL, Tate WP, et al. Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J Neurosci 2000;20(3):969–976.

    PubMed  CAS  Google Scholar 

  285. Weiler IJ, Irwin SA, Klintsova AY, et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 1997;94(10):5395–5400.

    PubMed  CAS  Google Scholar 

  286. Shin CY, Kundel M, Wells DG. Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor–dependent mRNA translation. J Neurosci 2004;24(42):9425–9433.

    PubMed  CAS  Google Scholar 

  287. Lu YM, Jia Z, Janus C, et al. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 1997;17(13):5196–5205.

    PubMed  CAS  Google Scholar 

  288. Fitzjohn SM, Bortolotto ZA, Palmer MJ, et al. The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 1998;37(12):1445–1458.

    PubMed  CAS  Google Scholar 

  289. Oliet SH, Malenka RC, Nicoll RA. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 1997;18(6):969–982.

    PubMed  CAS  Google Scholar 

  290. Overstreet LS, Pasternak JF, Colley PA, et al. Metabotropic glutamate receptor mediated long-term depression in developing hippocampus. Neuropharmacology 1997;36(6):831–844.

    PubMed  CAS  Google Scholar 

  291. Yang XD, Connor JA, Faber DS. Weak excitation and simultaneous inhibition induce long-term depression in hippocampal CA1 neurons. J Neurophysiol 1994;71(4):1586–1590.

    PubMed  CAS  Google Scholar 

  292. Khodakhah K, Armstrong CM. Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 1997;94(25):14009–14014.

    PubMed  CAS  Google Scholar 

  293. Llano I, Dreessen J, Kano M, et al. Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells. Neuron 1991;7(4):577–583.

    PubMed  CAS  Google Scholar 

  294. Stanton PK, Chattarji S, Sejnowski TJ. 2-Amino-3-phosphonopropionic acid, an inhibitor of glutamate-stimulated phosphoinositide turnover, blocks induction of homosynaptic long-term depression, but not potentiation, in rat hippocampus. Neurosci Lett 1991;127(1):61–66.

    PubMed  CAS  Google Scholar 

  295. Crepel F, Krupa M. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 1988;458(2):397–401.

    PubMed  CAS  Google Scholar 

  296. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 1991;254(5038):1656–1659.

    PubMed  CAS  Google Scholar 

  297. Fitzjohn SM, Kingston AE, Lodge D, et al. DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 1999;38(10):1577–1583.

    PubMed  CAS  Google Scholar 

  298. Faas GC, Adwanikar H, Gereau RW, et al. Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression. J Neurosci 2002;22(16):6885–6890.

    PubMed  CAS  Google Scholar 

  299. Liu YB, Disterhoft JF, Slater NT. Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. J Neurophysiol 1993;69(3):1000–1004.

    PubMed  CAS  Google Scholar 

  300. Harney SC, Rowan M, Anwyl R. Long-term depression of NMDA receptor–mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 2006;26(4):1128–1132.

    PubMed  CAS  Google Scholar 

  301. Fitzjohn SM, Palmer MJ, May JE, et al. A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J Physiol 2001;537(Pt 2):421–430.

    PubMed  CAS  Google Scholar 

  302. Schnabel R, Kilpatrick IC, Collingridge GL. An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 1999;38(10):1585–1596.

    PubMed  CAS  Google Scholar 

  303. Gallagher SM, Daly CA, Bear MF, et al. Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor–dependent long-term depression in hippocampal area CA1. J Neurosci 2004;24(20):4859–4864.

    PubMed  CAS  Google Scholar 

  304. Kawasaki H, Fujii H, Gotoh Y, et al. Requirement for mitogen-activated protein kinase in cerebellar long term depression. J Biol Chem 1999;274(19):13498–13502.

    PubMed  CAS  Google Scholar 

  305. Aiba A, Kano M, Chen C, et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 1994;79(2):377–388.

    PubMed  CAS  Google Scholar 

  306. Hemart N, Daniel H, Jaillard D, et al. Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: a reappraisal. Eur J Neurosci 1995;7(1):45–53.

    PubMed  CAS  Google Scholar 

  307. Neale SA, Garthwaite J, Batchelor AM. mGlu1 receptors mediate a post-tetanic depression at parallel fibre–Purkinje cell synapses in rat cerebellum. Eur J Neurosci 2001;14(8):1313–1319.

    PubMed  CAS  Google Scholar 

  308. Shigemoto R, Abe T, Nomura S, et al. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 1994;12(6):1245–1255.

    PubMed  CAS  Google Scholar 

  309. Banko JL, Hou L, Poulin F, et al. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor–dependent long-term depression. J Neurosci 2006;26(8):2167–2173.

    PubMed  CAS  Google Scholar 

  310. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 2000;25(3):635–647.

    PubMed  CAS  Google Scholar 

  311. Conquet F, Bashir ZI, Davies CH, et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 1994;372(6503):237–243.

    PubMed  CAS  Google Scholar 

  312. Collins GG. Actions of agonists of metabotropic glutamate receptors on synaptic transmission and transmitter release in the olfactory cortex. Br J Pharmacol 1993;108(2):422–430.

    PubMed  CAS  Google Scholar 

  313. Bolshakov VY, Siegelbaum SA. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 1994;264(5162):1148–1152.

    PubMed  CAS  Google Scholar 

  314. Gerdeman GL, Partridge JG, Lupica CR, et al. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 2003;26(4):184–192.

    PubMed  CAS  Google Scholar 

  315. Robbe D, Alonso G, Manzoni OJ. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens. Ann N Y Acad Sci 2003;1003:212–225.

    PubMed  CAS  Google Scholar 

  316. Robbe D, Kopf M, Remaury A, et al. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA 2002;99(12):8384–8388.

    PubMed  CAS  Google Scholar 

  317. Collins DR, Davies SN. Arachidonic acid metabolites and the synaptic potentiation evoked by activation of metabotropic glutamate receptors. Eur J Pharmacol 1998;342(2–3):213–216.

    PubMed  CAS  Google Scholar 

  318. Collins DR, Smith RC, Davies SN. Interactions between arachidonic acid and metabotropic glutamate receptors in the induction of synaptic potentiation in the rat hippocampal slice. Eur J Pharmacol 1995;294(1):147–154.

    PubMed  CAS  Google Scholar 

  319. Hartell NA. Inhibition of cGMP breakdown promotes the induction of cerebellar long-term depression. J Neurosci 1996;16(9):2881–2890.

    PubMed  CAS  Google Scholar 

  320. Lev-Ram V, Makings LR, Keitz PF, et al. Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 1995;15(2):407–415.

    PubMed  CAS  Google Scholar 

  321. Lev-Ram V, Nebyelul Z, Ellisman MH, et al. Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn Mem 1997;4(1):169–177.

    PubMed  CAS  Google Scholar 

  322. Riedel G. Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci 1996;19(6):219–224.

    PubMed  CAS  Google Scholar 

  323. Simonyi A, Schachtman TR, Christoffersen GR. The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News Perspect 2005;18(6):353–361.

    PubMed  CAS  Google Scholar 

  324. Spooren W, Ballard T, Gasparini F, et al. Insight into the function of group I and group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 2003;14(4):257–277.

    PubMed  CAS  Google Scholar 

  325. Campbell UC, Lalwani K, Hernandez L, et al. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology (Berl) 2004;175(3):310–318.

    CAS  Google Scholar 

  326. Gravius A, Pietraszek M, Schmidt WJ, et al. Functional interaction of NMDA and group I metabotropic glutamate receptors in negatively reinforced learning in rats. Psychopharmacology (Berl) 2006;185(1):58–65.

    CAS  Google Scholar 

  327. Aiba A, Chen C, Herrup K, et al. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 1994;79(2):365–375.

    PubMed  CAS  Google Scholar 

  328. Naie K, Manahan-Vaughan D. Pharmacological antagonism of metabotropic glutamate receptor 1 regulates long-term potentiation and spatial reference memory in the dentate gyrus of freely moving rats via N-methyl-D-aspartate and metabotropic glutamate receptor–dependent mechanisms. Eur J Neurosci 2005;21(2):411–421.

    PubMed  Google Scholar 

  329. Naie K, Manahan-Vaughan D. Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for learning and memory formation. Cereb Cortex 2004;14(2):189–198.

    PubMed  Google Scholar 

  330. Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 2000;288(5469): 1254–1257.

    PubMed  CAS  Google Scholar 

  331. Manahan-Vaughan D, Ngomba RT, Storto M, et al. An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path–dentate gyrus synapse in freely moving rats. Neuropharmacology 2003;44(1):17–25.

    PubMed  CAS  Google Scholar 

  332. Zho WM, You JL, Huang CC, et al. The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J Neurosci 2002;22(20):8838–8849.

    PubMed  CAS  Google Scholar 

  333. Snyder EM, Philpot BD, Huber KM et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 2001;4(11):1079–1085.

    PubMed  CAS  Google Scholar 

  334. Rodrigues SM, Bauer EP, Farb CR, et al. The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci 2002;22(12):5219–5229.

    PubMed  CAS  Google Scholar 

  335. Schulz B, Fendt M, Gasparini F, et al. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 2001;41(1):1–7.

    PubMed  CAS  Google Scholar 

  336. Miserendino MJ, Sananes CB, Melia KR, et al. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 1990;345(6277):716–718.

    PubMed  CAS  Google Scholar 

  337. Lamprecht R, Farb CR, LeDoux JE. Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex. Neuron 2002;36(4):727–738.

    PubMed  CAS  Google Scholar 

  338. Rodrigues SM, Schafe GE, LeDoux JE. Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 2004;44(1):75–91.

    PubMed  CAS  Google Scholar 

  339. Jia Z, Lu Y, Henderson J, et al. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem 1998;5(4–5):331–343.

    PubMed  CAS  Google Scholar 

  340. Schafe GE, Nadel NV, Sullivan GM, et al. Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem 1999;6(2):97–110.

    PubMed  CAS  Google Scholar 

  341. Mayford M, Bach ME, Huang YY, et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 1996;274(5293):1678–1683.

    PubMed  CAS  Google Scholar 

  342. Wang H, Shimizu E, Tang YP, et al. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc Natl Acad Sci USA 2003;100(7):4287–4292.

    PubMed  CAS  Google Scholar 

  343. Schafe GE, Atkins CM, Swank MW, et al. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 2000;20(21):8177–8187.

    PubMed  CAS  Google Scholar 

  344. Schafe GE, LeDoux JE. Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 2000;20(18):RC96.

    PubMed  CAS  Google Scholar 

  345. Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 2004;5(1):45–54.

    PubMed  CAS  Google Scholar 

  346. Varney MA, Gereau RW. Metabotropic glutamate receptor involvement in models of acute and persistent pain: prospects for the development of novel analgesics. Curr Drug Targets CNS Neurol Disord 2002;1(3):283–296.

    PubMed  CAS  Google Scholar 

  347. Bhave G, Karim F, Carlton SM, et al. Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 2001;4(4):417–423.

    PubMed  CAS  Google Scholar 

  348. Walker K, Reeve A, Bowes M, et al. mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology 2001;40(1):10–19.

    Google Scholar 

  349. Adwanikar H, Karim F, Gereau RW. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain 2004;111(1–2):125–135.

    PubMed  CAS  Google Scholar 

  350. Karim F, Hu HJ, Adwanikar H, et al. Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK). Mol Pain 2006;2(1):2.

    PubMed  Google Scholar 

  351. Gwak YS, Hulsebosch CE. Upregulation of group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp Neurol 2005;195(1):236–243.

    PubMed  CAS  Google Scholar 

  352. Fisher K, Coderre TJ. Hyperalgesia and allodynia induced by intrathecal (RS)-dihydroxyphenylglycine in rats. Neuroreport 1998;9(6):1169–1172.

    PubMed  CAS  Google Scholar 

  353. Karim F, Bhave G, Gereau RW. Metabotropic glutamate receptors on peripheral sensory neuron terminals as targets for the development of novel analgesics. Mol Psychiatry 2001;6(6):615–617.

    PubMed  CAS  Google Scholar 

  354. Neugebauer V, Chen PS, Willis WD. Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J Neurophysiol 1999;82(1):272–282.

    PubMed  CAS  Google Scholar 

  355. Neugebauer V, Lucke T, Schaible HG. Requirement of metabotropic glutamate receptors for the generation of inflammation-evoked hyperexcitability in rat spinal cord neurons. Eur J Neurosci 1994;6(7):1179–1186.

    PubMed  CAS  Google Scholar 

  356. Neugebauer V, Li W, Bird GC, et al. Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003;23(1):52–63.

    PubMed  CAS  Google Scholar 

  357. Li W, Neugebauer V. Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004;91(1):13–24.

    PubMed  CAS  Google Scholar 

  358. Neugebauer V, Li W, Bird GC, et al. The amygdala and persistent pain. Neuroscientist 2004;10(3):221–234.

    PubMed  Google Scholar 

  359. Fields HL, Basbaum AI. Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol 1978;40:217–248.

    PubMed  CAS  Google Scholar 

  360. Heinricher MM, Ingram SL. The brainstem and nociceptive modulation. In: Handbook of the Senses, Academic Press: London; 2006.

    Google Scholar 

  361. Maione S, Marabese I, Leyva J, et al. Characterisation of mGluRs which modulate nociception in the PAG of the mouse. Neuropharmacology 1998;37(12):1475–1483.

    PubMed  CAS  Google Scholar 

  362. Maione S, Oliva P, Marabese I, et al. Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception. Pain 2000;85(1–2):183–189.

    PubMed  CAS  Google Scholar 

  363. de Novellis V, Marabese I, Palazzo E, et al. Group I metabotropic glutamate receptors modulate glutamate and gamma-aminobutyric acid release in the periaqueductal grey of rats. Eur J Pharmacol 2003;462(1–3):73–81.

    PubMed  Google Scholar 

  364. Drew GM, Vaughan CW. Multiple metabotropic glutamate receptor subtypes modulate GABAergic neurotransmission in rat periaqueductal grey neurons in vitro. Neuropharmacology 2004;46(7):927–934.

    PubMed  CAS  Google Scholar 

  365. Azkue JJ, Knopfel T, Kuhn R, et al. Distribution of the metabotropic glutamate receptor subtype mGluR5 in rat midbrain periaqueductal grey and relationship with ascending spinofugal afferents. Neurosci Lett 1997;228(1):1–4.

    PubMed  CAS  Google Scholar 

  366. Palazzo E, Marabese I, de Novellis V, et al. Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception. Neuropharmacology 2001;40(3):319–326.

    PubMed  CAS  Google Scholar 

  367. Jones S, Bonci A. Synaptic plasticity and drug addiction. Curr Opin Pharmacol 2005;5(1):20–25.

    PubMed  CAS  Google Scholar 

  368. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005;162(8):1403–1413.

    PubMed  Google Scholar 

  369. Schultz W. Getting formal with dopamine and reward. Neuron 2002;36(2):241–263.

    PubMed  CAS  Google Scholar 

  370. Mercuri NB, Stratta F, Calabresi P, et al. Electrophysiological evidence for the presence of ionotropic and metabotropic excitatory amino acid receptors on dopaminergic neurons of the rat mesencephalon: an in vitro study. Funct Neurol 1992;7(3):231–234.

    PubMed  CAS  Google Scholar 

  371. Zheng F, Johnson SW. Group I metabotropic glutamate receptor–mediated enhancement of dopamine cell burst firing in rat ventral tegmental area in vitro. Brain Res 2002;948(1–2):171–174.

    PubMed  CAS  Google Scholar 

  372. Tozzi A, Bengtson CP, Longone P, et al. Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 2003;18(8):2133–2145.

    PubMed  Google Scholar 

  373. Prisco S, Natoli S, Bernardi G, et al. Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 2002;42(3):289–296.

    PubMed  CAS  Google Scholar 

  374. Morikawa H, Khodakhah K, Williams JT. Two intracellular pathways mediate metabotropic glutamate receptor–induced Ca2+ mobilization in dopamine neurons. J Neurosci 2003;23(1):149–157.

    PubMed  CAS  Google Scholar 

  375. Katayama J, Akaike N, Nabekura J. Characterization of pre- and post-synaptic metabotropic glutamate receptor–mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res 2003;45(1):101–115.

    PubMed  CAS  Google Scholar 

  376. Berthele A, Laurie DJ, Platzer S, et al. Differential expression of rat and human type I metabotropic glutamate receptor splice variant messenger RNAs. Neuroscience 1998;85(3):733–749.

    PubMed  CAS  Google Scholar 

  377. Berthele A, Platzer S, Laurie DJ, et al. Expression of metabotropic glutamate receptor subtype mRNA (mGluR1–8) in human cerebellum. Neuroreport 1999;10(18):3861–3867.

    PubMed  CAS  Google Scholar 

  378. Hansel C, Linden DJ. Long-term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuron 2000;26(2):473–482.

    PubMed  CAS  Google Scholar 

  379. Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005;6(10):787–798.

    PubMed  CAS  Google Scholar 

  380. Rouse ST, Marino MJ, Bradley SR, et al. Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 2000;88(3):427–435.

    PubMed  CAS  Google Scholar 

  381. Calabresi P, Pisani A, Mercuri NB, et al. Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur J Neurosci 1992;4(10):929–935.

    PubMed  Google Scholar 

  382. Calabresi P, Pisani A, Mercuri NB, et al. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 1996;19(1):19–24.

    PubMed  CAS  Google Scholar 

  383. Berridge MJ. Neuronal calcium signaling. Neuron 1998;21(1):13–26.

    PubMed  CAS  Google Scholar 

  384. Calabresi P, Pisani A, Mercuri NB, et al. Post-receptor mechanisms underlying striatal long-term depression. J Neurosci 1994;14(8):4871–4881.

    PubMed  CAS  Google Scholar 

  385. Calabresi P, Maj R, Mercuri NB, et al. Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 1992;142(1):95–99.

    PubMed  CAS  Google Scholar 

  386. Gubellini P, Saulle E, Centonze D, et al. Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 2003;44(1):8–16.

    PubMed  CAS  Google Scholar 

  387. Chiamulera C, Epping-Jordan MP, Zocchi A, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001;4(9):873–874.

    PubMed  CAS  Google Scholar 

  388. Yang L, Mao L, Tang Q, et al. A novel Ca2+-independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons. J Neurosci 2004;24(48): 10846–10857.

    PubMed  CAS  Google Scholar 

  389. Mao L, Yang L, Tang Q, et al. The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 2005;25(10):2741–2752.

    PubMed  CAS  Google Scholar 

  390. Canales JJ, Elayadi A, Errami M, et al. Chronic hyperammonemia alters motor and neurochemical responses to activation of group I metabotropic glutamate receptors in the nucleus accumbens in rats in vivo. Neurobiol Dis 2003;14(3):380–390.

    PubMed  CAS  Google Scholar 

  391. Condorelli DF, Dell’Albani P, Amico C, et al. Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures. J Neurochem 1993;60(3):877–885.

    PubMed  CAS  Google Scholar 

  392. Luyt K, Varadi A, Halfpenny CA, et al. Metabotropic glutamate receptors are expressed in adult human glial progenitor cells. Biochem Biophys Res Commun 2004;319(1):120–129.

    PubMed  CAS  Google Scholar 

  393. Schools GP, Kimelberg HK. mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J Neurosci Res 1999;58(4):533–543.

    PubMed  CAS  Google Scholar 

  394. Miller S, Cotman CW, Bridges RJ. 1-Aminocyclopentane-trans-1,3-dicarboxylic acid induces glutamine synthetase activity in cultured astrocytes. J Neurochem 1992;58(5):1967–1970.

    PubMed  CAS  Google Scholar 

  395. Vermeiren C, Najimi M, Vanhoutte N, et al. Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 2005;94(2): 405–416.

    PubMed  CAS  Google Scholar 

  396. Aronica E, Gorter JA, Ijlst-Keizers H, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 2003;17(10):2106–2118.

    PubMed  Google Scholar 

  397. Ciccarelli R, Sureda FX, Casabona G, et al. Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture. Glia 1997;21(4):390–398.

    PubMed  CAS  Google Scholar 

  398. Cornell-Bell AH, Finkbeiner SM, Cooper MS, et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 1990;247(4941):470–473.

    PubMed  CAS  Google Scholar 

  399. Nakahara K, Okada M, Nakanishi S. The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J Neurochem 1997;69(4):1467–1475.

    PubMed  CAS  Google Scholar 

  400. Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998;391(6664):281–285.

    PubMed  CAS  Google Scholar 

  401. Sanzgiri RP, Araque A, Haydon PG. Prostaglandin E(2) stimulates glutamate receptor–dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 1999;41(2):221–229.

    PubMed  CAS  Google Scholar 

  402. Toms NJ, Roberts PJ. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 1999;38(10):1511–1517.

    PubMed  CAS  Google Scholar 

  403. Ferraguti F, Corti C, Valerio E, et al. Activated astrocytes in areas of kainate-induced neuronal injury upregulate the expression of the metabotropic glutamate receptors 2/3 and 5. Exp Brain Res 2001;137(1):1–11.

    PubMed  CAS  Google Scholar 

  404. Aronica E, Gorter JA, Rozemuller AJ, et al. Activation of metabotropic glutamate receptor 3 enhances interleukin (IL)-1beta–stimulated release of IL-6 in cultured human astrocytes. Neuroscience 2005;130(4):927–933.

    PubMed  CAS  Google Scholar 

  405. Aronica E, Gorter JA, Rozemuller AJ, et al. Interleukin-1 beta down-regulates the expression of metabotropic glutamate receptor 5 in cultured human astrocytes. J Neuroimmunol 2005;160(1–2):188–194.

    PubMed  CAS  Google Scholar 

  406. Strasser U, Lobner D, Behrens MM, et al. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J Neurosci 1998;10(9):2848–2855.

    PubMed  CAS  Google Scholar 

  407. Aleppo G, Pisani A, Copani A, et al. Metabotropic glutamate receptors and neuronal toxicity. Adv Exp Med Biol 1992;318:137–145.

    PubMed  CAS  Google Scholar 

  408. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J 1992;6(15):3338–3344.

    Google Scholar 

  409. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000;130(4S Suppl):1007S–10015S.

    Google Scholar 

  410. Nicoletti F, Bruno V, Catania MV, et al. Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology 1999;38(10):1477–1484.

    PubMed  CAS  Google Scholar 

  411. Kelland EE, Toms NJ. Group I metabotropic glutamate receptors limit AMPA receptor–mediated oligodendrocyte progenitor cell death. Eur J Pharmacol 2001;424(3):R3–R4.

    PubMed  CAS  Google Scholar 

  412. Maiese K, Vincent AM. Group I metabotropic receptors down-regulate nitric oxide induced caspase-3 activity in rat hippocampal neurons. Neurosci Lett 1999;264(1–3):17–20.

    PubMed  CAS  Google Scholar 

  413. Kalda A, Kaasik A, Vassiljev V, et al. Neuroprotective action of group I metabotropic glutamate receptor agonists against oxygen-glucose deprivation–induced neuronal death. Brain Res 2000;853(2):370–373.

    PubMed  CAS  Google Scholar 

  414. Baskys A, Fang L, Bayazitov I. Activation of neuroprotective pathways by metabotropic group I glutamate receptors: a potential target for drug discovery? Ann N Y Acad Sci 2005;1053:55–73.

    PubMed  CAS  Google Scholar 

  415. Micheli F. Methylphenylethynylpyridine (MPEP) Novartis. Curr Opin Investig Drugs 2000;1(3):355–359.

    PubMed  CAS  Google Scholar 

  416. Flor PJ, Battaglia G, Nicoletti F, et al. Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 2002;513:197–223.

    PubMed  CAS  Google Scholar 

  417. Bruno V, Ksiazek I, Battaglia G, et al. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective. Neuropharmacology 2000; 39(12):2223–2230.

    PubMed  CAS  Google Scholar 

  418. Bao WL, Williams AJ, Faden AI, et al. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 2001;922(2):173–179.

    PubMed  CAS  Google Scholar 

  419. Rao AM, Hatcher JF, Dempsey RJ. Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil. Neurosci Lett 2000;293(1):1–4.

    PubMed  CAS  Google Scholar 

  420. Battaglia G, Bruno V, Pisani A, et al. Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 2001;17(6):1071–1083.

    PubMed  CAS  Google Scholar 

  421. Cuellar JC, Griffith EL, Merlin LR. Contrasting roles of protein kinase C in induction versus suppression of group I mGluR–mediated epileptogenesis in vitro. J Neurophysiol 2005;94(5):3643–2367.

    PubMed  CAS  Google Scholar 

  422. Chen J, Larionov S, Pitsch J, et al. Expression analysis of metabotropic glutamate receptors I and III in mouse strains with different susceptibility to experimental temporal lobe epilepsy. Neurosci Lett 2005;375(3):192–197.

    PubMed  CAS  Google Scholar 

  423. Gong QZ, Delahunty TM, Hamm RJ, et al. Metabotropic glutamate antagonist, MCPG, treatment of traumatic brain injury in rats. Brain Res 1995;700(1–2):299–302.

    PubMed  CAS  Google Scholar 

  424. Floyd CL, Rzigalinski BA, Sitterding HA, et al. Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. J Neurotrauma 2004;21(2):205–216.

    PubMed  Google Scholar 

  425. Chen T, Willoughby KA, Ellis EF. Group I metabotropic receptor antagonism blocks depletion of calcium stores and reduces potentiated capacitative calcium entry in strain-injured neurons and astrocytes. J Neurotrauma 2004;21(3):271–281.

    PubMed  Google Scholar 

  426. Vermeiren C, Hemptinne I, Vanhoutte N, et al. Loss of metabotropic glutamate receptor–mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis. J Neurochem 2006;96(3):719–731.

    PubMed  CAS  Google Scholar 

  427. Antar LN, Afroz R, Dictenberg JB, et al. Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 2004;24(11):2648–2655.

    PubMed  CAS  Google Scholar 

  428. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004;27(7):370–377.

    PubMed  CAS  Google Scholar 

  429. Vanderklish PW, Edelman GM. Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 2002;99(3):1639–1644.

    PubMed  CAS  Google Scholar 

  430. Bear MF. Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav 2005;4(6):393–398.

    PubMed  CAS  Google Scholar 

  431. McBride SM, Choi CH, Wang Y, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005;45(5):753–764.

    PubMed  CAS  Google Scholar 

  432. Chuang SC, Zhao W, Bauchwitz R, et al. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor–mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci 2005;25(35):8048–8055.

    PubMed  CAS  Google Scholar 

  433. Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991;349(6308):414–418.

    PubMed  CAS  Google Scholar 

  434. Oueslati A, Breysse N, Amalric M, et al. Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism. Eur J Neurosci 2005;22(11):2765–2774.

    PubMed  Google Scholar 

  435. Breysse N, Baunez C, Spooren W, et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 2002;22(13):5669–5678.

    PubMed  CAS  Google Scholar 

  436. Ossowska K, Konieczny J, Wolfarth S, et al. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 2001;41(4):413–420.

    PubMed  CAS  Google Scholar 

  437. Turle-Lorenzo N, Breysse N, Baunez C, et al. Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson’s disease. Psychopharmacology (Berl) 2005;179(1):117–127.

    CAS  Google Scholar 

  438. Wardas J, Pietraszek M, Wolfarth S, et al. The role of metabotropic glutamate receptors in regulation of striatal proenkephalin expression: implications for the therapy of Parkinson’s disease. Neuroscience 2003;122(3):747–756.

    PubMed  CAS  Google Scholar 

  439. Battaglia G, Fornai F, Busceti CL, et al. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 2002;22(6):2135–2141.

    PubMed  CAS  Google Scholar 

  440. Diaz-Cabiale Z, Vivo M, Del Arco A, et al. Metabotropic glutamate mGlu5 receptor–mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 2002;324(2):154–158.

    Google Scholar 

  441. Kachroo A, Orlando LR, Grandy DK, et al. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 2005;25(45):10414–10419.

    PubMed  CAS  Google Scholar 

  442. Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 2004;29(8):1451–1461.

    PubMed  CAS  Google Scholar 

  443. Ulus IH, Wurtman RJ. Metabotropic glutamate receptor agonists increase release of soluble amyloid precursor protein derivatives from rat brain cortical and hippocampal slices. J Pharmacol Exp Ther 1997;281(1):149–154.

    PubMed  CAS  Google Scholar 

  444. Lee RK, Jimenez J, Cox AJ, et al. Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats. Ann N Y Acad Sci 1996;777:338–343.

    PubMed  CAS  Google Scholar 

  445. Lee RK, Wurtman RJ. Metabotropic glutamate receptors increase amyloid precursor protein processing in astrocytes: inhibition by cyclic AMP. J Neurochem 1997;68(5):1830–1835.

    PubMed  CAS  Google Scholar 

  446. Lee RK, Wurtman RJ, Cox AJ, et al. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA 1995;92(17):8083–8087.

    PubMed  CAS  Google Scholar 

  447. Albasanz JL, Dalfo E, Ferrer I, et al. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease–related changes. Neurobiol Dis 2005;20(3):685–693.

    PubMed  CAS  Google Scholar 

  448. Liu F, Gong X, Zhang G, et al. The inhibition of glycogen synthase kinase 3beta by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Abeta peptides. J Neurochem 2005;95(5):1363–1372.

    PubMed  CAS  Google Scholar 

  449. Anborgh PH, Godin C, Pampillo M, et al. Inhibition of metabotropic glutamate receptor signaling by the huntingtin-binding protein optineurin. J Biol Chem 2005;280(41):34840–34848.

    PubMed  CAS  Google Scholar 

  450. Dalfo E, Albasanz JL, Rodriguez A, et al. Abnormal group I metabotropic glutamate receptor expression and signaling in the frontal cortex in Pick disease. J Neuropathol Exp Neurol 2005;64(7):638–647.

    PubMed  CAS  Google Scholar 

  451. Swanson CJ, Bures M, Johnson MP, et al. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005;4(2): 131–144.

    PubMed  CAS  Google Scholar 

  452. Woods JH, Katz JL, Winger G. Benzodiazepines: use, abuse, and consequences. Pharmacol Rev 1992;44(2):151–347.

    PubMed  CAS  Google Scholar 

  453. Spooren W, Gasparini F. mGlu5 receptor antagonists: a novel class of anxiolytics? Drug News Perspect 2004;17(4):251–257.

    PubMed  CAS  Google Scholar 

  454. Goldberg ME, Salama AI, Patel JB, et al. Novel non-benzodiazepine anxiolytics. Neuropharmacology 1983;22(12B):1499–1504.

    PubMed  CAS  Google Scholar 

  455. Patel JB, Martin C, Malick JB. Differential antagonism of the anticonflict effects of typical and atypical anxiolytics. Eur J Pharmacol 1982;86(2):295–298.

    PubMed  CAS  Google Scholar 

  456. Pecknold JC, McClure DJ, Appeltauer L, et al. Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J Clin Psychopharmacol 1982;2(2):129–133.

    PubMed  CAS  Google Scholar 

  457. Friedmann C, Davis L, Ciccone P, et al. Phase II double blind controlled study of a new anxiolytic, fenobam (McN-3377) vs placebo. Curr Therapeut Res 1980;27:144–151.

    Google Scholar 

  458. Spooren WP, Vassout A, Neijt HC, et al. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenyl\-ethynyl)pyridine in rodents. J Pharmacol Exp Ther 2000;295(3):1267–1275.

    PubMed  CAS  Google Scholar 

  459. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, et al. Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 2001;132(7):1423–1430.

    PubMed  CAS  Google Scholar 

  460. Spooren WP, Schoeffter P, Gasparini F, et al. Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur J Pharmacol 2002;435(2–3):161–170.

    PubMed  CAS  Google Scholar 

  461. Ballard TM, Woolley ML, Prinssen E, et al. The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology (Berl) 2005;179(1):218–229.

    CAS  Google Scholar 

  462. Riedel G, Casabona G, Platt B, et al. Fear conditioning–induced time- and subregion-specific increase in expression of mGlu5 receptor protein in rat hippocampus. Neuropharmacology 2000;39(11):1943–1951.

    PubMed  CAS  Google Scholar 

  463. Everitt BJ, Wolf ME. Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 2002;22(9):3312–3320.

    PubMed  CAS  Google Scholar 

  464. Robbins TW, Everitt BJ. Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem 2002;78(3):625–636.

    PubMed  CAS  Google Scholar 

  465. Paladini CA, Fiorillo CD, Morikawa H, et al. Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci 2001;4(3):275–281.

    PubMed  CAS  Google Scholar 

  466. Swanson CJ, Baker DA, Carson D, et al. Repeated cocaine administration attenuates group I metabotropic glutamate receptor–mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 2001;21(22):9043–9052.

    PubMed  CAS  Google Scholar 

  467. Swanson CJ, Kalivas PW. Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J Pharmacol Exp Ther 2000;292(1):406–414.

    PubMed  CAS  Google Scholar 

  468. Mao L, Wang JQ. Motor stimulation following bilateral injection of the group-I metabotropic glutamate receptor agonist into the dorsal striatum of rats: evidence against dependence on ionotropic glutamate receptors. Psychopharmacology (Berl) 2000;148(4):367–373.

    CAS  Google Scholar 

  469. Wang JQ, Mao L. Sustained behavioral stimulation following selective activation of group I metabotropic glutamate receptors in rat striatum. Pharmacol Biochem Behav 2000;65(3):439–447.

    PubMed  CAS  Google Scholar 

  470. Harrison AA, Gasparini F, Markou A. Nicotine potentiation of brain stimulation reward reversed by DH beta E and SCH 23390, but not by eticlopride, LY 314582 or MPEP in rats. Psychopharmacology (Berl) 2002;160(1):56–66.

    CAS  Google Scholar 

  471. Kenny PJ, Paterson NE, Boutrel B, et al. Metabotropic glutamate 5 receptor antagonist MPEP decreased nicotine and cocaine self-administration but not nicotine and cocaine-induced facilitation of brain reward function in rats. Ann N Y Acad Sci 2003;1003:415–418.

    PubMed  CAS  Google Scholar 

  472. Grueter B, Gosnell H, Olsen C, et al. Extracellular-signal regulated kinase1–dependent metabotropic glutamate receptor 5–induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 2006;26(12):3210–3219.

    PubMed  CAS  Google Scholar 

  473. Kenny PJ, Boutrel B, Gasparini F, et al. Metabotropic glutamate 5 receptor blockade may attenuate cocaine self-administration by decreasing brain reward function in rats. Psychopharmacology (Berl) 2005;179(1):247–254.

    CAS  Google Scholar 

  474. Paterson NE, Semenova S, Gasparini F, et al. The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology (Berl) 2003;167(3):257–264.

    CAS  Google Scholar 

  475. Kenny PJ, Markou A. The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol Sci 2004;25(5):265–272.

    PubMed  CAS  Google Scholar 

  476. Rae C, Moussa Cel H, Griffin JL, et al. Group I and II metabotropic glutamate receptors alter brain cortical metabolic and glutamate/glutamine cycle activity: a 13C NMR spectroscopy and metabolomic study. J Neurochem 2005;92(2):405–416.

    PubMed  CAS  Google Scholar 

  477. Krenz WD, Nguyen D, Perez-Acevedo NL, et al. Group I, II, and III mGluR compounds affect rhythm generation in the gastric circuit of the crustacean stomatogastric ganglion. J Neurophysiol 2000;83(3):1188–1201.

    PubMed  CAS  Google Scholar 

  478. Perez-Acevedo NL, Krenz WD. Metabotropic glutamate receptor agonists modify the pyloric output of the crustacean stomatogastric ganglion. Brain Res 2005;1062(1–2):1–8.

    PubMed  CAS  Google Scholar 

  479. Brice NL, Varadi A, Ashcroft SJ, et al. Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia 2002;45(2):242–252.

    PubMed  CAS  Google Scholar 

  480. Gill SS, Pulido OM, Mueller RW, et al. Immunochemical localization of the metabotropic glutamate receptors in the rat heart. Brain Res Bull 1999;48(2):143–146.

    PubMed  CAS  Google Scholar 

  481. Mueller RW, Gill SS, Pulido OM. The monkey (Macaca fascicularis) heart neural structures and conducting system: an immunochemical study of selected neural biomarkers and glutamate receptors. Toxicol Pathol 2003;31(2):227–234.

    PubMed  CAS  Google Scholar 

  482. Foley CM, Vogl HW, Mueller PJ, et al. Cardiovascular response to group I metabotropic glutamate receptor activation in NTS. Am J Physiol 1999;276(5 Pt 2):R1469–R1478.

    PubMed  CAS  Google Scholar 

  483. Tsuchihashi T, Liu Y, Kagiyama S, et al. Metabotropic glutamate receptor subtypes involved in cardiovascular regulation in the rostral ventrolateral medulla of rats. Brain Res Bull 2000;52(4):279–283.

    PubMed  CAS  Google Scholar 

  484. Tsuchihashi T, Abe I, Fujishima M. Role of metabotropic glutamate receptors in ventrolateral medulla of hypertensive rats. Hypertension 1994;24(6):648–652.

    PubMed  CAS  Google Scholar 

  485. Li XC, Beart PM, Monn JA, et al. Type I and II metabotropic glutamate receptor agonists and antagonists evoke cardiovascular effects after intrathecal administration in conscious rats. Br J Pharmacol 1999;128(3):823–829.

    PubMed  CAS  Google Scholar 

  486. Celuch SM, Garcia Mdel C. Activation of spinal metabotropic glutamate receptors elicits cardiovascular responses in pentobarbital anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 2002;366(4):343–349.

    PubMed  CAS  Google Scholar 

  487. Hofman S, Azerad J, Boucher Y. Effects of excitatory amino acid receptor antagonists on pulpal blood flow of the rat mandibular incisor. J Dent Res 2002;81(4):253–258.

    PubMed  CAS  Google Scholar 

  488. Gu Y, Publicover SJ. Expression of functional metabotropic glutamate receptors in primary cultured rat osteoblasts. Cross-talk wit? N-methyl-D-aspartate receptors. J Biol Chem 2000;275(44):34252–34259.

    Google Scholar 

  489. Chenu C. Glutamatergic innervation in bone. Microsc Res Tech 2002;58(2):70–76.

    PubMed  CAS  Google Scholar 

  490. Foreman MA, Gu Y, Howl JD, et al. Group III metabotropic glutamate receptor activation inhibits Ca2+ influx and nitric oxide synthase activity in bone marrow stromal cells. J Cell Physiol 2005;204(2):704–713.

    PubMed  CAS  Google Scholar 

  491. Yoneda Y, Hinoi E. Functional expression of machineries for glutamate signaling in bone [in Japanese]. Nippon Yakurigaku Zasshi 2003;122(Suppl):14P–17P.

    PubMed  Google Scholar 

  492. Kalariti N, Lembessis P, Koutsilieris M. Characterization of the glutametergic system in MG-63 osteoblast-like osteosarcoma cells. Anticancer Res 2004;24(6):3923–3929.

    PubMed  CAS  Google Scholar 

  493. Boldyrev AA, Carpenter DO, Johnson P. Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J Neurochem 2005;95(4):913–918.

    PubMed  CAS  Google Scholar 

  494. Storto M, de Grazia U, Battaglia G, et al. Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J Neuroimmunol 2000;109(2):112–120.

    Google Scholar 

  495. Pacheco R, Ciruela F, Casado V, et al. Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation. J Biol Chem 2004;279(32):33352–33358.

    PubMed  CAS  Google Scholar 

  496. Collard CD, Park KA, Montalto MC, et al. Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 2002;277(17):14801–14811.

    PubMed  CAS  Google Scholar 

  497. Reichel A, Begley DJ, Abbott NJ. Carrier-mediated delivery of metabotrophic glutamate receptor ligands to the central nervous system: structural tolerance and potential of the L-system amino acid transporter at the blood–brain barrier. J Cereb Blood Flow Metab 2000;20(1):168–174.

    PubMed  CAS  Google Scholar 

  498. Pollock PM, Cohen-Solal K, Sood R, et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 2003;34(1):108–112.

    PubMed  CAS  Google Scholar 

  499. Marin YE, Namkoong J, Shin SS, et al. Grm5 expression is not required for the oncogenic role of Grm1 in melanocytes. Neuropharmacology 2005;49 Suppl 1:70–79.

    PubMed  CAS  Google Scholar 

  500. Marin YE, Namkoong J, Cohen-Solal K, et al. Stimulation of oncogenic metabotropic glutamate receptor 1 in melanoma cells activates ERK1/2 via PKCepsilon. Cell Signal 2006;18:1279–1286.

    PubMed  CAS  Google Scholar 

  501. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281–297.

    PubMed  CAS  Google Scholar 

  502. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23(20):4051–4060.

    PubMed  CAS  Google Scholar 

  503. Saugstad JA, Pignataro G, Yomamoto A, et al. Regulation of microRNA expression by ischemia and ischemic preconditioning. In: Abstracts Society for Neuroscience 35th Annual Meeting 2005.

    Google Scholar 

  504. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004;18(5):504–511.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Saugstad, J.A., Ingram, S.L. (2008). Group I Metabotropic Glutamate Receptors (mGlu1 and mGlu5). In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_10

Download citation

Publish with us

Policies and ethics