Skip to main content

Anti-VEGF Therapies for Diseases of the Retina and Choroid

  • Chapter
Ocular Angiogenesis

Part of the book series: Opthalmology Research ((OPHRES))

  • 897 Accesses

Abstract

Angiogenesis, and the closely related problems of ischemia and vascular leakage, play an important role in a spectrum of ocular diseases. A variety of angiogenic and angiostatic factors have been identified in the pathological neovascularization of the retina and choroid. This chapter reviews the major retinal and choroidal neovascular diseases, and focuses on the rationale and current therapeutic attempts with anti-vascular endothelial growth factor (VEGF) strategies, as well as the drug delivery modalities to the loci of pathological neovascularization. The term “neovascularization” has been used to describe the development of pathological new vessels and is considered synonymous with angiogenesis in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamis AP, Aiello LP, D’ Amato RA. Angiogenesis and ophthalmic disease. Angiogenesis 1999;3:9–14.

    Article  PubMed  CAS  Google Scholar 

  2. Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol 2000;184:301–310.

    Article  PubMed  CAS  Google Scholar 

  3. Witmer AN, Vrensen GF, Van Noorden CJ, et al. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003;22:1–29.

    Article  PubMed  CAS  Google Scholar 

  4. Miyamoto K, et al. In vivo demonstration of increased leukocyte entrapment in retinal microciculation of diabetic rats. Invest Ophthalmol Vis Sci 1998;39:2190–2194.

    PubMed  CAS  Google Scholar 

  5. Frank RN. Diabetic retinopathy. N Engl J Med 2004;350:48–58.

    Article  PubMed  CAS  Google Scholar 

  6. Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. Diabetes Care 1998;21:143–156.

    PubMed  CAS  Google Scholar 

  7. Michaelson I. The mode of development of the vascular system of the retina with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 1948;68:137–180.

    Google Scholar 

  8. Ashton N. Neovascularization in ocular disease. Transfusion (Paris) 1961;81:145–161

    Google Scholar 

  9. Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes/Metabolism Rev 1997;13:37–50.

    Article  CAS  Google Scholar 

  10. Massin P, Audren F, Haouchine B, et al. Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology 2004;111:218–224.

    Article  PubMed  Google Scholar 

  11. Gotzaridis EV, Lit ES, D’ Amico DJ. Progress in vitreoretinal surgery for proliferative diabetic retinopathy. Sem Ophthalmol 2001;16:31–40.

    Article  CAS  Google Scholar 

  12. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  13. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575–583.

    Article  PubMed  CAS  Google Scholar 

  14. Meyer M, Clauss M, Lepple-Wienhues A, et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 1999;18:363–374.

    Article  PubMed  CAS  Google Scholar 

  15. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–985.

    Article  PubMed  CAS  Google Scholar 

  16. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851–858.

    Article  PubMed  CAS  Google Scholar 

  17. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989;246:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  18. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  19. Clauss M, Gerlach M, Gerlach B, et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990;172:1535–1545.

    Article  PubMed  CAS  Google Scholar 

  20. Burchardt M, Burchardt T, Chen MW, et al. Expression of mRNA splice variants for VEGF in the penis of adult rats and humans. Biol Reprod 1999;60:398–404.

    Article  PubMed  CAS  Google Scholar 

  21. Houck KA, Leung DW, Rowland AM, et al. Dual regulation of vascular endothelial growth factor. J Biol Chem 1992;267:26,031–26,037.

    PubMed  CAS  Google Scholar 

  22. Senger D, Connolly D, Van De Water L, et al. Purification and NH2-terminal amino acid sequence of guinea pig tumor secreted VPF. Cancer Res 1990;50:1774–1778.

    PubMed  CAS  Google Scholar 

  23. Ambati J, Ambati BK, Yoo SH, et al. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003;48:257–293.

    Article  PubMed  Google Scholar 

  24. Plate KH, Brier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 1992;359:845–848.

    Article  PubMed  CAS  Google Scholar 

  25. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845.

    Article  PubMed  CAS  Google Scholar 

  26. Cao Y, Linden P, Shima D, Browne F, Folkman J. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin Invest 1996;98:2507–2511.

    PubMed  CAS  Google Scholar 

  27. Blaauwgeers HG, Holtkamp GM, Rutten H, et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 1999;155:421–428.

    PubMed  CAS  Google Scholar 

  28. Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Nat Acad Sci USA 1998;95:15,809–15,814.

    Article  PubMed  CAS  Google Scholar 

  29. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993;72:835–846.

    Article  PubMed  CAS  Google Scholar 

  30. De Vries C Escobedo JA Ueno H et al. The fms-like tyrosine kinase a receptor for VEGF. Science 1992;255:989–991

    Google Scholar 

  31. Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996;122;3829-3837.

    Google Scholar 

  32. Carmeliet P, Ferreira V, Breir G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.

    Article  PubMed  CAS  Google Scholar 

  33. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGFreceptor-3. Science 1998;282:946–949.

    Article  PubMed  CAS  Google Scholar 

  34. Fong G-H, Rossant J, Gertssenstein M, Breitman ML. Role of the flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376:66–70.

    Article  PubMed  CAS  Google Scholar 

  35. Shalaby F, Rossand J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 1995;376:62–66.

    Article  PubMed  CAS  Google Scholar 

  36. Adamis AP, Shima DT, Tolentino M, et al. Inhibition of VEGF prevents retinal ischemiaassociated iris neovascularization in a primate. Arch Ophthalmol 1996;114:66–71.

    PubMed  CAS  Google Scholar 

  37. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Nat Acad Sci USA 1995;92:10,457–10,461.

    Article  PubMed  CAS  Google Scholar 

  38. Miller J, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994;145:574–584.

    PubMed  CAS  Google Scholar 

  39. Pe’er J, Shweiki D, Itin A, Hemo I, Gnessin H, Keshet E. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 1995;72:638–645.

    PubMed  CAS  Google Scholar 

  40. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LEH. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 1995;2:905–909.

    Article  Google Scholar 

  41. Shima DT, Deutsch U, D’Amore PA. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett 1995;370:203–208.

    Article  PubMed  CAS  Google Scholar 

  42. Adamis AP, Miller J, Bernal M, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994;118:445–450.

    PubMed  CAS  Google Scholar 

  43. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Eng J Med 1994;331:1480–1487.

    Article  CAS  Google Scholar 

  44. Adamis AP, Shima DT, Yeo KT, et al. Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 1993;193:631–638.

    Article  PubMed  CAS  Google Scholar 

  45. Thieme H, Aiello LP, Takagi H, Ferrara N, King GL. Comparative analysis of vascular endothelial growth factor receptors on retinal and aortic vascular endothelial cells. Diabetes 1995;44:98–103.

    Article  PubMed  CAS  Google Scholar 

  46. Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 1996;98:2018–2026.

    PubMed  CAS  Google Scholar 

  47. Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreal injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 1996;103:1820–1828.

    PubMed  CAS  Google Scholar 

  48. Tolentino MT, Miller JW, Gragoudas ES, Chatzistefanou K, Ferrara N, Adamis AP. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a non-human primate. Arch Ophthalmol 1996;114:964–970.

    PubMed  CAS  Google Scholar 

  49. Ozaki H, Seo MS, Ozaki K, et al. Blockade of VEGF receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000;156:697–707.

    PubMed  CAS  Google Scholar 

  50. Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K. The relation between expression of vascular endothelial growth factor and breakdown of the blood retinal barrier in diabetic rat retinas. Lab Invest 1996;74:819–825.

    PubMed  CAS  Google Scholar 

  51. Sone H, Kawakami Y, Okuda Y, et al. Ocular vascular endothelial growth factor levels in diabetic rats are elevated before observable retinal proliferative changes. Diabetologia 1997;40:726–730.

    Article  PubMed  CAS  Google Scholar 

  52. Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 1997;38:36–47.

    PubMed  CAS  Google Scholar 

  53. Pe’er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E. Vascular endothelial growth factor upregulation in human central retinal vein occlusion. Ophthalmology 1998;105:412–416.

    Article  PubMed  CAS  Google Scholar 

  54. Malecaze F, Clamens S, Simorre-Pinatel V, et al. Detection of vascular endothelial growth factor messanger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994;112:1476–1482.

    PubMed  CAS  Google Scholar 

  55. Lutty GA, McLeod S, Merges C, et al. Localization of VEGF in human retina and choroid. Arch Ophthalmol 1996;114:971–977.

    PubMed  CAS  Google Scholar 

  56. Williams B, Gallacher B, Patel H, Orme C. Glucose-induced protein kinase C activation regulates VPF mRNA expression and peptide production by human smooth muscle cells in vitro. Diabetes 1997;46:1497–1503.

    Article  PubMed  CAS  Google Scholar 

  57. Til ton RG, Kawamura T, Chang KC, et al. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest 1997;99:2192–2202.

    Google Scholar 

  58. Lu M, Kuroki M, Amano S, et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 1998;101:1219–1224.

    PubMed  CAS  Google Scholar 

  59. Lu M, Perez VL, Ma N, et al. VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci 1999;40:1808–1812.

    PubMed  CAS  Google Scholar 

  60. Miyamoto K, Khosrof S, Bursell SE, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 2000;156:1733–1739.

    PubMed  CAS  Google Scholar 

  61. Paques M, Boval B, Richard S, et al. Evaluation of fluorescein-labeled autologous leukocytes for examination of retinal circulation in humans. Curr Eye Res 2000;21:560–565.

    Article  PubMed  CAS  Google Scholar 

  62. Hofman P, Van Blijswijk BC, Gaillard PJ, Vrensen GF, Schlingemann RO. Endothelial cell hypertrophy induced by vascular endothelial growth factor in the retina: new insights into the pathogenesis of capillary nonperfusion. Arch Ophthalmol 2001;119:861–866.

    PubMed  CAS  Google Scholar 

  63. Tolentino MJ, McLeod DS, Taomoto M, Otsuji T, Adamis AP, Lutty GA. Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am J Ophthalmol 2002;133:373–385.

    Article  PubMed  CAS  Google Scholar 

  64. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995;270:13,333–13,340.

    Article  PubMed  CAS  Google Scholar 

  65. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996;34:19,761–19,766.

    Google Scholar 

  66. Bouck N. PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med 2002;8:330–334.

    Article  PubMed  CAS  Google Scholar 

  67. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245–248.

    Article  PubMed  CAS  Google Scholar 

  68. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 1994;59:471–482.

    PubMed  CAS  Google Scholar 

  69. O’ Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277–285.

    Article  PubMed  CAS  Google Scholar 

  70. Duh EJ, Yang HS, Suzuma I, et al. Pigment epithelium-derived factor suppresses ischemiainduced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci 2002;43:821–829.

    PubMed  Google Scholar 

  71. Mori K, Gehlbach P, Ando A, et al. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 2002;43:2428–2434.

    PubMed  Google Scholar 

  72. Gao Y, Li D, Zhang S, Gee C, Crosson J Ma. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett 2001;489:270–276.

    Article  PubMed  CAS  Google Scholar 

  73. Spranger J, Osterhoff M, Reimann M, et al. Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 2110;50:2641–2645.

    Google Scholar 

  74. Mori K, Gehlbach P, Yamamoto S, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2000;43:1994–2000.

    Google Scholar 

  75. Raisler BJ, Berns KI, Grant MB, et al. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization. Proc Natl Acad Sci USA 2002;99:8909–8914.

    Article  PubMed  CAS  Google Scholar 

  76. Stellmach V, Crawford SE, Zhou W, et al. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci USA 2001;98:2593–2597.

    Article  PubMed  CAS  Google Scholar 

  77. Wiegand SJ. Angiogenesis 2004, presentation at Bascom Palmer Eye Institute, Miami, FL, 2004.

    Google Scholar 

  78. Duh EJ, Yang HS, Haller JA, et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 2004;137:668–674.

    Article  PubMed  CAS  Google Scholar 

  79. Merimee TJ. Diabetic retinopathy. N Eng J Med 1990;322:978–983.

    Article  CAS  Google Scholar 

  80. Poulsen JE. Recovery from retinopathy in a case of diabetes with Simmonds’ disease. Diabetes 1953;2:7–

    PubMed  CAS  Google Scholar 

  81. Alzaid AA, Dinneen SF, Melton III LJ, Rizza RA. The role of growth hormone in the development of diabetic retinopathy. Diabetes Care 1994;17:531–534.

    Article  PubMed  CAS  Google Scholar 

  82. Grant MB, Russel B, Fitzgerald C, Merimee TJ. Insulin-like growth factors in vitreous: studies in controls and diabetics with neovascularization. Diabetes 1986;35:416–420.

    Article  PubMed  CAS  Google Scholar 

  83. Meyer-Schwickerath R, Pfeiffer A, Blum WF, et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. J Clin Invest 1993;92:2620–2625.

    PubMed  CAS  Google Scholar 

  84. Punglia RS, Lu M, Hsu J, et al. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I. Diabetes 1997;46:1619–1626.

    Article  PubMed  CAS  Google Scholar 

  85. Smith LEH, Shen W, Perruzzi C, et al. Regulation of vascular endothelial growth factordependent receptor neovascularization by IGF-1 receptor. Nat Med 1999;5:1390–1395.

    Article  PubMed  CAS  Google Scholar 

  86. Grant MB, Mames RN, Fitzgerald C, et al. The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy: a randomized controlled study. Diabetes Care 2000;23:504–509.

    Article  PubMed  CAS  Google Scholar 

  87. Smith LEH, Kopchick JJ, Chen W, et al. Essential role of growth hormone in ischemiainduced retinal neovascularization. Science 1997;276:1706–1709.

    Article  PubMed  CAS  Google Scholar 

  88. Smith LEH. Pathogenesis of retinopathy of prematurity. Semin Neonatol 2003;8:469–473.

    Article  PubMed  Google Scholar 

  89. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    Article  PubMed  CAS  Google Scholar 

  90. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000;6:460–463.

    Article  PubMed  CAS  Google Scholar 

  91. Oh H, Takagi H, Suzuma K, et al. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 1999;274:15,732–15,739.

    Article  PubMed  CAS  Google Scholar 

  92. Takagi H, Koyama S, Seike H, et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 2003;44:393–402.

    Article  PubMed  Google Scholar 

  93. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999;286:2511–2514.

    Article  PubMed  CAS  Google Scholar 

  94. Hayreh SS, Zimmerman MB, Podhajsky P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol 1994;117:429–441.

    PubMed  CAS  Google Scholar 

  95. Green WR, Chan CC, Hutchins GM, Terry JM. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Trans Am Ophthalmol Soc 1981;79:371–422.

    PubMed  CAS  Google Scholar 

  96. Boyd SR, Zachary I, Chakravarthy U, et al. Correlation of increased vascular endothelial growth factor with neovascularization and permeability in ischemic central vein occlusion. Arch Ophthalmol 2002;120:1644–1650.

    PubMed  CAS  Google Scholar 

  97. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 1996;37:290–299.

    PubMed  CAS  Google Scholar 

  98. Alon T, Hemo I, Itin A, et al. Vascular endothelial growth factor as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995;1:1024–1028.

    Article  PubMed  CAS  Google Scholar 

  99. The EyeDiseases Prevalence Research Group. Causes and prevalence of visual impairment am ong adults in the United States. Arch Ophthalmol 2004;122:477–485.

    Article  Google Scholar 

  100. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC. Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch ophthalmol 1994;112:402–406.

    PubMed  CAS  Google Scholar 

  101. Kuroki M, Voest EE, Amano S, et al. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 1996;98:495–504.

    Article  Google Scholar 

  102. Frank RN, Amin HR, Eliott D, et al. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 1996;122:393–403.

    PubMed  CAS  Google Scholar 

  103. Kvanta A, Algvere VP, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. 1996;37:1929–1934.

    CAS  Google Scholar 

  104. Lopez PF, Sippy DB, Lambert MH, Thach AB, Hinton DR. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis 1996;37:855–868.

    CAS  Google Scholar 

  105. Wells JA, Murthy R, Chibber R, et al. Levels of vascular endothelial growth factor are elevated in the vitreous of patients with subretinal neovascularisation. Br J ophthalmol 1996;80:363–366.

    Article  PubMed  CAS  Google Scholar 

  106. Holekamp NM, Bouck N, Volpert O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 2002;134:220–227.

    Article  PubMed  CAS  Google Scholar 

  107. Baffi J, Byrnes G, Chan CC, Csaky KG. Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 2000;41:3582–3589.

    PubMed  CAS  Google Scholar 

  108. Schwesinger C, Yee C, Rohan RM, et al. Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. AmJPathol 2001;158:1161–1172.

    CAS  Google Scholar 

  109. Spilsbury K, Garrett LK, Shen WY, et al. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 2000;157:135–144.

    PubMed  CAS  Google Scholar 

  110. Krzystolik MG, Afshari AM, Adamis AP, et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 2002;120:338–346.

    PubMed  CAS  Google Scholar 

  111. Honda M, Sakamoto T, Ishibashi T, et al. Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGF/flt-1 receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related macular degeneration. Gene Ther 2000;7:978–985.

    Article  PubMed  CAS  Google Scholar 

  112. Ogata N, Nishikawa M, Nishimura T, et al. Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Am J Ophthalmol 2002;133:851–852.

    Article  PubMed  CAS  Google Scholar 

  113. Ohno-Matsui K, Morita I, Tombran-Tink J, et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol 2001;189:323–333.

    Article  PubMed  CAS  Google Scholar 

  114. Renno RZ, Youssri IA, Michaud N, Gragoudas ES, Miller JW. Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2002;43:1574–1580.

    PubMed  Google Scholar 

  115. Rasmussen HS, Rasmussen CS, Curham RG, King CR, Wei L. Looking into anti-angiogenic gene therapies for disorders of the eye. Drug Discov Today 2001;6:1171–1175.

    Article  PubMed  CAS  Google Scholar 

  116. Otani A, Takagi H, Oh H, et al. Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1999;40:1912–1920.

    PubMed  CAS  Google Scholar 

  117. Hangai M, Moon SY, Kitaya N, et al. Systemically expressed soluble tie2 inhibits intraocular neovascularization. Hum Gene Ther 2001;12:1311–1321.

    Article  PubMed  CAS  Google Scholar 

  118. Hangai M, Murata T, Miyawaki N, et al. Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2001;42:1617–1625.

    PubMed  CAS  Google Scholar 

  119. Kim I, Moon OS, Park SK, et al. Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 2001;89:477–479.

    Article  PubMed  CAS  Google Scholar 

  120. Gragondes ES, Adamis AP, Cunningham ET Jr, et al. Pegaptanib for neovascular age-related muscular degeneration. New Engl J Med 2004;351:2805–2816.

    Article  Google Scholar 

  121. Mordenti J, Cuthbertson RA, Ferrara N, et al. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol 1999;27:536–544.

    PubMed  CAS  Google Scholar 

  122. Genentech CA. Press release Oct 1, 2002.

    Google Scholar 

  123. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997;46:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  124. Nonaka A, Kiryu J, Tsujikawa A, et al. PKC-beta inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci 2000;41:2702–2706.

    PubMed  CAS  Google Scholar 

  125. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002;99:11,393–11,398.

    Article  PubMed  CAS  Google Scholar 

  126. Saishin Y, Saishin Y, Takahashi K, et al. VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 2003;195:241–248.

    Article  PubMed  CAS  Google Scholar 

  127. Penn JS, Rajaratnam VS, Collier RJ, Clark AF. The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2001;42:283–290.

    PubMed  CAS  Google Scholar 

  128. Folkman J. Role of antiogenesis in tumor growth and metastasis. Semin Oncol 2002;29:15–18.

    PubMed  CAS  Google Scholar 

  129. Gao G, Li Y, Gee S, et al. Down-regulation of vascular endothelial growth factor and upregulation of pigment epithelium-derived factor: a possible mechanism for the antiangiogenic activity of plasminogen kringle 5. J Biol Chem 2002;277:9492–9497.

    Article  PubMed  CAS  Google Scholar 

  130. Danis RP, Bingaman DP, Yang Y, et al. Inhibition of preretinal and optic nerve head neovascularization in pigs by intravitreal triamcinolone acetonide. Ophthalmology 1996;103:2099–2104.

    PubMed  CAS  Google Scholar 

  131. Jonas JB, Kreissig I, Sofker A, et al. Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch Ophthalmol 2003;121:57–61.

    Article  PubMed  CAS  Google Scholar 

  132. Martidis A, Duker JS, Greenberg PB, et al. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 2002;109:920–927.

    Article  PubMed  Google Scholar 

  133. Sennlaub F, Valamanesh F, Vazquez-Tello A, et al. Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation 2003;108:198–204.

    Article  PubMed  CAS  Google Scholar 

  134. Sakamoto T, Soriano D, Nassaralla J, et al. Effect of intravitreal administration of indomethacin on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 1995;113:222–226.

    PubMed  CAS  Google Scholar 

  135. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. NatMed 1996;2:529–533.

    CAS  Google Scholar 

  136. Kamizuru H, Kimura H, Yasukawa T, Tabata Y, Honda Y, Ogura Y. Monoclonal antibodymediated drug targeting to choroidal neovascularization in the rat. Invest Ophthalmol Vis Sci 2001;42:2664–2672.

    PubMed  CAS  Google Scholar 

  137. Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA. Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 1996;75:563–573.

    PubMed  CAS  Google Scholar 

  138. Mousa SA. Anti-integrin as novel drug-discovery targets: potential therapeutic and diagnostic implications. Curr Opin Chem Biol 2002;6:534–541.

    Article  PubMed  CAS  Google Scholar 

  139. McLeod DS, Taomoto M, Cao J, et al. Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2002;43:474–482.

    PubMed  Google Scholar 

  140. Ambati J, Adamis AP. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res 2002;21:145–151.

    Article  PubMed  CAS  Google Scholar 

  141. Carrasquillo KG, Ricker JA, Rigas IK, et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci 2003;44:290–299.

    Article  PubMed  Google Scholar 

  142. Kim I, Ryan AM, Rohan R, et al. Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. Invest Ophthalmol Vis Sci 1999;40:2115–2121.

    PubMed  CAS  Google Scholar 

  143. Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001;28:131–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lu, M., D’Amico, D.J. (2006). Anti-VEGF Therapies for Diseases of the Retina and Choroid. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics