Skip to main content

Thrombospondin

Guarding the Clear View

  • Chapter
Ocular Angiogenesis

Part of the book series: Opthalmology Research ((OPHRES))

  • 877 Accesses

Abstract

A itnumber of isolated studies clearly point to the contribution of thrombospondin-1 and related proteins to the regulation of angiogenesis in disparate eye compartments. Surprisingly there has been no attempt to systematically review this information and to summarize these proteins’ role in ocular angiogenesis. The goal of this chapter is to provide a unified view of their function as a part of complex defense mechanism protecting vascular stasis in the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bornstein P. Thrombospondins: structure and regulation of expression. FASEB J 1992;6:3290–3299.

    PubMed  CAS  Google Scholar 

  2. Lawler J, Hynes RO. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 1986;103:1635–1648.

    Article  PubMed  CAS  Google Scholar 

  3. O’Rourke KM, Laherty CD, Dixit VM. Thrombospondin 1 and thrombospondin 2 areexpressed as both homo-and heterotrimers. J Biol Chem 1992;267:24,921-24,924.

    Google Scholar 

  4. Bornstein P, Devarayalu S, Edelhoff S, Disteche CM. Isolation and characterization of the mouse thrombospondin 3 (Thbs3) gene. Genomics 1993;15:607–613.

    Article  PubMed  CAS  Google Scholar 

  5. Vos HL, Devarayalu S, de Vries Y, Bornstein P. Thrombospondin 3 (Thbs3), a new member of the thrombospondin gene family. J Biol Chem 1992;267:12,192-12,196.

    Google Scholar 

  6. Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 2000;218:280–299.

    Article  PubMed  CAS  Google Scholar 

  7. Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biol 2000;19:597–614.

    Article  PubMed  CAS  Google Scholar 

  8. Lawler J, McHenry K, Duquette M, Derick L. Characterization of human thrombospondin-4. J Biol Chem 1995;270:2809–2814.

    Article  PubMed  CAS  Google Scholar 

  9. Morgelin M, Heinegard D, Engel J, Paulsson M. Electron microscopy of native cartilage oligomeric matrix protein purified from the Swarm rat chondrosarcoma reveals a fivearmed structure. J Biol Chem 1992;267:6137–6141.

    PubMed  CAS  Google Scholar 

  10. Qabar A, Derick L, Lawler J, Dixit V. Thrombospondin 3 is a pentameric molecule held together by interchain disulfide linkage involving two cysteine residues. J Biol Chem 1995;270:12,725-12,729.

    Google Scholar 

  11. Lawler J, Derick LH, Connolly JE, Chen JH, Chao FC. The structure of human platelet thrombospondin. J Biol Chem 1985;260:3762–3772.

    PubMed  CAS  Google Scholar 

  12. Misenheimer TM, Huwiler KG, Annis DS, Mosher DF. Physical characterization of the procollagen module of human thrombospondin 1 expressed in insect cells. J Biol Chem 2000;275:40,938-40,945.

    Article  Google Scholar 

  13. Kilpelainen I, Kaksonen M, Avikainen H, et al. Heparin-binding growth-associated molecule contains two heparin-binding beta-sheet domains that are homologous to the thrombospondin type I repeat. J Biol Chem 2000;275:13,564-13,570.

    Article  Google Scholar 

  14. Baron M, Norman DG, Harvey TS, et al. The three-dimensional structure of the first EGF-like module of human factor IX: comparison with EGF and TGF-alpha. Protein Sci 1992;1:81–90.

    Article  PubMed  CAS  Google Scholar 

  15. Maddox BK, Mokashi A, Keene DR, Bachinger HP. A cartilage oligomeric matrix protein mutation associated with pseudoachondroplasia changes the structural and functional properties of the type 3 domain. J Biol Chem 2000;275:11,412-11,417.

    Article  Google Scholar 

  16. Misenheimer TM, Mosher DF. Calcium ion binding to thrombospondin 1. J Biol Chem 1995;270:1729–1733.

    Article  PubMed  CAS  Google Scholar 

  17. Hofsteenge J, Huwiler KG, Macek B, et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 2001;276:6485–6498.

    Article  PubMed  CAS  Google Scholar 

  18. Lawler J, Ferro P, Duquette M. Expression and mutagenesis of thrombospondin. Biochemistry 1992;31:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  19. Hogg PJ. Thrombospondin 1 as an enzyme inhibitor. Thromb Haemost 1994;72:787–792.

    PubMed  CAS  Google Scholar 

  20. Adams JC, Lawler J. Diverse mechanisms for cell attachment to platelet thrombospondin. JCell Sci 1993;104(Pt4):1061–1071.

    CAS  Google Scholar 

  21. Adams JC. Characterization of cell-matrix adhesion requirements for the formation of fascin microspikes. Mol Biol Cell 1997;8:2345–2363.

    PubMed  CAS  Google Scholar 

  22. Hotchkiss KA, Matthias LJ, Hogg PJ. Corrigendum to: “Exposure of the cryptic arg-gly-Asp sequence in thrombospondin-1 by protein disulfide isomerase.” Biochim Biophys Acta 1999;1434:210.

    PubMed  CAS  Google Scholar 

  23. Kyriakides TR, Zhu YH, Smith LT, et al. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 1998;140:419–430.

    Article  PubMed  CAS  Google Scholar 

  24. Lawler J, Sunday M, Thibert V, et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 1998;101:982–992.

    PubMed  CAS  Google Scholar 

  25. Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA 1999;96:4449–4454.

    Article  PubMed  CAS  Google Scholar 

  26. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990;87:6624–6628.

    Article  PubMed  CAS  Google Scholar 

  27. Volpert OV, Tolsma SS, Pellerin S, et al. Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun 1995;217:326–332.

    Article  PubMed  CAS  Google Scholar 

  28. Stellmach V, Volpert OV, Crawford SE, Lawler J, Hynes RO, Bouck N. Tumour suppressor genes and angiogenesis: the role of TP53 in fibroblasts. Eur J Cancer 1996;32A:2394–2400.

    Article  PubMed  CAS  Google Scholar 

  29. Streit M, Velasco P, Riccardi L, et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 2000;19:3272–3282.

    Article  PubMed  CAS  Google Scholar 

  30. Streit M, Riccardi L, Velasco P, et al. Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci USA 1999;96:14,888-14,893.

    Article  Google Scholar 

  31. Streit M, Velasco P, Brown LF, et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 1999;155:441–452.

    PubMed  CAS  Google Scholar 

  32. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 1994;54:6504–6511.

    PubMed  CAS  Google Scholar 

  33. Volpert OV, Lawler J, Bouck NP. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci. USA 1998;95:6343–6348.

    Article  PubMed  CAS  Google Scholar 

  34. Bleuel K, Popp S, Fusenig NE, Stanbridge EJ, Boukamp P. Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA 1999;96:2065–2070.

    Article  PubMed  CAS  Google Scholar 

  35. Yu H, Tyrrell D, Cashel J, et al. Specificities of heparin-binding sites from the amino-terminus and type 1 repeats of thrombospondin-1. Arch Biochem Biophys 2000;374:13–23.

    Article  PubMed  CAS  Google Scholar 

  36. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 1993;122:497–511.

    Article  PubMed  CAS  Google Scholar 

  37. Vogel T, Guo NH, Krutzsch HC, et al. Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 1993;53:74–84.

    Article  PubMed  CAS  Google Scholar 

  38. Iruela-Arispe ML, Vazquez F, Ortega MA. Antiangiogenic domains shared by thrombospondins and metallospondins, a new family of angiogenic inhibitors. Ann N Y Acad Sci. 1999;886:58–66.

    Article  PubMed  CAS  Google Scholar 

  39. Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 1996;135:533–544.

    Article  PubMed  CAS  Google Scholar 

  40. Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD. Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem. 1999;274:11,408-11,416.

    Article  Google Scholar 

  41. Taraboletti G, Morbidelli L, Donnini S, et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J 2000;14:1674–1676.

    PubMed  CAS  Google Scholar 

  42. Silverstein RL. The face of TSR revealed: an extracellular signaling domain is exposed. J Cell Biol 2002;159:203–206.

    Article  PubMed  CAS  Google Scholar 

  43. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997;138:707–717.

    Article  PubMed  CAS  Google Scholar 

  44. Iruela-Arispe ML, Luque A, Lee N. Thrombospondin modules and angiogenesis. Int J Biochem Cell Biol 2004;36:1070–1078.

    Article  PubMed  CAS  Google Scholar 

  45. Guo N, Krutzsch HC, Inman JK, Roberts DD. Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res. 1997;57:1735–1742.

    PubMed  CAS  Google Scholar 

  46. Dawson DW, Volpert OV, Pearce SF, et al. Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol Pharmacol 1999;55:332–338.

    PubMed  CAS  Google Scholar 

  47. Reiher FK, Volpert OV, Jimenez B, et al. Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimetics. Int J Cancer 2002;98:682–689.

    Article  PubMed  CAS  Google Scholar 

  48. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001;108:785–791.

    Article  PubMed  CAS  Google Scholar 

  49. Simantov R, Silverstein RL. CD36: a critical anti-angiogenic receptor. Front Biosci 2003;8:S874–S882.

    Article  PubMed  CAS  Google Scholar 

  50. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000;6:41–48.

    Article  PubMed  CAS  Google Scholar 

  51. Simantov R, Febbraio M, Crombie R, Asch AS, Nachman RL, Silverstein RL. Histidinerich glycoprotein inhibits the antiangiogenic effect of thrombospondin-1. J Clin Invest 2001;107:45–52.

    PubMed  CAS  Google Scholar 

  52. Taraboletti G, Belotti D, Borsotti P, et al. The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor. Cell Growth Differ 1997;8:471–479.

    PubMed  CAS  Google Scholar 

  53. Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE, Bornstein P. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 2002;13:1893–1905.

    Article  PubMed  CAS  Google Scholar 

  54. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000;11:59–69.

    Article  PubMed  CAS  Google Scholar 

  55. Schultz-Cherry S, Chen H, Mosher DF, et al. Regulation of transforming growth factorbeta activation by discrete sequences of thrombospondin 1. J Biol Chem 1995;270:7304–7310.

    Article  PubMed  CAS  Google Scholar 

  56. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 2001;276:8403–8408.

    Article  PubMed  CAS  Google Scholar 

  57. Itoh Y, Ito A, Iwata K, Tanzawa K, Mori Y, Nagase H. Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase A) activated on the cell surface. J Biol Chem 1998;273:24,360-24,367.

    Google Scholar 

  58. Kyriakides TR, Zhu YH, Yang Z, Huynh G, Bornstein P. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice. Am J Pathol 2001;159:1255–1262.

    PubMed  CAS  Google Scholar 

  59. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 2001;98:12,485-12,490.

    Article  Google Scholar 

  60. Maeshima Y, Sudhakar A, Lively JC, et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002;295:140–143.

    Article  PubMed  CAS  Google Scholar 

  61. Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML, Roberts DD. Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 2000;11:2885–2900.

    PubMed  CAS  Google Scholar 

  62. Orr AW, Pedraza CE, Pallero MA, et al. Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol 2003;161:1179–1189.

    Article  PubMed  CAS  Google Scholar 

  63. Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 2000;275:36,358-36,368.

    Article  Google Scholar 

  64. Kanda S, Shono T, Tomasini-Johansson B, Klint P, Saito Y. Role of thrombospondin-1-derived peptide, 4N1K, in FGF-2-induced angiogenesis. Exp Cell Res 1999;252:262–272.

    Article  PubMed  CAS  Google Scholar 

  65. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.

    Article  PubMed  CAS  Google Scholar 

  66. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 1998;93:1159–1170.

    Article  PubMed  CAS  Google Scholar 

  67. Jimenez B, Volpert OV, Reiher F, et al. c-Jun N-terminal kinase activation is required for the inhibition of neovascularization by thrombospondin-1. Oncogene 2001;20:3443–3448.

    Article  PubMed  CAS  Google Scholar 

  68. Volpert OV, Zaichuk T, Zhou W, et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 2002;8:349–357.

    Article  PubMed  CAS  Google Scholar 

  69. Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 2000;37:209–218.

    Article  PubMed  CAS  Google Scholar 

  70. Armstrong LC, Bornstein P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 2003;22:63–71.

    Article  PubMed  CAS  Google Scholar 

  71. Kaiser HJ, Schoetzau A, Stumpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 1997;123:320–327.

    PubMed  CAS  Google Scholar 

  72. Freyberg MA, Kaiser D, Graf R, Vischer P, Friedl P. Integrin-associated protein and thrombospondin-1 as endothelial mechanosensitive death mediators. Biochem Biophys Res Commun 2000;271:584–588.

    Article  PubMed  CAS  Google Scholar 

  73. Kaiser D, Freyberg MA, Schrimpf G, Friedl P. Apoptosis induced by lack of hemodynamic forces is a general endothelial feature even occuring in immortalized cell lines. Endothelium 1999;6:325–334.

    PubMed  CAS  Google Scholar 

  74. Aiello LP. Vascular endothelial growth factor and the eye. Past, present and future. Arch Ophthalmol 1996;114:1252–1254.

    CAS  Google Scholar 

  75. Aiello LP. Keeping in touch with angiogenesis. Nat Med 2000;6:379–381.

    Article  PubMed  CAS  Google Scholar 

  76. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev2004;25:581–611.

    Google Scholar 

  77. Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, Campochiaro PA. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 1999;179:149–156.

    Article  PubMed  CAS  Google Scholar 

  78. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676.

    Article  PubMed  CAS  Google Scholar 

  79. Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 1997;13:37–50.

    Article  PubMed  CAS  Google Scholar 

  80. Boehm BO, Lang G, Feldmann B, et al. Proliferative diabetic retinopathy is associated with a low level of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor. a pilot study. Horm Metab Res 2003;35:382–386.

    CAS  Google Scholar 

  81. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245–248.

    Article  PubMed  CAS  Google Scholar 

  82. Boehm BO, Lang G, Volpert O, et al. Low content of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia 2003;46:394–400.

    PubMed  CAS  Google Scholar 

  83. Holekamp NM, Bouck N, Volpert O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 2002;134:220–227.

    Article  PubMed  CAS  Google Scholar 

  84. Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett 2001;489:270–276.

    Article  PubMed  CAS  Google Scholar 

  85. Bouck N. PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med 2002;8:330–334.

    Article  PubMed  CAS  Google Scholar 

  86. Wong CG, Rich KA, Liaw LH, Hsu HT, Berns MW. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Curr Eye Res 2001;22:140–147.

    Article  PubMed  CAS  Google Scholar 

  87. Hyatt GA, Beebe DC. Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differentiation. Development 1993;117:701–709.

    PubMed  CAS  Google Scholar 

  88. Grant MB, Guay C, Marsh R. Insulin-like growth factor I stimulates proliferation, migration, and plasminogen activator release by human retinal pigment epithelial cells. Curr Eye Res 1990;9:323–335.

    PubMed  CAS  Google Scholar 

  89. Simo R, Lecube A, Segura RM, Garcia Arumi J, Hernandez C. Free insulin growth factor-I and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. Am J Ophthalmol 2002;134:376–382.

    Article  PubMed  CAS  Google Scholar 

  90. Ruberte J, Ayuso E, Navarro M, et al. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J Clin Invest 2004;113:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  91. Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 1992;141:1279–1284.

    PubMed  CAS  Google Scholar 

  92. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 2002;133:70–77.

    Article  PubMed  CAS  Google Scholar 

  93. Funatsu H, Yamashita H, Noma H, Shimizu E, Yamashita T, Hori S. Stimulation and inhibition of angiogenesis in diabetic retinopathy. Jpn J Ophthalmol 2001;45:577–584.

    Article  PubMed  CAS  Google Scholar 

  94. Marneros AG, Keene DR, Hansen U, et al. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J 2004;23:89–99.

    Article  PubMed  CAS  Google Scholar 

  95. Sack RA, Beaton AR, Sathe S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr Eye Res 1999;18:186–193.

    Article  PubMed  CAS  Google Scholar 

  96. Rhee DJ, Fariss RN, Brekken R, Sage EH, Russell P. The matricellular protein SPARC is expressed in human trabecular meshwork. Exp Eye Res 2003;77:601–607.

    Article  PubMed  CAS  Google Scholar 

  97. Sheibani N, Sorenson CM, Cornelius LA, Frazier WA. Thrombospondin-1, a natural inhibitor of angiogenesis, is present in vitreous and aqueous humor and is modulated by hyperglycemia. Biochem Biophys Res Commun 2000;267:257–261.

    Article  PubMed  CAS  Google Scholar 

  98. Miyajima-Uchida H, Hayashi H, Beppu R, et al. Production and accumulation of thrombospondin-1 in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2000;41:561–567.

    PubMed  CAS  Google Scholar 

  99. Munjal ID, Crawford DR, Blake DA, Sabet MD, Gordon SR. Thrombospondin: biosynthesis, distribution, and changes associated with wound repair in corneal endothelium. Eur. J Cell Biol 1990;52:252–263.

    PubMed  CAS  Google Scholar 

  100. Hiscott P, Seitz B, Schlotzer-Schrehardt U, Naumann GO. Immunolocalisation of thrombospondin 1 in human, bovine and rabbit cornea. Cell Tissue Res 1997;289:307–310.

    Article  PubMed  CAS  Google Scholar 

  101. Armstrong DJ, Hiscott P, Batterbury M, Kaye S. Keratocyte matrix interactions and thrombospondin 2. Mol Vis 2003;9:74–79.

    PubMed  CAS  Google Scholar 

  102. Armstrong DJ, Hiscott P, Batterbury M, Kaye S. Corneal stromal cells (keratocytes) express thrombospondins 2 and 3 in wound repair phenotype. Int J Biochem Cell Biol 2002;34:588–593.

    Article  PubMed  CAS  Google Scholar 

  103. Tripathi BJ, Tripathi RC, Yang C, Millard CB, Dixit VM. Synthesis of a thrombospondinlike cytoadhesion molecule by cells of the trabecular meshwork. Invest Ophthalmol Vis Sci 1991;32:181–188.

    PubMed  CAS  Google Scholar 

  104. Tripathi BJ, Li T, Li J, Tran L, Tripathi RC. Age-related changes in trabecular cells in vitro. Exp Eye Res 1997;64:57–66.

    Article  PubMed  CAS  Google Scholar 

  105. Cursiefen C, Masli S, Ng TF, et al. Roles of thrombospondin-1 and-2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci 2004;45:1117–1124.

    Article  PubMed  Google Scholar 

  106. Hiscott P, Armstrong D, Batterbury M, Kaye S. Repair in avascular tissues: fibrosis in thetransparent structures of the eye and thrombospondin 1. Histol Histopathol 1999;14:1309–1320.

    PubMed  CAS  Google Scholar 

  107. Cao Z, Wu HK, Bruce A, Wollenberg K, Panjwani N. Detection of differentially expressed genes in healing mouse corneas, using cDNA microarrays. Invest Ophthalmol Vis Sci 2002;43:2897–2904.

    PubMed  Google Scholar 

  108. Uno K, Hayashi H, Kuroki M, Uchida H, Yamauchi Y, Oshima K. Thrombospondin-1 accelerates wound healing of corneal epithelia. Biochem Biophys Res Commun 2004;315:928–934.

    Article  PubMed  CAS  Google Scholar 

  109. Sowka J. Pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Optometry 2004;75:245–250.

    PubMed  Google Scholar 

  110. Hiscott P, Schlotzer-Schrehardt U, Naumann GO. Unexpected expression of thrombospondin 1 by corneal and iris fibroblasts in the pseudoexfoliation syndrome. Hum Pathol 1996;27:1255–1258.

    Article  PubMed  CAS  Google Scholar 

  111. Inoue K, Okugawa K, Oshika T, Amano S. Morphological study of corneal endothelium and corneal thickness in pseudoexfoliation syndrome. Jpn J Ophthalmol 2003;47:235–239.

    Article  PubMed  Google Scholar 

  112. Chan CK, Pham LN, Chinn C, et al. Mouse strain-dependent heterogeneity of resting limbal vasculature. Invest Ophthalmol Vis Sci 2004;45:441–447.

    Article  PubMed  Google Scholar 

  113. Mousa SA, Lorelli W, Campochiaro PA. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem 1999;74:135–143.

    Article  PubMed  CAS  Google Scholar 

  114. Sheridan CM, Magee RM, Hiscott PS, et al. The role of matricellular proteins thrombospondin-1 and osteonectin during RPE cell migration in proliferative vitreoretinopathy. Curr Eye Res 2002;25:279–285.

    Article  PubMed  Google Scholar 

  115. Suzuma K, Takagi H, Otani A, Oh H, Honda Y. Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. Am J Pathol 1999;154:343–354.

    PubMed  CAS  Google Scholar 

  116. Neugebauer KM, Emmett CJ, Venstrom KA, Reichardt LF. Vitronectin and thrombospondin promote retinal neurite outgrowth: developmental regulation and role of integrins. Neuron 1991;6:345–358.

    Article  PubMed  CAS  Google Scholar 

  117. Eichler W, Yafai Y, Wiedemann P, Reichenbach A. Angiogenesis-related factors derived from retinal glial (Muller) cells in hypoxia. Neuroreport 2004;15:1633–1637.

    Article  PubMed  CAS  Google Scholar 

  118. Wang S, Wu Z, Sorenson CM, Lawler J, Sheibani N. Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn 2003;228:630–642.

    Article  PubMed  CAS  Google Scholar 

  119. Shafiee A, Penn JS, Krutzsch HC, Inman JK, Roberts DD, Blake DA. Inhibition of retinal angiogenesis by peptides derived from thrombospondin-1. Invest Ophthalmol Vis Sci 2000;41:2378–2388.

    PubMed  CAS  Google Scholar 

  120. Wang S, Skorczewski J, Feng X, Mei L, Murphy-Ullrich JE. Glucose up-regulates thrombospondin 1 gene transcription and transforming growth factor-beta activity through antagonism of cGMP-dependent protein kinase repression via upstream stimulatory factor 2. J Biol Chem 2004;279:34,311-34,322.

    Google Scholar 

  121. Hiscott P, Larkin G, Robey HL, Orr G, Grierson I. Thrombospondin as a component of the extracellular matrix of epiretinal membranes: comparisons with cellular fibronectin. Eye 1992;6(Pt 6):566–569.

    PubMed  Google Scholar 

  122. Hiscott P, Hagan S, Heathcote L, et al. Pathobiology of epiretinal and subretinal membranes: possible roles for the matricellular proteins thrombospondin 1 and osteonectin (SPARC). Eye 2002;16:393–403.

    Article  PubMed  CAS  Google Scholar 

  123. Abi-Hanna D, Wakefield D, Watkins S. HLA antigens in ocular tissues. I. In vivo expression in human eyes. Transplantation 1988;45:610–613.

    Article  PubMed  CAS  Google Scholar 

  124. Wang HM, Kaplan HJ, Chan WC, Johnson M. The distribution and ontogeny of MHC antigens in murine ocular tissue. Invest Ophthalmol Vis Sci 1987;28:1383–1389.

    PubMed  CAS  Google Scholar 

  125. Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 2003;74:179–185.

    Article  PubMed  CAS  Google Scholar 

  126. Kaplan HJ, Streilein JW. Analysis of immunologic privilege within the anterior chamber of the eye. Transplant Proc 1977;9:1193–1195.

    PubMed  CAS  Google Scholar 

  127. Streilein JW, Niederkorn JY, Shadduck JA. Systemic immune unresponsiveness induced in adult mice by anterior chamber presentation of minor histocompatibility antigens. J Exp Med 1980;152:1121–1125.

    Article  PubMed  CAS  Google Scholar 

  128. Ksander BR, Streilein JW. Immune privilege to MHC-disparate tumor grafts in the anterior chamber of the eye. I. Quantitative analysis of intraocular tumor growth and the corresponding delayed hypersensitivity response. Transplantation 1989;47:661–667.

    Article  PubMed  CAS  Google Scholar 

  129. Wilbanks GA, Streilein JW. Characterization of suppressor cells in anterior chamberassociated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology 1990;71:383–389.

    PubMed  CAS  Google Scholar 

  130. Streilein JW, Ma N, Wenkel H, Ng TF, Zamiri P. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vision Res 2002;42:487–495.

    Article  PubMed  Google Scholar 

  131. Streilein JW. Regional immunity and ocular immune privilege. Chem Immunol 1999;73:11–38.

    Article  PubMed  CAS  Google Scholar 

  132. Streilein JW, Stein-Streilein J. Does innate immune privilege exist? J Leukoc Biol 2000;67:479–487.

    PubMed  CAS  Google Scholar 

  133. Kaiser CJ, Ksander BR, Streilein JW. Inhibition of lymphocyte proliferation by aqueous humor. Reg Immunol 1989;2:42–49.

    PubMed  CAS  Google Scholar 

  134. Taylor AW, Streilein JW, Cousins SW. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J Immunol 1994;153:1080–1086.

    PubMed  CAS  Google Scholar 

  135. Kasama T, Shiozawa F, Kobayashi K, et al. Vascular endothelial growth factor expression by activated synovial leukocytes in rheumatoid arthritis: critical involvement of the interaction with synovial fibroblasts. Arthritis Rheum 2001;44:2512–2524.

    Article  PubMed  CAS  Google Scholar 

  136. Koch AE, Volin MV, Woods JM, et al. Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. Arthritis Rheum 2001;44:31–40.

    Article  PubMed  CAS  Google Scholar 

  137. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999;13:1382–1397.

    PubMed  CAS  Google Scholar 

  138. Brenchley PE. Angiogenesis in inflammatory joint disease: a target for therapeutic intervention. Clin Exp Immunol 2000;121:426–429.

    Article  PubMed  CAS  Google Scholar 

  139. Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003;198:1391–1402.

    Article  PubMed  CAS  Google Scholar 

  140. Mor F, Quintana FJ, Cohen IR. Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 2004;172:4618–4623.

    PubMed  CAS  Google Scholar 

  141. Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol 2004;25:201–209.

    Article  PubMed  CAS  Google Scholar 

  142. Scapini P, Morini M, Tecchio C, et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 2004;172:5034–5040.

    PubMed  CAS  Google Scholar 

  143. Johansson U, Higginbottom K, Londei M. CD47 ligation induces a rapid caspase-independent apoptosis-like cell death in human monocytes and dendritic cells. Scand J Immunol 2004;59:40–49.

    Article  PubMed  CAS  Google Scholar 

  144. Johansson U, Londei M. Ligation of CD47 during monocyte differentiation into dendritic cells results in reduced capacity for interleukin-12 production. Scand J Immunol 2004;59:50–57.

    Article  PubMed  CAS  Google Scholar 

  145. Doyen V, Rubio M, Braun D, et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 2003;198:1277–1283.

    Article  PubMed  CAS  Google Scholar 

  146. Otani A, Takagi H, Oh H, Koyama S, Matsumura M, Honda Y. Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1999;40:1912–1920.

    PubMed  CAS  Google Scholar 

  147. Oh H, Takagi H, Takagi C, et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1999;40:1891–1898.

    PubMed  CAS  Google Scholar 

  148. Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 2002;8:119–126.

    PubMed  CAS  Google Scholar 

  149. Cursiefen C, Rummelt C, Kuchle M. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea 2000;19:526–533.

    Article  PubMed  CAS  Google Scholar 

  150. Yoshida S, Yoshida A, Ishibashi T. Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 2004;242:409–413.

    Article  PubMed  CAS  Google Scholar 

  151. Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 2003;163:57–68.

    PubMed  CAS  Google Scholar 

  152. Shaw JP, Chuang N, Yee H, Shamamian P. Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. J Surg Res 2003;109:37–42.

    Article  PubMed  CAS  Google Scholar 

  153. Deshpande SP, Zheng M, Lee S, Rouse BT. Mechanisms of pathogenesis in herpetic immunoinflammatory ocular lesions. Vet Microbiol 2002;86:17–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Aurora, A., Volpert, O.V. (2006). Thrombospondin. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics