Skip to main content

Genetics of Ocular Vascular Disease

  • Chapter
Ocular Angiogenesis

Abstract

In considering inherited disease, one important distinction is between diseases with a clear, unequivocal genetic cause and other diseases whose occurrence is influenced by genetic factors, but whose causes are multifactorial. The first type, simple or Mendelian inherited diseases, typically have a distinct mode of inheritance-autosomal dominant, autosomal recessive or X-linked-and are the result of rare, pathogenic mutations with high penetrance (presence of the mutation or mutations has a high likelihood of causing disease). Examples of Mendelian diseases that include neovascularization are X-linked Norrie’s disease (1) and autosomal dominant glaucoma caused by mutations in myocilin (2). Even “simple” inherited diseases are genetically complicated, as mutations in different genes may cause the same disease, and different mutations in the same gene may cause different diseases. However, it is reasonable to assume that the cause of a Mendelian disease in a given individual and family is one mutation only (or two, if recessive) in a specific gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger W, Ropers H-H. Norrie disease, in The Metabolic and Molecular Bases of Inherited Disease, 8th edition, Scriver CR, Beaudet AL, Sly WS, Valle D, McGraw Hill, New York, 2001, 5977–5986.

    Google Scholar 

  2. Fingert JH, Stone EM, Sheffield VC, Alward WL. Myocilin glaucoma. Surv Ophthalmol 2002;47:547–561.

    Article  PubMed  Google Scholar 

  3. Kajiwara K, Hahn LB, Mukai S, Travis GH, Berson EL, Dryja TP. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 1991;354:480–483.

    Article  PubMed  CAS  Google Scholar 

  4. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS andROM1 loci. Science 1994;264:1604–1608.

    Article  PubMed  CAS  Google Scholar 

  5. Katsanis N, Ansley SJ, Badano JL, et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001;293:2256–2259.

    Article  PubMed  CAS  Google Scholar 

  6. RetNet, Retinal Information Network, http://www.sph.uth.tmc.edu/RetNet, copyright 2004, University of Texas Health Science Center at Houston.

  7. Sheffield VC, Alward WLM, Stone EM. The glaucomas. In: The Metabolic and Molecular Bases of Inherited Disease, 8th ed. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. McGraw Hill, New York: 2001:6063–6076.

    Google Scholar 

  8. Daiger SP. Identifying retinal disease genes: how far have we come, how far do we have to go? Novartis Found Symp 2004;255:17–27; discussion 27-36, 177-178.

    Article  PubMed  CAS  Google Scholar 

  9. Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 2004;23:306–317.

    Article  PubMed  CAS  Google Scholar 

  10. Klein ML, Schultz DW, Edwards A, et al. Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 1998; 116:1082–1088.

    PubMed  CAS  Google Scholar 

  11. Schultz DW, Klein ML, Humpert AJ, et al. Analysis of the ARMD1 locus: Evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Hum Mol Genet 2003; 12:3315-3123.

    Google Scholar 

  12. van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FP. ABCR unites what ophthalmologists divide(s) Ophthalmic Genet 1998; 19:117–122.

    Article  PubMed  Google Scholar 

  13. Anderson KL, Baird L, Lewis RA, et al. A. YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am J Hum Genet 1995;57: 1351–1363.

    PubMed  CAS  Google Scholar 

  14. Peters A, Greenberg J. Sorsby’s Fundus Dystrophy: A South African family with a point mutation on the tissue inhibitor of Metalloproteinases-3 gene on chromosome 22. Retina 1995; 15,480–15,485.

    Google Scholar 

  15. Papaioannou M, Ocaka L, Bessant D, et al. An analysis of ABCR mutations in British patients with recessive retinal dystrophies. Invest Ophthalmol Vis Sci 2000;41:16–19.

    PubMed  CAS  Google Scholar 

  16. Kaplan J, Gerber S, Larget-Piet D, et al. A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nature Genet 1993;5:308–311.

    Article  PubMed  CAS  Google Scholar 

  17. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet 1997; 15:236–246.

    Article  PubMed  CAS  Google Scholar 

  18. Allikmets R, Wasserman WW, Hutchinson A, et al. Organization of the ABCR gene: analysis of promoter and splice junction sequences. Gene 1998;215:111–122.

    Article  PubMed  CAS  Google Scholar 

  19. Gerber S, Rozet JM, van de Pol TJ, et al. Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics 1998;48:139–142.

    Article  PubMed  CAS  Google Scholar 

  20. Azarian SM, Megarity CF, Weng J, Horvath DH, Travis GH. [atThe human photoreceptor rim protein gene (ABCR): genomic structure and primer set information for mutation analysis. Hum Genet 1998;102:699–705.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt S, Postel EA, Agarwal A, et al. Detailed analysis of allelic variation in the ABCA4 gene in age-related maculopathy. Invest Ophthalmol Vis Sci 2003;44: 2868–2875.

    Article  PubMed  Google Scholar 

  22. Rivera A, White K, Stohr H, et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 2000;67:800–813.

    Article  PubMed  CAS  Google Scholar 

  23. Briggs CE, Rucinski D, Rosenfeld PJ, Hirose T, Berson EL, Dryja TP. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration. Invest Ophthalmol Vis Sci 2001;42:2229–2236.

    PubMed  CAS  Google Scholar 

  24. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet 2001;108:346–355.

    Article  PubMed  CAS  Google Scholar 

  25. Gerth C, Andrassi-Darida M, Bock M, Preising MN, Weber BH, Lorenz B. Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus patients with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Arch Clin Exp Ophthalmol 2002;240:628–638.

    Google Scholar 

  26. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR. An ABCA4 genomic deletion in patients with Stargardt disease. Hum Mutat 2003;21:636–644.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez-Mir A, Paloma E, Allikmets R, et al. Retinitis. pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nature Genet 1998; 18:11, 12.

    Article  PubMed  CAS  Google Scholar 

  28. Cremers FP, van de Pol DJ, van Driel M, et al. Autosomal. recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 1998;7:355–362.

    Article  PubMed  CAS  Google Scholar 

  29. Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 1997;277:1805–1807.

    Article  PubMed  CAS  Google Scholar 

  30. Allikmets R. Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 2000;67:487–491.

    Article  PubMed  CAS  Google Scholar 

  31. Webster AR, Heon E, Lotery AJ, et al. An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 2001;42:1179–1189.

    PubMed  CAS  Google Scholar 

  32. Stone EM, Webster AR, Vandenburgh K, et al. Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration. Nature Genet 1998;20:328, 329.

    Article  PubMed  CAS  Google Scholar 

  33. September A. The molecular investigation of Stargardt disease in South Africa. Ph.D. thesis. University of Cape Town, South Africa.

    Google Scholar 

  34. Abecasis GR, Yashar BM, Zhao Y, et al. Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 2004;74:482–494.

    Article  PubMed  CAS  Google Scholar 

  35. Iyengar SK, Song D, Klein BE, et al. Dissection of genomewide-scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 2004;74:20–39.

    Article  PubMed  CAS  Google Scholar 

  36. Kenealy SJ, Schmidt S, Agarwal A, et al. Linkage analysis for age-related macular degeneration supports a gene on chromosome 10q26. Mol Vis 2004; 10:57–61.

    PubMed  CAS  Google Scholar 

  37. Schick JH, Iyengar SK, Klein BE, et al. A whole-genome screen of a quantitative trait of age-related maculopathy in sibships from the Beaver Dam Eye Study. Am J Hum Genet 2003;72:1412–1424.

    Article  PubMed  CAS  Google Scholar 

  38. Weeks DE, Conley YP, Tsai HJ, et al. Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 2004;75:174–189.

    Article  PubMed  CAS  Google Scholar 

  39. Stone EM, Braun TA, Russell SR, et al. Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 2004;351:346–353.

    Article  PubMed  CAS  Google Scholar 

  40. Stone EM, Lotery AJ, Munier FL, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nature Genet 1999;22: 199–202.

    Article  PubMed  CAS  Google Scholar 

  41. Haga SB, Khoury M, Burke W. Genomic profiling to promote a healthy lifestyle: not ready for prime time.Nat Genet 2003;34:347–350.

    Article  PubMed  CAS  Google Scholar 

  42. Haider MZ, Devarajan LV, Al-Essa M, Kumar H. A C597—>A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants. J Biomed Sci 2002;9:365–370.

    PubMed  CAS  Google Scholar 

  43. Kim JH, Yu YS, Kim J, Park SS. Mutations of the Norrie gene in Korean ROP infants. Korean J Ophthalmol 2002;16:93–96.

    PubMed  Google Scholar 

  44. Couch V, Lindor NM, Karnes PS, Michels VV. Von Hippel-Lindau disease. Mayo Clin Proc 2000;75:265–272.

    Article  PubMed  CAS  Google Scholar 

  45. Wijnhoven BP, Lindstedt EW, Abbou M, et al. Rotterdam Esophageal Tumor Study Group. Molecular genetic analysis of the von Hippel-Lindau and human peroxisome proliferator-activated receptor gamma tumor-suppressor genes in adenocarcinomas of the gastro-esophageal junction. Int J Cancer 2001;94:891–895.

    Article  PubMed  CAS  Google Scholar 

  46. Morris MR, Maina E, Morgan NV, et al. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J Clin Pathol 2004;57:706–711.

    Article  PubMed  CAS  Google Scholar 

  47. Downey LM, Keen TJ, Roberts E, Mansfield DC, Bamashmus M, Inglehearn CF. A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. Am J Hum Genet 2001;68:778–781.

    Article  PubMed  CAS  Google Scholar 

  48. Robitaille J, MacDonald ML, Kaykas A, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet 2002;32:326–330.

    Article  PubMed  CAS  Google Scholar 

  49. Nasonkin I, Illing M, Koehler MR, Schmid M, Molday RS, Weber BH. Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet 1998;102:21–26.

    Article  PubMed  CAS  Google Scholar 

  50. Rozet JM, Gerber S, Souied E, et al. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 1998;6:291–295.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang K, Kniazeva M, Hutchinson A, Han M, Dean M, Allikmets R. The ABCR gene in recessive and dominant Stargardt diseases: a genetic pathway in macular degeneration. Genomics 1999;60:234–237.

    Article  PubMed  CAS  Google Scholar 

  52. September AV, Vorster AA, Ramesar RS, Greenberg LJ. Mutation Spectrum and Founder Chromosomes for the ABCA4 gene in South African Stargardt disease patients. Invest Ophthalmol Vis Sci 2004;45:1705–1711.

    Article  PubMed  Google Scholar 

  53. Héon E, Piguet B, Munier F, et al. Linkage of autosomal dominant radial drusen (malattia leventinese) to chromosome 2p16-21. Arch Ophthalmol 1996; 114:193–198.

    PubMed  Google Scholar 

  54. Gregory CY, Evans K, Wijesuriya SD, et al. The gene for autosomal dominant Doyn’s honeycomb retinal dystrophy (DHRD) maps to chromosome 2p16. Hum Mol Genet 1996;7:1055–1059.

    Article  Google Scholar 

  55. Kniazeva M, Chiang MF, Morgan B, et al. A new locus for autosomal dominant Stargardt-like disease maps to chromosome 4. Am J Hum Genet 1999;64:1394–1399.

    Article  PubMed  CAS  Google Scholar 

  56. Michaelides M, Johnson S, Tekriwal AK, et al. An early-onset autosomal dominant macular dystrophy (MCDR3) resembling North Carolina macular dystrophy maps to chromosome 5. Invest Ophthalmol Vis Sci 2003;44:2178–2183.

    Article  PubMed  Google Scholar 

  57. den Hollander AI, van Lith-Verhoeven JJC, Kersten FF, et al. Identification of novel locus for autosomal dominant butterfly shaped macular dystrophy on 5q21.2-q33.2. J Med Genet 2004;41:699–702.

    Article  CAS  Google Scholar 

  58. Dryja TP, Hahn LB, Kajiwara K, Berson EL. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1997; 18:1972–1982.

    Google Scholar 

  59. Farrar GJ, Jordan SA, Kenna P, et al. Autosomal dominant retinitis pigmentosa: localization of a disease gene (RP6) to the short arm of chromosome 6. Genomics 1991; 11:870–874.

    Article  PubMed  CAS  Google Scholar 

  60. Felbor U, Schilling H, Weber BHF. Adult vitelliform macular dystrophy is frequently associated with mutations in the peripherin/RDS gene. Hum Mutat 1997;10:301–309.

    Article  PubMed  CAS  Google Scholar 

  61. Jordan SA, Farrar GJ, Kumar-Singh R, et al. Autosomal dominant retinitis pigmentosa (adRP; RP6): cosegregation of RP6 and the peripherin-RDS locus in a late-onset family of Irish origin. Am J Hum Genet 1992;50:634–639.

    PubMed  CAS  Google Scholar 

  62. van Lith-Verhoeven JJC, Hoyng CB, van den Helm B, et al. The benign concentric annular macular dystrophy locus maps to 6p12.3-q16. Invest Ophthalmol Vis Sci 2004;45:30–35.

    Article  PubMed  Google Scholar 

  63. Small KW, Weber JL, Roses A, Lennon F, Vance JM, Pericak-Vance MA. North Carolina macular dystrophy is assigned to chromosome 6. Genomics 1992; 13:681–685.

    Article  PubMed  CAS  Google Scholar 

  64. Small KW, Puech B, Mullen L, Yelchits S. North Carolina macular dystrophy phenotype in France maps to the MCDR1 locus. Mol Vis 1997;3:1.

    PubMed  CAS  Google Scholar 

  65. Edwards AO, Donoso LA, Ritter III R. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophthalmol Vis Sci 2001;42:2652–2663.

    PubMed  CAS  Google Scholar 

  66. Kniazeva M, Traboulsi EI, Yu Z, et al. A new locus for dominant drusen and macular degeneration maps to chromosome 6q14. Am J Ophthalmol 2000; 130:197–202.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang K, Kniazeva M, Han M, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nature Genet 2001;27:89–93.

    PubMed  CAS  Google Scholar 

  68. Inglehearn CF, Keen TJ, Al-Maghtheh M, Bhattacharya SS. Loci for autosomal dominant retinitis pigmentosa and cystoid macular dystrophy on chromosome 7q are not allelic. Am J Hum Genet 1994;55:581, 582.

    PubMed  CAS  Google Scholar 

  69. Kremer H, Pinckers A, van den Helm B, Deutman AF, Ropers HH, Mariman ECM. Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum Mol Genet 1994;3:299–302ß.

    Article  PubMed  CAS  Google Scholar 

  70. Marquardt A, Stöhr H, Passmore LA, Krämer F, Rivera A, Weber BHF. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 1998;7:1517–1525.

    Article  PubMed  CAS  Google Scholar 

  71. Petrukhin J, Koisti MJ, Bakall B, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet 1998;19:241–247.

    Article  PubMed  CAS  Google Scholar 

  72. Stone EM, Nichols BE, Streb LM, Kimura AE, Sheffield VC. Genetic linkage of vitelli-form macular degeneration (Best’s disease) to chromosome 1 1q13. Nat Genet 1992;1: 246–250.

    Article  PubMed  CAS  Google Scholar 

  73. Hayward C, Shu X, Cideciyan AV, et al. Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration—a genetic model for age-related macular degeneration. Hum Mol Genet 2003;12:2657–2667.

    Article  PubMed  CAS  Google Scholar 

  74. Felbor U, Suvanto EA, Forsius HR, Eriksson AW, Weber BHF. Autosomal recessive Sorsby fundus dystrophy revisited: molecular evidence for dominant inheritance. Am J Hum Genet 1997;60:57–62.

    PubMed  CAS  Google Scholar 

  75. Weber BHF, Vogt G, Pruett RC, Stöhr H, Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 1994;8:352–355.

    Article  PubMed  CAS  Google Scholar 

  76. Weber BHF, Vogt G, Wolz W, Ives EJ, Ewing CC. Sorsby’s fundus dystrophy is genetically linked to chromosome 22q13-qter. Nat Genet 1994;7:158–161.

    Article  PubMed  CAS  Google Scholar 

  77. Ayyagari RF, Demirci FY, Liu J, et al. X-linked recessive atrophic macular degeneration from RPGR mutation. Genomics 2002;80:166–171.

    Article  PubMed  CAS  Google Scholar 

  78. Hermann K, Meindl A, Apfelstedt-Sylla E, et al. RPGR mutation analysis in patients with retinitis pigmentosa and congenital stationary night blindness. Am J Hum Genet 1996;59:A263.

    Google Scholar 

  79. Meindl A, Dry K, Herrmann K, et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 1996;13:35–42.

    Article  PubMed  CAS  Google Scholar 

  80. Musarella MA, Anson-Cartwright L, Leal SM, et al. Multipoint linkage analysis and heterogeneity testing in 20 X-linked retinitis pigmentosa families. Genomics 1990;8: 286–296.

    Article  PubMed  CAS  Google Scholar 

  81. Ott J, Bhattacharya S, Chen JD, et al. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests. Proc Natl Acad Sci USA 1990; 87:701–704.

    Article  PubMed  CAS  Google Scholar 

  82. Roepman R, van Duijnhoven G, Rosenberg T, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guaninine-nucleotide-exchange factor RCC1. Hum Mol Genet 1996;5:1035–1041.

    Article  PubMed  CAS  Google Scholar 

  83. Rozet JM, Perrault I, Gigarel N, et al. Dominant X linked retinitis pigmentosa is frequently accounted for by truncating mutations in exon ORF15 of the RPGR gene. J Med Genet 2002;39:284, 285.

    Article  PubMed  CAS  Google Scholar 

  84. Annunen S, Korkko J, Czarny M, et al. Splicing mutations of 54-bp exons in the COL11 A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Am J Hum Genet 1999;65:974–983.

    Article  PubMed  CAS  Google Scholar 

  85. Richards AJ, Yates JRW, Williams R, et al. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha-1(XI) collagen. Hum Mol Genet 1996;5:1339–1343.

    Article  PubMed  CAS  Google Scholar 

  86. den Hollander AI, ten Brink JB, de Kok YJM, et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 1999;23:217–221.

    Article  CAS  Google Scholar 

  87. den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 2001;69:198–203.

    Article  Google Scholar 

  88. Heckenlively JR. Preserved para-arteriole retinal pigment epithelium (PPRPE) in retinitis pigmentosa. Br J Ophthalmol 1982;66:26–30.

    Article  PubMed  CAS  Google Scholar 

  89. Leutelt J, Oehlmann R. Autosomal recessive retinitis pigmentosa locus maps on chromosome 1q in a large consanguineous family from Pakistan. Clin Genet 1995;47:122–124.

    Article  PubMed  CAS  Google Scholar 

  90. Lotery AJ, Jacobson SG, Fishman GA, et al. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch Ophthalmol 2001;119:415–420.

    PubMed  CAS  Google Scholar 

  91. Lotery AJ, Malik A, Shami SA, et al. CRB 1 mutations may result in retinitis pigmentosa without para-arteriolar RPE preservation. Ophthal Genet 2001;22:163–169.

    Article  CAS  PubMed  Google Scholar 

  92. van Soest S, van den Born LI, Gal A, et al. Assignment of a gene for autosomal dominant recessive retinitis pigmentosa (RP12) to chromosome 1q31-q32.1 in an inbred and genetically heterogeneous disease population. Genomics 1994;20:499–504.

    Article  Google Scholar 

  93. Grand MG, Kaine J, Fulling K, et al. Cerebroretinal vasculopathy. A new hereditary syndrome. Ophthalmology 1988;95:649–659.

    PubMed  CAS  Google Scholar 

  94. Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology 1997;49:1322–1330.

    PubMed  CAS  Google Scholar 

  95. Ophoff RA, J DeYoung, SK Service, et al. Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1-p21.3. Am J Hum Genet 2001;69:447–453.

    Article  PubMed  CAS  Google Scholar 

  96. Black GCM, Perveen R, Wiszniewski W, Dodd CL, Donnai D, McLeod D. A novel hereditary developmental vitreoretinopathy with multiple ocular abnormalities localizing to a 5-cM region of chromosome 5q13-q14. Ophthalmology 1999;106:2074–2081.

    Article  PubMed  CAS  Google Scholar 

  97. Brown DM, Graemiger RA, Hergersberg M, et al. Genetic linkage of Wagner disease and erosive vitreoretinopathy to chromosome 5q13-14. Arch Ophthalmology 1995;113: 671–675.

    CAS  Google Scholar 

  98. Li Y, Fuhrmann C, Schwinger E, Gal A, Laqua H. The gene for autosomal dominant familial exudative vitreoretinopathy (Criswick-Schepens) on the long arm of chromosome 11. Am J Ophthalmol 1992;113:712, 713.

    PubMed  CAS  Google Scholar 

  99. Li Y, Müller B, Fuhrmann C, et al. The autosomal dominant familial exudative vitreoretinopathy locus maps on 11q and is closely linked to D11S533. Am J Hum Genet 1992;51:749–754.

    PubMed  CAS  Google Scholar 

  100. Stone EM, Kimura AE, Folk JC, et al. Genetic linkage of autosomal dominant neovascular inflammatory vitreoretinopathy to chromosome 11q13. Hum Mol Genet 1992;1:685–689.

    Article  PubMed  CAS  Google Scholar 

  101. Jiao X, Ventruto V, Trese MT, Shastry BS, Hejtmancik JF. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 2004;75:878–884.

    Article  PubMed  CAS  Google Scholar 

  102. Price SM, Periam N, Humphries A, Woodruff G, Trembath RC. Familial exudative vitreoretinopathy linked to D11S533 in a large Asian family with consanguinity. Ophthal Genet 1996; 17:53–57.

    CAS  PubMed  Google Scholar 

  103. Toomes C, Bottomley HM, Jackson RM, et al. Inglehearn Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 1 1q. Am J Hum Genet 2004;74:721–730.

    Article  PubMed  CAS  Google Scholar 

  104. Francomano CA, Liberfarb RM, Hirose T, et al. The Stickler syndrome: evidence for close linkage to the structural gene for type II collagen. Genomics 1987; 1:293–296.

    Article  PubMed  CAS  Google Scholar 

  105. Go SL, Maugeri A, Mulder JJS, van Driel MA, Cremers FPM, Hoyng CB. Autosomal dominant rhegmatogenous retinal detachment associated with an Arg453Ter mutation in the COL2A1 gene. Invest Ophthalmol Vis Sci 2003;44:4035–4043.

    Article  PubMed  Google Scholar 

  106. Lee B, Vissing H, Ramirez F, Rogers D, Rimoin D. Identification of the molecular defect in a family with spondyloepiphyseal dysplasia. Science 1989;244:978–980.

    Article  PubMed  CAS  Google Scholar 

  107. Bergen AAB, Plomp AS, Schuurman ES, et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet 2000;25:228–231.

    Article  PubMed  CAS  Google Scholar 

  108. Le Saux O, Urban Z, Tschuch C, et al. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 2000;25:223–227.

    Article  CAS  Google Scholar 

  109. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J. Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci USA 2000;97:6001–6006.

    Article  PubMed  CAS  Google Scholar 

  110. Struk B, Neldner KH, Rao VS, St Jean P, Lindpaintner K. Mapping of both autosomal recessive and dominant variants of pseudoxanthoma elasticum to chromosome 16p 13.1. Hum Mol Genet 1997;6:1823–1828.

    Article  PubMed  CAS  Google Scholar 

  111. van Soest S, Swart J, Tijmes N, Sandkuijl LA, Rommers J, Bergen AAB. A locus for autosomal recessive pseudoxanthoma elasticum, with penetrance of vascular symptoms in carriers, maps to chromosome 16p13.1. Genome Res 1997;7:830–834.

    PubMed  Google Scholar 

  112. Berger W, Meindl A, van de Pol TJ, et al. Isolation of a candidate gene for Norrie disease by positional cloning. Nat Genet 1992; 1:199–203.

    Article  PubMed  CAS  Google Scholar 

  113. Black GCM, Perveen R, Bonshek R, et al. Coats’ disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis. Hum Mol Genet 1999;11:2021–2035.

    Google Scholar 

  114. Chen ZY, Hendriks RW, Jobling MA, et al. Isolation and characterization of a candidate gene for Norrie disease. Nat Genet 1992;1:204–208.

    Article  PubMed  CAS  Google Scholar 

  115. Chen ZY, Battinelli EM, Fiedler A, et al. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy. Nat Genet 1993;5:180–182.

    Article  PubMed  CAS  Google Scholar 

  116. Gal A, Stolzenberger C, Wienker T, et al. Norrie’s disease: close linkage with genetic markers from the proximal short arm of the X chromosome. Clin Genet 1985;27:282, 283.

    Article  PubMed  CAS  Google Scholar 

  117. Rehm HL, Gutiérrez-Espeleta GA, Garcia R, et al. Norrie disease gene mutation in a large Costa Rican kindred with a novel phenotype including venous insufficiency. Hum Mutat 1997;9:402–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Greenberg, J., Ziskind, A., Daiger, S.P. (2006). Genetics of Ocular Vascular Disease. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics