Skip to main content

Genetic Basis of Olfactory Deficits

  • Chapter
Genomic Disorders

Abstract

The completion of the human genome sequencing has opened new opportunities to better understand complex biological systems. In this realm, the human sense of smell is an excellent example of how genome analysis provides new information on genome organization and on deficits. Before the advent of genomic tools, the understanding of this highly sophisticated sensory neuronal pathway has been rather sketchy. In this chapter we summarize the relevant progress made in the last decade, and highlight the initial elucidation of two classes of olfactory deficits and their possible underlying genetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoore JE. Specific anosmia: a clue to the olfactory code. Nature 1967;214:1095–1098.

    Article  PubMed  CAS  Google Scholar 

  2. Lancet D, Ben-Arie N, Cohen S, et al. Olfactory receptors: transduction, diversity, human psychophysics and genome analysis. Ciba Found Symp 1993;179:131–141.

    PubMed  CAS  Google Scholar 

  3. Malnic B, Hirono J, Sato T, Buck L. Combinatorial receptor codes for odors. Cell 1999;96:1–20.

    Article  Google Scholar 

  4. Lancet D, Sadovsky E, Seidemann E. Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system. Proc Natl Acad Sci USA 1993;90:3715–3719.

    Article  PubMed  CAS  Google Scholar 

  5. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991;65:175–187.

    Article  PubMed  CAS  Google Scholar 

  6. Schoneberg T, Schulz A, Gudermann T. The structural basis of G-protein-coupled receptor function and dysfunction in human diseases. Rev Physiol Biochem Pharmacol 2002;144:143–227.

    PubMed  CAS  Google Scholar 

  7. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000;21:90–113.

    Article  PubMed  CAS  Google Scholar 

  8. Glusman G, Yanai I, Rubin I, Lancet D. The complete human olfactory subgenome. Genome Res 2001;11:685–702.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang X, Firestein S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci 2002;5:124–133.

    PubMed  CAS  Google Scholar 

  10. Olender T, Fuchs T, Linhart C, et al. The canine olfactory subgenome. Genomics 2004;83:361–372.

    Article  PubMed  CAS  Google Scholar 

  11. Glusman G, Sosinsky A, Ben-Asher E, et al. Sequence, structure and evolution of complete human olfactory receptor gene cluster. Genomics 2000;63:227–245.

    Article  PubMed  CAS  Google Scholar 

  12. Pilpel Y, Lancet D. The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Science 1999;8:969–977.

    Article  PubMed  CAS  Google Scholar 

  13. Man O, Gilad Y, Lancet D. Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 2004;13:240–254.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S. Functional expression of a mammalian odorant receptor. Science 1998;279:237–242.

    Article  PubMed  CAS  Google Scholar 

  15. Krautwurst D, Yau KW, Reed RR. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 1998;97:917–926.

    Article  Google Scholar 

  16. Sharon D, Glusman G, Pilpel Y, et al. Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 1999;1:24–36.

    Article  Google Scholar 

  17. Gilad Y, Man O, Paabo S, Lancet D. Human specific loss of olfactory receptor genes. Proc Natl Acad Sci USA 2003;100:3324–3327.

    Article  PubMed  CAS  Google Scholar 

  18. Gilad Y, Wiebe V, Przeworski M, Lancet D, Paabo S. Loss of olfactory recepror genes coincide with aquisition of full trichromatic vision in primates. PLoS Biol 2004;2:E5.

    Article  PubMed  Google Scholar 

  19. Zozulya S, Echeverri F, Nguyen T. The human olfactory receptor repertoire. Genome Biol 2001;2, RESEARCH0018.

    Google Scholar 

  20. Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 2002;11:1683.

    Article  CAS  Google Scholar 

  21. Laska M, Seibt A, Weber A. ’Microsmatic’ primates revisited: olfactory sensitivity in the squirrel monkey. Chem Senses 2000;25:47–53.

    Article  PubMed  CAS  Google Scholar 

  22. Gross-Isseroff R, Ophir D, Bartana A, Voet H, Lancet D. Evidence for genetic determination in human twins of olfactory thresholds for a standard odorant. Neurosci Lett 1992;141:115–118.

    Article  PubMed  CAS  Google Scholar 

  23. Amoore JE, Venstrom D, Davis AR.Measurmentsof specific anosmia. Percep Motor Skills 1968;26:143–164.

    CAS  Google Scholar 

  24. Amoore JE, Steinle S. A graphic history of specific anosmia. Chem Senses 1991;3:331–351.

    Google Scholar 

  25. Gibbons B. Smell survey. National Geographic. 1986;170:3.

    Google Scholar 

  26. Russell MJ, Cummings BJ, Profitt BF, Wysocki CJ, Gilbert AN, Cotman CW. Life span changes in the verbal categorization of odors. J Gerontol 1993;48:P49–P53.

    PubMed  CAS  Google Scholar 

  27. Corwin J, Loury M, Gilbert AN. Workplace, age, and sex as mediators of olfactory function: data from the National Geographic Smell Survey. J Gerontol B Psychol Sci Soc Sci 1995;50:P179–P186.

    PubMed  CAS  Google Scholar 

  28. Wysocki CJ, Gilbert AN. National Geographic Smell Survey. Effects of age are heterogenous. Ann NY Acad Sci 1989;561:12–28.

    Article  PubMed  CAS  Google Scholar 

  29. Schiffman SS, Nagle HT. Effect of environmental pollutants on taste and smell. Otolaryngol Head Neck Surg 1992;106:693–700.

    PubMed  CAS  Google Scholar 

  30. Henkin RI. Hyperosmia and depression following exposure to toxic vapors. JAMA 1990;264:2803.

    Article  PubMed  CAS  Google Scholar 

  31. Kovacs T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 2004;3:215–232.

    Article  PubMed  Google Scholar 

  32. Apter AJ, Gent JF, Frank ME. Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis. Arch Otolaryngol Head Neck Surg 1999;125:1005–1010.

    PubMed  CAS  Google Scholar 

  33. Zusho H. Posttraumatic anosmia. Arch Otolaryngol 1982;108:90–92.

    PubMed  CAS  Google Scholar 

  34. Leopold DA, Hornung DE, Schwob JE. Congenital lack of olfactory ability. Ann Otol Rhinol Laryngol 1992;101:229–236.

    PubMed  CAS  Google Scholar 

  35. Jafek BW, Gordon AS, Moran DT, Eller PM. Congenital anosmia. Ear Nose Throat J 1990;69:331–337.

    PubMed  CAS  Google Scholar 

  36. Lygonis CS. Familiar absence of olfaction. Hereditas 1969;61:413–416.

    Article  PubMed  CAS  Google Scholar 

  37. Ghadami M, Morovvati S, Majidzadeh AK, etal. Isolated congenital anosmia locus maps to 18p11.23-q12.2. J Med Genet 2004;41:299–303.

    Article  PubMed  CAS  Google Scholar 

  38. Feldmesser E, Halbertal S, Frydman M, Gross-Iseroff R, Lancet D. List of Abstracts from AChemS XXIII: The molecular genetics of human congenital general anosmia. Chem Senses 2002;27:663.

    Google Scholar 

  39. Hardelin JP, Soussi-Yanicostas N, Ardouin O, Levilliers J, Petit C. Kallmann syndrome. AdvOtorhinolaryngol 2000;56:268–274.

    Article  CAS  Google Scholar 

  40. del Castillo I, Cohen-Salmon M, Blanchard S, Lutfalla G, Petit C. Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome. Nat Genet 1992;2:305–310.

    Article  PubMed  Google Scholar 

  41. Ballabio A, Parenti G, Tippett P, et al. X-linked ichthyosis, due to steroid sulphatase deficiency, associated with Kallmann syndrome (hypogonado tropic hypogonadism and anosmia): linkage relationships withXg and cloned DNA sequences from the distal short arm of the X chromosome. Hum Genet 1986;72:237–240.

    Article  PubMed  CAS  Google Scholar 

  42. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991;353:529–536.

    Article  PubMed  CAS  Google Scholar 

  43. Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chedotal A, Petit C. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 2002;109:217–228.

    Article  PubMed  CAS  Google Scholar 

  44. Cariboni A, Pimpinelli F, Colamarino S, et al. The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet 2004;13:2781–2791.

    Article  PubMed  CAS  Google Scholar 

  45. Brunet LJ, Gold GH, Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 1996;17:1–20.

    Article  Google Scholar 

  46. Belluscio L, Gold GH, Nemes A, Axel R. Mice deficient in G(olf) are anosmic. Neuron 1998;20:69–81.

    Article  PubMed  CAS  Google Scholar 

  47. Wong ST, Trinh K, Hacker B, et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 2000;27:487–497.

    Article  PubMed  CAS  Google Scholar 

  48. Pietrobon D. Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 2002;25:31–50.

    Article  PubMed  CAS  Google Scholar 

  49. Wysocki CJ, Beauchamp GK. Ability to smell androstenone is genetically determined. Proc Natl Acad Sci US A 1984;81:4899–4902.

    Article  CAS  Google Scholar 

  50. Whissell-Buechy D, Amoore JE. Odour-blindness to musk: simple recessive inheritance. Nature 1973;242:271–273.

    Article  PubMed  CAS  Google Scholar 

  51. Wysocki CJ, Whitney G, Tucker D. Specific anosmia in the laboratory mouse. Behav Genet 1977;7:171–188.

    Article  PubMed  CAS  Google Scholar 

  52. Griff IC, Reed RR. The genetic basis for specific anosmia to isovaleric acid in the mouse. Cell 1995;83:407–414.

    Article  PubMed  CAS  Google Scholar 

  53. Wysocki CJ, Dorries KM, Beauchamp GK. Ability to perceive androstenone can be acquired by ostensibly anosmic people. Proc Natl Acad Sci USA 1989;86:7976–7978.

    Article  PubMed  CAS  Google Scholar 

  54. Nathans J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 1999;24:299–312.

    Article  PubMed  CAS  Google Scholar 

  55. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 2003;299:1221–1225.

    Article  PubMed  CAS  Google Scholar 

  56. Guo SW, Reed DR. The genetics of phenylthiocarbamide perception. Ann Hum Biol 2001;28:111–142.

    Article  PubMed  CAS  Google Scholar 

  57. Olson JM, Boehnke M, Neiswanger K, Roche AF, Siervogel RM. Alternative genetic models for the inheritance of the phenylthiocarbamide taste deficiency. Genet Epidemiol 1989;6:423–434.

    Article  PubMed  CAS  Google Scholar 

  58. Ivic L, Pyrski MM, Margolis JW, Richards LJ, Firestein S, Margolis FL. Adenoviral vector-mediated rescue of the OMP-null phenotype in vivo. Nat Neurosci 2000;3:1113–1120.

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura T. Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2000;126:17–32.

    Article  PubMed  CAS  Google Scholar 

  60. Lazard D, Tal N, Rubinstein M, Khen M, Lancet D, Zupko K. Identification and biochemical analysis of novel olfactory-specific cytochrome P-450IIA and UDP-glucuronosyl transferase. Biochemistry 1990;29:7433–7440.

    Article  PubMed  CAS  Google Scholar 

  61. Nef P, Heldman J, Lazard D,et al. Olfactory-specific cytochrome P-450. cDNA cloning of a novel neuroepi-thelial enzyme possibly involved in chemoreception. J Biol Chem 1989;264:6780–6785.

    PubMed  CAS  Google Scholar 

  62. Behrens M, Venkatraman G, Gronostajski RM, Reed RR, Margolis FL. NFI in the development of the olfactory neuroepithelium and the regulation of olfactory marker protein gene expression. Eur J Neurosci 2000;12:1372–1384.

    Article  PubMed  CAS  Google Scholar 

  63. Wang SS, Tsai RY, Reed RR. The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J Neurosci 1997;17:4149–4158.

    PubMed  CAS  Google Scholar 

  64. Pelosi P. The role of perireceptor events in vertebrate olfaction. Cell Mol Life Sci 2001;58:503–509.

    Article  PubMed  CAS  Google Scholar 

  65. Gilbert AN, Wysocki CJ. Results of the Smell Survey. National Geographic 1987;172:514–525.

    Google Scholar 

  66. Olender T, Feldmesser E, Atarot T, Eisenstein M, Lancet D. The olfactory receptor universe-from whole genome analysis to structure and evolution. Genet Mol Res 2004;3:545–553.

    PubMed  CAS  Google Scholar 

  67. Gaillard I, Rouquier S, Chavanieu A, Mollard P, Giorgi D. Amino-acid changes acquired during evolution by olfactory receptor 912-93 modify the specificity of odorant recognition. Hum Mol Genet 2004;13:771–780.

    Article  PubMed  CAS  Google Scholar 

  68. Serizawa S, Miyamichi K, Sakano H. One neuron-one receptor rule in the mouse olfactory system. Trends Genet 2004;20:648–653.

    Article  PubMed  CAS  Google Scholar 

  69. Menashe I, Man O, Lancet D, Gilad Y. Different noses for different people. Nat Genet 2003;34:143–144.

    Article  PubMed  CAS  Google Scholar 

  70. Trask BJ, Friedman C, Martin-Gallardo A, et al. Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 1998;7:13–26.

    Article  PubMed  CAS  Google Scholar 

  71. Nagawa F, Yoshihara S, Tsuboi A, Serizawa S, Itoh K, Sakano H. Genomic analysis of the murine odorant receptor MOR28 cluster: a possible role of gene conversion in maintaining the olfactory map. Gene 2002;292:73–80.

    Article  PubMed  CAS  Google Scholar 

  72. Clyne P, Warr C, Freeman M, Lessing D, Kim J, Carlson J. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 1999;22:327–338.

    Article  PubMed  CAS  Google Scholar 

  73. Harrison PM, Gerstein M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 2002;318:1155–1174.

    Article  PubMed  CAS  Google Scholar 

  74. Torrents D, Suyama M, Zdobnov E, Bork P. A genome-wide survey of human pseudogenes. Genome Res 2003;13:2559–2567.

    Article  PubMed  CAS  Google Scholar 

  75. Hirotsune S, Yoshida N, Chen A, et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 2003;423:91–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Menashe, I., Feldmesser, E., Lancet, D. (2006). Genetic Basis of Olfactory Deficits. In: Lupski, J.R., Stankiewicz, P. (eds) Genomic Disorders. Humana Press. https://doi.org/10.1007/978-1-59745-039-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-039-3_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-559-0

  • Online ISBN: 978-1-59745-039-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics