Skip to main content

Using Synthetic Precursor and Inhibitor miRNAs to Understand miRNA Function

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 419))

Summary

Although the majority of gene function studies center themselves around protein-encoding RNAs, the study of non-protein-encoding RNAs is becoming more widespread because of the discovery of hundreds of small RNA termed micro (mi) RNA that have regulator functions within cells. Currently, over 470 human miRNA genes are predicted to exist and are annotated within the “miRBase” public miRNA database (http://microrna.sanger.ac.uk/). There is no denying that short interfering (si) and short hairpin (sh) RNAs have revolutionized how scientists approach understanding gene function; however, si and shRNAs are not effective for analyzing the function of miRNAs given that miRNAs are typically short (17–24 bases). In turn, new sets of agents that allow for the expression of miRNA above endogenous levels and inhibition of miRNAs have become a valuable technology for the study of these small regulatory RNAs. In this chapter, we provide step-by-step methods on how to utilize synthetic precursor and antisense inhibitor molecules for understanding miRNA function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, R.C., R.L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): p. 843–54.

    Article  CAS  PubMed  Google Scholar 

  2. Wightman, B., I. Ha, and G. Ruvkun. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75(5): p. 855–62.

    Article  CAS  PubMed  Google Scholar 

  3. Ha, I., B. Wightman, and G. Ruvkun. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 1996; 10(23): p. 3041–50.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis, B.P., C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): p. 15–20.

    Article  CAS  PubMed  Google Scholar 

  5. Lim, L.P., et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027): p. 769–73.

    Article  CAS  PubMed  Google Scholar 

  6. Yekta, S., I.H. Shih, and D.P. Bartel. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304(5670): p. 594–6.

    Article  CAS  PubMed  Google Scholar 

  7. Schramke, V., et al. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 2005; 435(7046): p. 1275–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bagga, S., et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122(4): p. 553–63.

    Article  CAS  PubMed  Google Scholar 

  9. Jing, Q., et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120(5): p. 623–34.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, S.M., et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120(5): p. 635–47.

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharyya, S.N., et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125(6): p. 1111–24.

    Article  CAS  PubMed  Google Scholar 

  12. Vatolin, S., K. Navaratne, and R.J. Weil. A novel method to detect functional microRNA targets. J Mol Biol 2006; 358(4): p. 983–96.

    Article  CAS  PubMed  Google Scholar 

  13. Vo, N., et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 2005; 102(45): p. 16426–31.

    Article  CAS  PubMed  Google Scholar 

  14. Naguibneva, I., et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006; 8(3): p. 278–84.

    Article  CAS  PubMed  Google Scholar 

  15. Fazi, F., et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123(5): p. 819–31.

    Article  CAS  PubMed  Google Scholar 

  16. Felli, N., et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102(50): p. 18081–6.

    Article  CAS  PubMed  Google Scholar 

  17. Voorhoeve, P.M., et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124(6): p. 1169–81.

    Article  CAS  PubMed  Google Scholar 

  18. Krutzfeldt, J., et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005.

    Google Scholar 

  19. Chen, C.Z., et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303(5654): p. 83–6.

    Article  CAS  PubMed  Google Scholar 

  20. Guimaraes-Sternberg, C., et al. MicroRNA modulation of megakaryoblast fate involves cholinergic signaling. Leuk Res 2006; 30(5): p. 583–95.

    Google Scholar 

  21. Guimaraes-Sternberg, C., et al. MicroRNA modulation of megakaryoblast fate involves cholinergic signaling. Leuk Res 2005.

    Google Scholar 

  22. Zeng, Y., X. Cai, and B.R. Cullen. Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 2005; 392: p. 371–80.

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, Y. and B.R. Cullen. Sequence requirements for micro RNA processing and function in human cells. RNA 2003; 9(1): p. 112–23.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng, Y. and B.R. Cullen. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 2005; 280(30): p. 27595–603.

    Article  CAS  PubMed  Google Scholar 

  25. Zeng, Y., E.J. Wagner, and B.R. Cullen. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002; 9(6): p. 1327–33.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C.Z. and H.F. Lodish. MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 2005; 17(2): p. 155–65.

    Article  CAS  PubMed  Google Scholar 

  27. McManus, M.T., et al. Gene silencing using micro-RNA designed hairpins. RNA 2002; 8(6): p. 842–50.

    Google Scholar 

  28. Boutla, A., C. Delidakis, and M. Tabler. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res 2003; 31(17): p. 4973–80.

    Google Scholar 

  29. Meister, G., et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 2004; 10(3): p. 544–50.

    Article  CAS  PubMed  Google Scholar 

  30. Hutvagner, G., et al. Sequence-specific inhibition of small RNA function. PLoS Biol 2004; 2(4): p. E98.

    Article  PubMed  Google Scholar 

  31. Cheng, A.M., et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33(4): p. 1290–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ford, L.P. Using synthetic miRNA mimics for diverting cell fate: a possibility of miRNA-based therapeutics? Leuk Res 2006; 30(5): p. 511–3.

    Article  CAS  PubMed  Google Scholar 

  33. Garzon, R., et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 2006; 103(13): p. 5078–83.

    Article  CAS  PubMed  Google Scholar 

  34. Hornstein, E., et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005; 438(7068): p. 671–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ford, L.P., Cheng, A. (2008). Using Synthetic Precursor and Inhibitor miRNAs to Understand miRNA Function. In: Wilusz, J. (eds) Post-Transcriptional Gene Regulation. Methods In Molecular Biology™, vol 419. Humana Press. https://doi.org/10.1007/978-1-59745-033-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-033-1_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-783-9

  • Online ISBN: 978-1-59745-033-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics