Skip to main content

Alternative Options and Future Directions for Thyroid Cancer Therapy

  • Chapter
Thyroid Cancer
  • 1522 Accesses

Abstract

The unique features of thyroid cells have enabled clinicians to specifically target therapy for patients with differentiated thyroid cancers. The retained expression and function of the thyrotropin (TSH) receptor and sodium-iodide symporter (NIS) in most thyroid cells have allowed the successful use of TSH-suppressive doses of levothyroxine (L-T4) and radioiodine. These targeted treatments, in combination with surgery, have led to long-term survival rates for patients with early stage thyroid cancers that approach 98% at 20 yr (14). However, this excellent prognosis is not shared by individuals with aggressive metastatic thyroid cancers, nor by those with malignancies that dedifferentiate and lose expression and function of the TSH receptor and NIS. Indeed, patients with these more aggressive thyroid cancers typically have a poor response to traditional therapies, resulting in a much higher incidence of cancer-related death. Alternative therapies using nontargeted cytotoxic chemotherapeutic agents have been largely disappointing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherman SI, Brierley JD, Sperling M, et al. Prospective multicenter study of thyroid carcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer 1998; 83:1012–1021.

    Article  PubMed  CAS  Google Scholar 

  2. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 1998; 83:2638–2648.

    Article  PubMed  CAS  Google Scholar 

  3. Hundahl SA, Cady B, Cunningham MP, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation study. Cancer 2000; 89:202–217.

    Article  PubMed  CAS  Google Scholar 

  4. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97:418–428.

    Article  PubMed  CAS  Google Scholar 

  5. Braga-Basaria M, Ringel MD. Clinical review 158: Beyond radioiodine: a review of potential new therapeutic approaches for thyroid cancer. J Clin Endocrinol Metab 2003; 88:1947–1960.

    Article  PubMed  CAS  Google Scholar 

  6. Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005; Aug 27; [Epub].

    Google Scholar 

  7. Dohan O, Baloch Z, Banrevi Z, et al. Rapid communication: predominant intracellular overexpression of the Na(+)/I(−) symporter (NIS) in a large sampling of thyroid cancer cases. J Clin Endocrinol Metab 2001; 86:2697–2700.

    Article  PubMed  CAS  Google Scholar 

  8. Jhiang SM. Regulation of sodium/iodide symporter. Rev Endocr Metab Disord 2000; 1:205–215.

    Article  PubMed  CAS  Google Scholar 

  9. Ringel MD, Anderson J, Souza SL, et al. Expression of the sodium iodide symporter and thyroglobulin genes are reduced in papillary thyroid cancer. Mod Pathol 2001; 14:289–296.

    Article  PubMed  CAS  Google Scholar 

  10. Venkataraman GM, Yatin M, Marcinek R, Ain KB. Restoration of iodide uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/I-symporter gene methylation status. J Clin Endocrinol Metab 1999; 84:2449–2457.

    Article  PubMed  CAS  Google Scholar 

  11. Furuya F, Shimura H, Suzuki H, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology 2004; 145:2865–2875.

    Article  PubMed  CAS  Google Scholar 

  12. Grunwald F, Pakos E, Bender H, et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J Nucl Med 1998; 39:1555–1558.

    PubMed  CAS  Google Scholar 

  13. Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun 1997; 240:832–838.

    Article  PubMed  CAS  Google Scholar 

  14. Gruning T, Tiepolt C, Zophel K, et al. Retinoic acid for redifferentiation of thyroid cancer—does it hold its promise? Eur J Endocrinol 2003; 148:395–402.

    Article  PubMed  CAS  Google Scholar 

  15. Haugen BR, Larson LL, Pugazhenthi U, et al. Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab 2004; 89:272–280.

    Article  PubMed  CAS  Google Scholar 

  16. Elisei R, Vivaldi A, Agate L, et al. All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor β messenger ribonucleic acid expressing thyroid cancer cell lines but does not reinduce the expression of thyroid-specific genes. J Clin Endocrinol Metab 2005; 90:2403–2411.

    Article  PubMed  CAS  Google Scholar 

  17. DeGroot LJ, Zhang R. Clinical review 131: Gene therapy for thyroid cancer: where do we stand? J Clin Endocrinol Metab 2001; 86:2923–2928.

    Article  PubMed  CAS  Google Scholar 

  18. Schmutzler C, Koehrle J. Innovative strategies for the treatment of thyroid cancer. Eur J Endocrinol 2000; 143:15–24.

    Article  PubMed  CAS  Google Scholar 

  19. Cengic N, Baker CH, Schutz M, et al. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 2005; 90:4457–4464.

    Article  PubMed  CAS  Google Scholar 

  20. Dowlati A, Robertson K, Cooney M, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 2002; 62:3408–3416.

    PubMed  CAS  Google Scholar 

  21. Cooney MM, Radivoyevitch T, Dowlati A, et al. Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose phase I study in patients with advanced cancer. Clin Cancer Res 2004; 10:96–100.

    Article  PubMed  CAS  Google Scholar 

  22. Soh EY, Eigelberger MS, Kim KJ, et al. Neutralizing vascular endothelial growth factor activity inhibits thyroid cancer growth in vivo. Surgery 2000; 128:1059–1065; discussion 1065–1066.

    Article  PubMed  CAS  Google Scholar 

  23. Bauer AJ, Terrell R, Doniparthi NK, et al. Vascular endothelial growth factor monoclonal antibody inhibits growth of anaplastic thyroid cancer xenografts in nude mice. Thyroid 2002; 12:953–961.

    Article  PubMed  CAS  Google Scholar 

  24. Straight AM, Oakley K, Moores R, et al. Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of several angiogenic genes. Cancer Chemother Pharmacol 2005; Jul 5:1–8.

    Google Scholar 

  25. Farid NR. Molecular pathogenesis of thyroid cancer: the significance of oncogenes, tumor suppressor genes, and genomic instability. Exp Clin Endocrinol Diabetes 1996; 104(Suppl 4):1–12.

    Article  PubMed  CAS  Google Scholar 

  26. Segev DL, Umbricht C, Zeiger MA. Molecular pathogenesis of thyroid cancer. Surg Oncol 2003; 12:69–90.

    Article  PubMed  Google Scholar 

  27. Fagin JA. Perspective: lessons learned from molecular genetic studies of thyroid cancer—insights into pathogenesis and tumor-specific therapeutic targets. Endocrinology 2002; 143:2025–2028.

    Article  PubMed  CAS  Google Scholar 

  28. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 1990; 4:1474–1479.

    Article  PubMed  CAS  Google Scholar 

  29. Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 1989; 4:159–164.

    PubMed  CAS  Google Scholar 

  30. Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003; 95:625–627.

    Article  PubMed  CAS  Google Scholar 

  31. Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 2003; 22:6455–6457.

    Article  PubMed  CAS  Google Scholar 

  32. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003; 63:1454–1457.

    PubMed  CAS  Google Scholar 

  33. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003; 88:5399–5404.

    Article  PubMed  CAS  Google Scholar 

  34. Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 2004; 202:247–251.

    Article  PubMed  CAS  Google Scholar 

  35. Xing M, Vasko V, Tallini G, et al. BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab 2004; 89:1365–1368.

    Article  PubMed  CAS  Google Scholar 

  36. Xu X, Quiros RM, Gattuso P, et al. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 2003; 63:4561–4567.

    PubMed  CAS  Google Scholar 

  37. Fagin JA. Tumor suppressor genes in human thyroid neoplasms: p53 mutations are associated undifferentiated thyroid cancers. J Endocrinol Invest 1995; 18:140–142.

    PubMed  CAS  Google Scholar 

  38. Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16:64–67.

    Article  PubMed  CAS  Google Scholar 

  39. Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993; 91:179–184.

    Article  PubMed  CAS  Google Scholar 

  40. Druker BJ. STI571 (Gleevec) as a paradigm for cancer therapy. Trends Mol Med 2002; 8:S14–S18.

    Article  PubMed  CAS  Google Scholar 

  41. Mauro MJ, O’Dwyer M, Heinrich MC, Druker BJ. STI571: a paradigm of new agents for cancer therapeutics. J Clin Oncol 2002; 20:325–334.

    Article  PubMed  CAS  Google Scholar 

  42. Sawyers CL. Cancer treatment in the STI571 era: what will change? J Clin Oncol 2001; 19:13S–16S.

    PubMed  CAS  Google Scholar 

  43. Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002; 62:7284–7290.

    PubMed  CAS  Google Scholar 

  44. Vitagliano D, Carlomagno F, Motti ML, et al. Regulation of p27Kip1 protein levels contributes to mitogenic effects of the RET/PTC kinase in thyroid carcinoma cells. Cancer Res 2004; 64:3823–3829.

    Article  PubMed  CAS  Google Scholar 

  45. Cuccuru G, Lanzi C, Cassinelli G, et al. Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. J Natl Cancer Inst 2004; 96:980–991.

    Google Scholar 

  46. O’Regan RM, Khuri FR. Farnesyl transferase inhibitors: the next targeted therapies for breast cancer? Endocr Relat Cancer 2004; 11:191–205.

    Article  PubMed  CAS  Google Scholar 

  47. Mazieres J, Pradines A, Favre G. Perspectives on farnesyl transferase inhibitors in cancer therapy. Cancer Lett 2004; 206:159–167.

    Article  PubMed  CAS  Google Scholar 

  48. Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 2004; 10:47–51.

    Article  PubMed  CAS  Google Scholar 

  49. Ringel MD, Ladenson PW. Controversies in the follow-up and management of well-differentiated thyroid cancer. Endocr Relat Cancer 2004; 11:97–116.

    Article  PubMed  CAS  Google Scholar 

  50. Mandal M, Kim S, Younes MN, et al. The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br J Cancer 2005; 92:1899–1905.

    Article  PubMed  CAS  Google Scholar 

  51. Ahmad M, Shi Y. TRAIL-induced apoptosis of thyroid cancer cells: potential for therapeutic intervention. Oncogene 2000; 19:3363–3371.

    Article  PubMed  CAS  Google Scholar 

  52. Mitsiades CS, Poulaki V, Mitsiades N. The role of apoptosis-inducing receptors of the tumor necrosis factor family in thyroid cancer. J Endocrinol 2003; 178:205–216.

    Article  PubMed  CAS  Google Scholar 

  53. Park JW, Wong MG, Lobo M, et al. Modulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by chemotherapy in thyroid cancer cell lines. Thyroid 2003; 13:1103–1110.

    Article  PubMed  CAS  Google Scholar 

  54. Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther 2003; 2:S105–S114.

    PubMed  CAS  Google Scholar 

  55. Spitzweg C and Morris JC. Gene therapy for thyroid cancer: current status and future prospects. Thyroid 2004; 14:424–434.

    Article  PubMed  CAS  Google Scholar 

  56. Shimura H, Suzuki H, Miyazaki A, et al. Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells. Cancer Res 2001; 61:3640–3646.

    PubMed  CAS  Google Scholar 

  57. Tanaka K, Towata S, Nakao K, et al. Thyroid cancer immuno-therapy with retroviral and adenoviral vectors expressing granulocyte macrophage colony stimulating factor and interleukin-12 in a rat model. Clin Endocrinol (Oxf) 2003; 59:734–742.

    Article  CAS  Google Scholar 

  58. Barzon L, Bonaguro R, Castagliuolo I, et al. Gene therapy of thyroid cancer via retrovirally-driven combined expression of human interleukin-2 and herpes simplex virus thymidine kinase. Eur J Endocrinol 2003; 148:73–80.

    Article  PubMed  CAS  Google Scholar 

  59. Barzon L, Bonaguro R, Castagliuolo I, et al. Transcriptionally targeted retroviral vector for combined suicide and immunomodulating gene therapy of thyroid cancer. J Clin Endocrinol Metab 2002; 87:5304–5311.

    Article  PubMed  CAS  Google Scholar 

  60. Barzon L, Pacenti M, Taccaliti A, et al. A pilot study of combined suicide/cytokine gene therapy in two patients with end-stage anaplastic thyroid carcinoma. J Clin Endocrinol Metab 2005; 90:2831–2834.

    Article  PubMed  CAS  Google Scholar 

  61. Asakawa H, Kobayashi T, Komoike Y, et al. Establishment of anaplastic thyroid carcinoma cell lines useful for analysis of chemosensitivity and carcinogenesis. J Clin Endocrinol Metab 1996; 81:3547–3552.

    Article  PubMed  CAS  Google Scholar 

  62. Dapas B, Perissin L, Pucillo C, et al. Increase in therapeutic index of doxorubicin and vinblastine by aptameric oligonucleotide in human T lymphoblastic drug-sensitive and multidrug-resistant cells. Antisense Nucleic Acid Drug Dev 2002; 12:247–255.

    Article  CAS  Google Scholar 

  63. Massart C, Gibassier J, Raoul M, et al. Effect of S9788 on the efficiency of doxorubicin in vivo and in vitro in medullary thyroid carcinoma xenograft. Anticancer Drugs 1996; 7:321–330.

    Article  PubMed  CAS  Google Scholar 

  64. Sekiguchi M, Shiroko Y, Arai T, et al. Biological characteristics and chemosensitivity profile of four human anaplastic thyroid carcinoma cell lines. Biomed Pharmacother 2001; 55:466–474.

    Article  PubMed  CAS  Google Scholar 

  65. Sugawara I, Masunaga A, Itoyama S, et al. Expression of multidrug resistance-associated protein (MRP) in thyroid cancers. Cancer Lett 1995; 95:135–138.

    Article  PubMed  CAS  Google Scholar 

  66. Casterline PF, Jaques DA, Blom H, Wartofsky L. Anaplastic giant and spindle-cell carcinoma of the thyroid: a different therapeutic approach. Cancer 1980; 45:1689–1692.

    Article  PubMed  CAS  Google Scholar 

  67. Schott M, Seissler J. Dendritic cell vaccination: new hope for the treatment of metastasized endocrine malignancies. Trends Endocrinol Metab 2003; 14:156–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ringel, M.D. (2006). Alternative Options and Future Directions for Thyroid Cancer Therapy. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_89

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_89

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics