Skip to main content

Acidic Sugar Degradation Pathways

An Ab Initio Molecular Dynamics Study

  • Chapter
Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

Abstract

Ab initio molecular dynamics (MD) simulations were employed to elucidate xylose and glucose degradation pathways. In the case of xylose, a 2,5-anhydride intermediate was observed leading to the formation of furfural through elimination of water. This pathway agrees with one of the mechanisms proposed in the literature in that no open chain intermediates were found. In the case of glucose, a series of intermediates were observed before forming the 2,5-anhydride intermediate that eventually leads to hydroxymethylfurfural (HMF). One of these intermediates was a very short-lived open-chain form. Furthermore, two novel side-reaction pathways were identified, which lead to degradation products other than HMF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wyman, C. E., Bain, R. L., Hinman, N. D., and Stevens, D. J. (1993), Renewable Energy: Sources for Fuels and Electricity, Island Press Washington, DC.

    Google Scholar 

  2. Sheehan, J. J. (1994), Bioconversion for production of renewable transportation fuels in the United States: a strategic perspective. In Enzymatic Conversion of Biomass for Fuels Production. (Himmel, M. E., Baker, J. O., and Overend, R. P., eds.), American Chemical Society, Washington, DC, Ni 566, pp. 1–52.

    Google Scholar 

  3. Bergeron, R (1996), Bioethanol market forces. In Handbook on Bioethanol (Wyman, C. E., ed.) Taylor & Francis, Washington, DC, pp. 179–195.

    Google Scholar 

  4. Antal, M. J., Leesomboon, T., Mok, W. S., and Richards, G. N. (1991), Carbohydrate Research 217, 71–85; Antal, M. J., Mok, W. S., and Richards, G. N. (1990), Carbohydrate Research 199, 91–109; Antal, M. J., Mok, W. S., and Richards, G. N. (1990), Carbohydrate Research 199, 111–115.

    Article  CAS  Google Scholar 

  5. McKibbins, S. W., Harris, J. F., Saeman, J. R, and Neill, W. K. (1962), J. Forest Products 19, 17–23.

    Google Scholar 

  6. Garrett, E. R. and Dvorchik, B. H. (1969), J. Pharmaceutical Sciences, 58, 813–820.

    Article  CAS  Google Scholar 

  7. Parker, S., Calnon, ML, Feinberg, D., Power, A., and Weiss, C. (2000), The Value of Furfural/Ethanol Coproduction from Acid Hydrolysis Process, SERI/TR-231-2000, Solar Energy Research Institute, Golden, Colorado.

    Google Scholar 

  8. Van Dam, H. E., Kieboom, A. P. G., and van Bellum, H. (1986), Starch/Starke 38, 95–101.

    Article  Google Scholar 

  9. Bouchard, J., Overend, R. P., Chornet, E., and Van Calsteren, M.-R. (1992), J. Wood Chem. Tech. 12, 335–354.

    Article  CAS  Google Scholar 

  10. Mok, W. S., Antal M. J. Jr, and Varhegyi, G. (1992), Indust. Engineer. Chem. Res. 31, 94–1000.

    Article  CAS  Google Scholar 

  11. Lee, Y. Y, Kim, J.-S., Xiang, D. Q., and Kim, T.-H. (2001), Enhancement of Dilute-Acid Total-Hydrolysis Process for High-Yield Saacharification of Cellulosic Biomass, Subcontract Final Report.

    Google Scholar 

  12. Abatzoglou, N., Bouchard, J., Chornet, E., and Overend, R. P. (1986), Can. J. Chem. Engineer. 64, 781–786.

    CAS  Google Scholar 

  13. Johnson, D. K. and Davis, M. (2003), Identify Reaction Pathways in Dilute Cellulose Hydrolysis to Improve Mass Balance Closure at High Conversions, NREL Biomass Program P-Milestone Completion Report.

    Google Scholar 

  14. Torget, R. W., Kim, J. S., and Lee, Y. Y. (2000), Ind. Eng. Chem. Res. 39, 2817–2825.

    Article  CAS  Google Scholar 

  15. CPMD3.7, copyrighted jointly by IBM Corp and by Max-Planck Institute, Stuttgart; http://www.cpmd.org.

  16. Car, R. and Parrinello M. (1985), Phys. Rev. Lett. 55, 2471–2474.

    Article  PubMed  CAS  Google Scholar 

  17. Nimlos, M. R., Qian, X., Johnson, D. K., and Himmel, M. E., to be published.

    Google Scholar 

  18. Feather, M. S. (1970), Tetrahedron Lett. 4143–4145.

    Google Scholar 

  19. Harris, D. W. and Feather, M. S. (1973), Carbohydrate Res. 30, 359–365.

    Article  CAS  Google Scholar 

  20. Torget, R. W., Himmel, M. E., Brady, J., and Skopec, C. (2003), Characterize and Quantify Energetics at the Aqueous Boundary Layer of a Cellulose Microcrystallite Using Computational Chemistry, NREL Biomass Program Milestone Completion Report.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Qian, X., Nimlos, M.R., Johnson, D.K., Himmel, M.E. (2005). Acidic Sugar Degradation Pathways. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_84

Download citation

Publish with us

Policies and ethics