Skip to main content

Oligomerization Domains of G Protein-Coupled Receptors

Insights Into the Structural Basis of GPCR Association

  • Chapter
The G Protein-Coupled Receptors Handbook

Abstract

Many recent reviews have thoroughly described the ability of a wide range of G protein-coupled receptors (GPCRs) to exist and to potentially function as oligomers (16). This chapter summarizes the computational and experimental studies that have provided insight into the understanding of the structural basis of GPCR association. Particular emphasis is placed on the combined computational and experimental approach that we have recently developed to characterize the homodimerization interface of rhodopsin-like GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G-protein coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002;42:409–435.

    Article  PubMed  CAS  Google Scholar 

  2. Brady AE, Limbird LE. G-protein coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 2002;14:297–309.

    Article  PubMed  CAS  Google Scholar 

  3. George SR, O’Dowd BF, Lee SP. Oligomerization and its potential for drug discovery. Nature Rev Drug Disc 2002;1:808–820.

    Article  CAS  Google Scholar 

  4. Milligan G, Ramsay D, Pascal G, Carrillo JJ. GPCR dimerisation. Life Sci 2003;74:181–188.

    Article  PubMed  CAS  Google Scholar 

  5. Lee SP, O’Dowd BF, Rajaram RD, Nguyen T, George SR. D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry 2003;42:11,023–11,031.

    Article  PubMed  CAS  Google Scholar 

  6. Filizola M, Visiers, I., Skrabanek, L., Campagne, F. & Weinstein, H. Functional mechanisms of GPCRs in a structural context. In ed.^eds. Schousboe, A. & Bräuner-Osborne, H. Strategies in Molecular Neuropharmacology: Humana Press, Chapter 13, 2003, pp. 235–266.

    Google Scholar 

  7. Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J Biol Chem 2000;275:7862–7869.

    Article  PubMed  CAS  Google Scholar 

  8. Robbins MJ, Calver AR, Filippov AK, Hirst WD, Russell RB, Wood MD, Nasir S, Couve A, Brown DA, Moss SJ, Pangalos MN. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer J Neurosci 2001; 21:8043–8052.

    PubMed  CAS  Google Scholar 

  9. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel Y C. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000;288:154–157.

    Article  PubMed  CAS  Google Scholar 

  10. Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 2002;277: 19,762–19,772.

    Article  PubMed  CAS  Google Scholar 

  11. Guo W, Shi L, Javitch JA. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem 2003;278:4385–4388.

    Article  PubMed  CAS  Google Scholar 

  12. Filizola M, Guo W, Javitch JA, Weinstein H. Dimerization in G-protein coupled receptors: Correlation analysis and electron density maps of rhodopsin from different species suggest subtype-specific interfaces. Biophys J 2003; 84(pt 2):2235.

    Google Scholar 

  13. Filizola M., Olmea O, Weinstein H. Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. Prot Eng 2002;15:881–885.

    Article  CAS  Google Scholar 

  14. Filizola M, Olmea O, Weinstein H. Using correlated mutation analysis to predict the heterodimerization interface of GPCRs. Biophys J 2002;82(pt 2):2307.

    Google Scholar 

  15. Filizola M, Weinstein, H. Structural Models for Dimerization of G-Protein Coupled Receptors: The Opioid Receptor Homodimers. Biopolymers (Peptide Science) 2002;66:317–325.

    Article  CAS  Google Scholar 

  16. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, LeTrong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor Science 2000;289:739–745.

    Article  PubMed  CAS  Google Scholar 

  17. Gouldson PR, Snell CR, Reynolds, C. A. A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors. J Med Chem 1997;40:3871–3886.

    Article  PubMed  CAS  Google Scholar 

  18. Gouldson PR, Snell CR, Bywater RP, Higgs C, Reynolds CA. Domain swapping in G-protein coupled receptor dimers. Prot Eng 1998;11:1181–1193.

    Article  CAS  Google Scholar 

  19. Dean MK, Higgs C, Smith RE, Bywater RP, Snell CR, Scott PD, Upton GJ, Howe TJ, Reynolds CA. Dimerization of G-protein-coupled receptors J Med Chem 2001;44:4595–4614.

    Article  PubMed  CAS  Google Scholar 

  20. Gouldson PR, Dean MK, Snell CR, Bywater RP, Gkoutos G, Reynolds CA. Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. Prot Eng 2001;14:759–767.

    Article  CAS  Google Scholar 

  21. Gkoutos GV, Higgs C, Bywater RP, Gouldson, PR, Reynolds CA. Evidence for dimerization in the b2-adrenergic receptor from the evolutionary trace method Intl J Quantum Chem Biophys Q 1999;74:371–379.

    Article  CAS  Google Scholar 

  22. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor Nature 2000;407: 971–977.

    Article  PubMed  CAS  Google Scholar 

  23. Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, Pin JP. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004;24:370–377.

    Article  PubMed  CAS  Google Scholar 

  24. Ray K, Hauschild BC, Steinbach PJ Goldsmith PK, Hauache O, Spiegel AM. Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca(2+) receptor critical for dimerization. Implications for function of monomeric Ca(2+) receptor. J Biol Chem 1999;274:27,642–27,650.

    Article  PubMed  CAS  Google Scholar 

  25. Pace AJ, Gama L, Breitwieser GE. Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by Cys —> Ser mutations at Cys101 and Cys236 J Biol Chem 1999;274: 11,629–11,634.

    Article  PubMed  CAS  Google Scholar 

  26. AbdAlla S, Zaki E, Lother H, Quitterer, U. Involvement of the amino terminus of the B(2) receptor in agonist-induced receptor dimerization. J Biol Chem 1999;274:26,079–26,084.

    Article  PubMed  CAS  Google Scholar 

  27. Abe J, Suzuki H, Notoya M, Yamamoto T, Hirose S. Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. J Biol Chem 1999;274:19,957–19,964.

    Article  PubMed  CAS  Google Scholar 

  28. Overton MC, Blumer, K. J. The extracellular N-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a yeast G protein-coupled receptor. J Biol Chem 2002;277:41,463–41,472.

    Article  PubMed  CAS  Google Scholar 

  29. Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC. Role of heteromer formation in GABAB receptor function. Science 1999;283:74–77.

    Article  PubMed  CAS  Google Scholar 

  30. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998;396: 679–682.

    Article  PubMed  CAS  Google Scholar 

  31. Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 1997;272:26,959–26,964.

    Article  PubMed  CAS  Google Scholar 

  32. Kammerer RA, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J. Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices Biochemistry 1999;38:13,263–13,269.

    Article  PubMed  CAS  Google Scholar 

  33. Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 2000;27:97–106.

    Article  PubMed  CAS  Google Scholar 

  34. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 2003;278:21,655–21,662.

    Article  PubMed  CAS  Google Scholar 

  35. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force microscopy: Rhodopsin dimers in native disc membranes Nature 2003;421:127,128.

    Article  PubMed  CAS  Google Scholar 

  36. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996;271:16,384–16,392.

    Article  PubMed  CAS  Google Scholar 

  37. George SR, Lee SP, Varghese, G, Zeman PR, Seeman P, Ng GY, O’Dowd BF. A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J Biol Chem 1998; 273:30,244–30,248.

    Article  PubMed  CAS  Google Scholar 

  38. Ng GY, O’Dowd BF, Lee SP, Chung HT, Brann MR, Seeman P, George SR. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem. Biophys Res Commun 1996;227:200–204.

    Article  PubMed  CAS  Google Scholar 

  39. Klco JM, Lassere TB, Baranski TJ. C5a receptor oligomerization. I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor J Biol Chem 2003;278:35,345–35,353.

    Article  PubMed  CAS  Google Scholar 

  40. Carrillo JJ, Pediani J, Milligan G. Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins J Biol Chem 2003;278:42,578–42,587.

    Article  PubMed  CAS  Google Scholar 

  41. Overton MC, Chinault SL, Blumer, K. J. Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor J Biol Chem 2003; 278:49,369–49,377.

    Article  PubMed  CAS  Google Scholar 

  42. Javitch JA, Shi L, Simpson MM, Chen J, Chiappa V, Visiers I, Weinstein H, Ballesteros JA. The fourth transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle Biochemistry 2000;39:12,190–12,199.

    Article  PubMed  CAS  Google Scholar 

  43. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 1999;399:697–700.

    Article  PubMed  CAS  Google Scholar 

  44. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin De Ana A, Jones DR, Toran JL, Martinez, A. C. Chemokine receptor homo-or heterodimerization activates distinct signaling pathways EMBO J 2001;20: 2497–2507.

    Article  PubMed  CAS  Google Scholar 

  45. Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA. Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 2000;23:S60–S77.

    Article  PubMed  CAS  Google Scholar 

  46. Gouldson PR, Reynolds CA. Simulations on dimeric peptides: evidence for domain swapping in G-protein-coupled receptors? Biochem Soc Trans 1997;25:1066–1071.

    PubMed  CAS  Google Scholar 

  47. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors Proc Natl Acad Sci USA 1993;90: 3103–3107.

    Article  PubMed  CAS  Google Scholar 

  48. Lee SP, O’Dowd BF, Ng GY, Varghese, G, Akil H, Mansour A, Nguyen T, George SR. Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol 2000;58:120–128.

    PubMed  CAS  Google Scholar 

  49. Hamdan FF, Ward SD, Siddiqui N A, Bloodworth L M, Wess J. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Biochemistry 2002;41:7647–7658.

    Article  PubMed  CAS  Google Scholar 

  50. Hadac EM, Ji Z, Pinon DI, Henne RM, Lybrand TP, Miller LJ. A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely. J Med Chem 1999;42:2105–2111.

    Article  PubMed  CAS  Google Scholar 

  51. Schulz A, Grosse R, Schultz G, Gudermann T, Schoneberg T. Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J Biol Chem 2000;275: 2381–2389.

    Article  PubMed  CAS  Google Scholar 

  52. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. Quantitative assessment of beta 1 and beta 2-adrenergic receptor homo and hetero-dimerization by bioluminescence resonance energy transfer. J Biol Chem 2002;277: 44,925–44,931.

    Article  PubMed  CAS  Google Scholar 

  53. Mukhopadhyay S, McIntosh HH, Houston DB, Howlett AC. The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 2000;57:162–170.

    PubMed  CAS  Google Scholar 

  54. Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG. Homodimerization of neuropeptide Y receptors investigated by fluorescence resonance energy transfer in living cells J Biol Chem 2003;10:10.

    Google Scholar 

  55. Baneres JL, Parello J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein J Mol Biol 2003;329:815–829.

    Article  PubMed  CAS  Google Scholar 

  56. Singh R, Hurst DP, Barnett-Norris J, Lynch DL, Reggio PH, Guarnieri F. Activation of the cannabinoid CB1 receptor may involve a W6.48/F3.36 rotamer toggle switch J Peptide Res 2002;60:357–370.

    Article  CAS  Google Scholar 

  57. Horn F, Weare J, Beukers MW, Horsch S, Bairoch A, Chen W, Edvardsen O, Campagne F, Vriend G. GPCRDB: an information system for G protein-coupled receptors Nucleic Acids Res 1998;26:275–279.

    Article  PubMed  CAS  Google Scholar 

  58. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680.

    Article  PubMed  CAS  Google Scholar 

  59. Ballesteros JA, Shi L, Javitch JA. Structural Mimicry in G Protein-Coupled Receptors: Implications of the High-Resolution Structure of Rhodopsin for Structure-Function Analysis of Rhodopsin-Like Receptors. Mol Pharmacol 2001;60:1–19.

    PubMed  CAS  Google Scholar 

  60. Visiers I, Ballesteros JA, Weinstein H. Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Meth Enzymol 2002;343:329–371.

    Article  PubMed  Google Scholar 

  61. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling. Proteins Struct Funct Genet 1995;23:318–326.

    Article  PubMed  CAS  Google Scholar 

  62. Brooks BR., Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 1983;4:187–217.

    Article  CAS  Google Scholar 

  63. Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins Proteins 1994;18:309–317.

    Article  PubMed  CAS  Google Scholar 

  64. Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information Fold Des 1997;2: S25–S32.

    Article  PubMed  CAS  Google Scholar 

  65. Rodriguez-Frade JM, Vila-Coro AJ, de Ana AM, Albar JP, Martinez-A C, Mellado M. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci USA 1999;96:3628–3633.

    Article  PubMed  CAS  Google Scholar 

  66. Vila-Coro AJ, Mellado M, Martin de Ana A, Lucas P, del Real G, Martinez-A C, Rodriguez-Frade JM. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci USA 2000;97: 3388–3393.

    Article  PubMed  CAS  Google Scholar 

  67. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez-A C, Mellado M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 1999;13: 1699–1710.

    PubMed  CAS  Google Scholar 

  68. Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2002;42:437–467.

    Article  PubMed  CAS  Google Scholar 

  69. Bai M, Trivedi S, Brown EM. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 1998;273:23,605–23,610.

    Article  PubMed  CAS  Google Scholar 

  70. Romano C, Yang WL, O’Malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 1996;271:28,612–28,616.

    Article  PubMed  CAS  Google Scholar 

  71. Wu J, Kaback HR. A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 1996;93: 14,498–14,502.

    Article  PubMed  CAS  Google Scholar 

  72. Careaga CL, Falke JJ. Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping. J Mol Biol 1992;226:1219–1235.

    Article  PubMed  CAS  Google Scholar 

  73. Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995; 25:366–428.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Filizola, M., Guo, W., Javitch, J.A., Weinstein, H. (2005). Oligomerization Domains of G Protein-Coupled Receptors. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_11

Download citation

Publish with us

Policies and ethics