Skip to main content

Proteasome Inhibition and Apoptosis

  • Chapter
Proteasome Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 227 Accesses

Abstract

Programmed cell death is an energy-dependent process of cellular elimination that is necessary in all stages of life, including development, tissue homeostasis, and aging in multicellular organisms. Work by Wyllie, Kerr, and Currie identified the large phenotypic changes in the morphology of cells undergoing programmed cell death such as nuclear condensation and the dismantling of cellular material into membrane-enclosed packages; they termed these changes apoptosis. In 1972 they published a seminal paper that correctly predicted the physiologic and pathophysiologic relevance of their findings (1), and Wyllie went on to explore some of the biochemical characteristics that are signs of apoptosis, describing the cleavage of DNA into discrete nucleosomal multimers (DNA ladders) (2). In the 1970s Horvitz and colleagues described the loss of 131 cells during the development of the nematode Caenorhabetitis elegans. Mutagenesis studies subsequently implicated three genes in this process (ced-3, ced-4, and egl-1) that when inactivated caused the retention of the normally eliminated cells (3,4). A fourth gene (ced-9) was identified that promoted cell survival, in that its loss resulted in the death of more cells than normal (5). These proapoptotic gene products, EGL-1, CED-3, and CED-4, along with their antiapoptotic counterpart, CED-9, proved to be components of an evolutionarily conserved, biochemical cascade responsible for cellular elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr JF, et al. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.

    Article  PubMed  CAS  Google Scholar 

  2. Wyllie AH, et al. Chromatin changes in apoptosis. Histochem J 1981;13:681–692.

    Article  PubMed  CAS  Google Scholar 

  3. Ellis HM, et al. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986;44:817–829.

    Article  PubMed  CAS  Google Scholar 

  4. Conradt B, et al. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the bcl-2-like protein CED-9. Cell 1998;93:519–529.

    Article  PubMed  CAS  Google Scholar 

  5. Hengartner MO, et al. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992;356:494–499.

    Article  PubMed  CAS  Google Scholar 

  6. Xue D, et al. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 1996;10:1073–1083.

    Article  PubMed  CAS  Google Scholar 

  7. Xue D, et al. Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 1997;390:305–308.

    Article  PubMed  CAS  Google Scholar 

  8. Reed JC, et al. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 1988;336:259–261.

    Article  PubMed  CAS  Google Scholar 

  9. McDonnell TJ, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989;57:79–88.

    Article  PubMed  CAS  Google Scholar 

  10. Hockenbery D, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348:334–336.

    Article  PubMed  CAS  Google Scholar 

  11. Moul JW. Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy. Eur Urol 1999;35:399–407.

    Article  PubMed  CAS  Google Scholar 

  12. Karin M. et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301–310.

    Article  PubMed  CAS  Google Scholar 

  13. Berenson JR, et al. The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma. Semin Oncol 2001;28:626–633.

    Article  PubMed  CAS  Google Scholar 

  14. Rampino N, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997;275:967–969.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz LM. Insect muscle as a model for programmed cell death. J Neurobiol 1992;23:1312–1326.

    Article  PubMed  CAS  Google Scholar 

  16. Jones ME, et al. Changes in the structure and function of the multicatalytic proteinase (proteasome) during programmed cell death in the intersegmental muscles of the hawkmoth, Manduca sexta. Dev Biol 1995;169:436–447.

    Article  PubMed  CAS  Google Scholar 

  17. Grimm LM, et al. Proteasomes play an essential role in thymocyte apoptosis. EMBO J 1996;15:3835–3844.

    PubMed  CAS  Google Scholar 

  18. Grassilli E, et al. Inhibition of proteasome function prevents thymocyte apoptosis: involvement of ornithine decarboxylase. Biochem Biophys Res Commun 1998;250:293–297.

    Article  PubMed  CAS  Google Scholar 

  19. Stefanelli C, et al. Inhibition of etoposide-induced apoptosis with peptide aldehyde inhibitors of proteasome. Biochem J 1998;332:661–665.

    PubMed  CAS  Google Scholar 

  20. Hirsch T, et al. Proteasome activation occurs at an early, premitochondrial step of thymocyte apoptosis. J Immunol 1998;161:35–40.

    PubMed  CAS  Google Scholar 

  21. Dallaporta B, et al. Proteasome activation as a critical event of thymocyte apoptosis. Cell Death Differ 2000;7:368–373.

    Article  PubMed  CAS  Google Scholar 

  22. Sadoul R, et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J 1996;15:3845–3852.

    PubMed  CAS  Google Scholar 

  23. Sadoul R, et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J 1996;15:3845–3852.

    PubMed  CAS  Google Scholar 

  24. Imajoh-Ohmi S, et al. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Commun 1995;217:1070–1077.

    Article  PubMed  CAS  Google Scholar 

  25. Shinohara K, et al. Apoptosis induction resulting from proteasome inhibition. Biochem J 1996;317:385–388.

    PubMed  CAS  Google Scholar 

  26. Tanimoto Y, et al. Peptidyl aldehyde inhibitors of proteasome induce apoptosis rapidly in mouse lymphoma RVC cells. J Biochem (Tokyo) 1997;121:542–549.

    Article  CAS  Google Scholar 

  27. Drexler HC, Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 1997;94:855–860.

    Article  PubMed  CAS  Google Scholar 

  28. Cui H, et al. Proteasome regulation of activation-induced T cell death. Proc Natl Acad Sci USA 1997;94:7515–7520.

    Article  PubMed  CAS  Google Scholar 

  29. Bertrand F, et al. A role for nuclear factor kappaB in the antiapoptotic function of insulin. J Biol Chem 1998;273:2931–2938.

    Article  PubMed  CAS  Google Scholar 

  30. Chang YC, et al. mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ 1998;9:79–84.

    PubMed  CAS  Google Scholar 

  31. Marshansky V, et al. Proteasomes modulate balance among proapoptotic and antiapoptotic bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol 2001;166:3130–3142.

    PubMed  CAS  Google Scholar 

  32. You SA, et al. Potent antitumor agent proteasome inhibitors: a novel trigger for Bc12 phosphorylation to induce apoptosis. Int J Oncol 1999;15:625–628.

    PubMed  CAS  Google Scholar 

  33. Orlowski RZ, et al. Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 1998;58:4342–4348.

    PubMed  CAS  Google Scholar 

  34. Soldatenkov VA, et al. Apoptosis of Ewing’ s sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res 1997;57:3881–3885.

    PubMed  CAS  Google Scholar 

  35. Delic J, et al. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer 1998;77:1103–1107.

    Article  PubMed  CAS  Google Scholar 

  36. Masdehors P, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Haematol 1999;105:752–757.

    Article  PubMed  CAS  Google Scholar 

  37. Almond JB, et al. Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex. Leukemia 2001;15:1388–1397.

    Article  PubMed  CAS  Google Scholar 

  38. Chandra J, et al. Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood 1998;92:4220–4229.

    PubMed  CAS  Google Scholar 

  39. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    PubMed  CAS  Google Scholar 

  40. Teicher BA, et al. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999;5:2638–2645.

    PubMed  CAS  Google Scholar 

  41. An WG, et al. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000 14:1276–1283.

    Article  PubMed  CAS  Google Scholar 

  42. Hideshima T, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001:61:3071–3076.

    PubMed  CAS  Google Scholar 

  43. Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol 2002;6:493–500.

    Article  PubMed  CAS  Google Scholar 

  44. Russo SM, et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 2001;50:183–193.

    Article  PubMed  CAS  Google Scholar 

  45. Cusack JC, Jr., et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001;61:3535–3540.

    PubMed  CAS  Google Scholar 

  46. Sunwoo JB, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 2001;7:1419–1428.

    PubMed  CAS  Google Scholar 

  47. Bold RJ, et al. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 2001;100:11–17.

    Article  PubMed  CAS  Google Scholar 

  48. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    PubMed  CAS  Google Scholar 

  49. Shah SA, et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 2001;82:110–122.

    Article  PubMed  CAS  Google Scholar 

  50. Lopes UG, et al. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem 1997;272:12893–12896.

    Article  PubMed  CAS  Google Scholar 

  51. Yang Y, et al. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000;288:874–877.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki Y, et al. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001;98:8662–8667.

    Article  PubMed  CAS  Google Scholar 

  53. Royds JA, et al. Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol 1998;51:55–61.

    Article  PubMed  CAS  Google Scholar 

  54. Palombella VJ, et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994;78:773–785.

    Article  PubMed  CAS  Google Scholar 

  55. Traenckner EB, et al. Appearance of apparently ubiquitin-conjugated I kappa B-alpha during its phosphorylation-induced degradation in intact cells. J Cell Sci Suppl 1995;19:79–84.

    PubMed  CAS  Google Scholar 

  56. Traenckner EB, et al. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 1994;13:5433–5441.

    PubMed  CAS  Google Scholar 

  57. Jeremias I, et al. Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 1998;91:4624–4631.

    PubMed  CAS  Google Scholar 

  58. Bellas RE, et al. Inhibition of NF-kappa B activity induces apoptosis in murine hepatocytes. Am J Pathol 1997;151:891–896.

    PubMed  CAS  Google Scholar 

  59. Bancroft CC, et al. Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K and MEK signal kinases on NF-kappaB and AP-1 activation and IL-8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int J Cancer 2002;99:538–548.

    Article  PubMed  CAS  Google Scholar 

  60. Huang S, et al. Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 2000;60:5334–5339.

    PubMed  CAS  Google Scholar 

  61. Huang S, et al. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001;20:4188–4197.

    Article  PubMed  CAS  Google Scholar 

  62. Yoshida S, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 1997;17:4015–4023.

    PubMed  CAS  Google Scholar 

  63. Oikawa T, et al. The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 1998;246:243–248.

    Article  PubMed  CAS  Google Scholar 

  64. Freedman DA, et al. Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999;55:96–107.

    Article  PubMed  CAS  Google Scholar 

  65. Shieh SY, et al. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997;91:325–334.

    Article  PubMed  CAS  Google Scholar 

  66. Siliciano JD, et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997;11:3471–3481.

    Article  PubMed  CAS  Google Scholar 

  67. Koumenis C, et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 2001;21:1297–1310.

    Article  PubMed  CAS  Google Scholar 

  68. Unger T, et al. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 1999;18:1805–1814.

    Article  PubMed  CAS  Google Scholar 

  69. Sakaguchi K, et al. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 1997;36:10117–10124.

    Article  PubMed  CAS  Google Scholar 

  70. Raycroft L, et al. Transcriptional activation by wild-type but not transforming mutants of the p53 antioncogene. Science 1990;249:1049–1051.

    Article  PubMed  CAS  Google Scholar 

  71. Gartel AL, et al. Transcriptional regulation of the p21 (WAF1/CIP1) gene. Exp Cell Res 1999;246:280–289.

    Article  PubMed  CAS  Google Scholar 

  72. Xiao G, et al. A DNA damage signal is required for p53 to activate gadd45. Cancer Res 2000;60:1711–1719.

    PubMed  CAS  Google Scholar 

  73. Schuler M, et al. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001;29:684–688.

    Article  PubMed  CAS  Google Scholar 

  74. Muller M, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998;188:2033–2045.

    Article  PubMed  CAS  Google Scholar 

  75. Miyashita T, et al. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994;54:3131–3135.

    PubMed  CAS  Google Scholar 

  76. Sadot E, et al. Down-regulation of beta-catenin by activated p53. Mol Cell Biol 2001;21:6768–6781.

    Article  PubMed  CAS  Google Scholar 

  77. Bennett M, et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998;282:290–293.

    Article  PubMed  CAS  Google Scholar 

  78. Marchenko ND, et al. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 2000;275:16202–16212.

    Article  PubMed  CAS  Google Scholar 

  79. Sansome C, et al. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 2001;488:110–115.

    Article  PubMed  CAS  Google Scholar 

  80. Maki CG, et al. In vivo ubiquitination and proteasome-mediated degradation of p53 (1). Cancer Res 1996;56:2649–2654.

    PubMed  CAS  Google Scholar 

  81. Kurland JF, et al. Protease inhibitors restore radiation-induced apoptosis to bcl-2-expressing lymphoma cells. Int J Cancer 2001;96:327–333.

    Article  PubMed  CAS  Google Scholar 

  82. MacLaren AP, et al. p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ 2001;8:210–218.

    Article  PubMed  CAS  Google Scholar 

  83. Blagosklonny MV, et al. Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 1996;227:564–569.

    Article  PubMed  CAS  Google Scholar 

  84. Chen F, et al. Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ 2000;11:239–246.

    PubMed  CAS  Google Scholar 

  85. Kitagawa H, et al. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett 1999;443:181–186.

    Article  PubMed  CAS  Google Scholar 

  86. Wagenknecht B, et al. Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem 1999;9:117–125.

    Article  PubMed  CAS  Google Scholar 

  87. Naujokat C, et al. Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF1/Cipl in human immature leukemic cells. Eur J Haematol 2000;65:221–236.

    Article  PubMed  CAS  Google Scholar 

  88. Herrmann JL, et al. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 1998;17:2889–2899.

    Article  PubMed  CAS  Google Scholar 

  89. Pettaway CA, et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 1996;2:1627–1636.

    PubMed  CAS  Google Scholar 

  90. Schendel SL, et al. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 1997;94:5113–5118.

    Article  PubMed  CAS  Google Scholar 

  91. Reed JC. Bcl-2 family proteins. Oncogene 1998;17:3225–3236.

    Article  PubMed  Google Scholar 

  92. Knudson CM, et al. Bcl-2 and Bax function independently to regulate cell death. Nat Genet 1997;16:358–363.

    Article  PubMed  CAS  Google Scholar 

  93. Dimmeler S, et al. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 1999;189:1815–1822.

    Article  PubMed  CAS  Google Scholar 

  94. Li B, et al. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 2000;97:3850–3855.

    Article  PubMed  CAS  Google Scholar 

  95. Breitschopf K, et al. Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 2000;275:21648–21652.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang XM, et al. Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 cleavage in human M-07e leukaemic cells. Biochem J 1999;340:127–133.

    Article  PubMed  CAS  Google Scholar 

  97. Bold RJ, et al. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 2001;100:11–17.

    Article  PubMed  CAS  Google Scholar 

  98. Soldatenkov VA, et al. Apoptosis of Ewing’s sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res 1997;57:3881–3885.

    PubMed  CAS  Google Scholar 

  99. Soligo D, et al. The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 2001;113:126–135.

    Article  PubMed  CAS  Google Scholar 

  100. Fujita E, et al. Enhancement of CPP32-like activity in the TNF-treated U937 cells by the proteasome inhibitors. Biochem Biophys Res Commun 1996;224:74–79.

    Article  PubMed  CAS  Google Scholar 

  101. Monney L, et al. Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. J Biol Chem 1998;273:6121–6131.

    Article  PubMed  CAS  Google Scholar 

  102. Yamada Y, et al. Lactacystin activates FLICE (caspase 8) protease and induces apoptosis in Fasresistant adult T-cell leukemia cell lines. Eur J Haematol 2000;64:315–322.

    Article  PubMed  CAS  Google Scholar 

  103. Wagenknecht B, et al. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 2000;75:2288–2297.

    Article  PubMed  CAS  Google Scholar 

  104. Tani E, et al. Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells. FEBS Lett 2001;504:53–58.

    Article  PubMed  CAS  Google Scholar 

  105. Wang TH, et al. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000;88:2619–2628.

    Article  PubMed  CAS  Google Scholar 

  106. Pagano M, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclindependent kinase inhibitor p27. Science 1995;269:682–685.

    Article  PubMed  CAS  Google Scholar 

  107. Roninson IB. Oncogenic functions of tumour suppressor p21 (Wafl/Cipl/Sdil): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 2002;179:1–14.

    Article  PubMed  CAS  Google Scholar 

  108. Kudo Y, et al. p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 2000;6:916–923.

    PubMed  CAS  Google Scholar 

  109. Nawrocki ST, et al. Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 2002;1:1243–1253.

    PubMed  CAS  Google Scholar 

  110. William S, Pettaway C, Song R, Papandreou C, Logothetis C, and McConkey DJ. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther 2003;2:835–843.

    Google Scholar 

  111. Kamat AM, et al. The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol Cancer Ther 2004;3:279–290.

    PubMed  CAS  Google Scholar 

  112. Pahler JC, et al. Effects of the proteasome inhibitor, bortezomib, on apoptosis in isolated lymphocytes obtained from patients with chronic lymphocytic leukemia. Clin Cancer Res. 2003;9:4570–4577.

    PubMed  CAS  Google Scholar 

  113. Williams SA, McConkey DJ. The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res 2003;63:7338–7344.

    PubMed  CAS  Google Scholar 

  114. Nawrocki ST, et al. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 2004;3:59–70.

    PubMed  CAS  Google Scholar 

  115. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999;13:1211–1233.

    Article  PubMed  CAS  Google Scholar 

  116. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002;110:1389–1398.

    PubMed  CAS  Google Scholar 

  117. Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991;66:191–197.

    Article  PubMed  CAS  Google Scholar 

  118. Lee AH, et al. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 2003;100:9946–9951.

    Article  PubMed  CAS  Google Scholar 

  119. Hideshima T, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003;101:1530–1534.

    Article  PubMed  CAS  Google Scholar 

  120. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Bio 2003;4:181–191.

    Article  CAS  Google Scholar 

  121. Chauhan D, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003;278;17593–17596.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, S.A., McConkey, D.J. (2004). Proteasome Inhibition and Apoptosis. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics