Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 227 Accesses

Abstract

The involvement of the 20S proteasome in the degradation of critical intracellular regulatory proteins has suggested the potential use of proteasome inhibitors as novel therapeutic agents being applicable in many different disease indications. Early synthetic inhibitors of the 20S proeteasome were relatively nonspecific compounds but proved to be invaluable probes for improving our understanding of the ubiquitin/proteasomedependent degradation pathway in vitro. New classes of inhibitors that target this proteolytic enzyme have emerged in the last few years by combining traditional drug discovery approaches with new methods to find and optimize lead structures. This chapter reviews recent salient medicinal chemistry achievements in the design, synthesis, and biologic characterization of a variety of inhibitors of the 20S proteasome. These compounds are capable of modulating the subunit-specific proteolytic activities of the 20S proteosome in ways not previously possible. Examples have been selected to illustrate the impact of structural-based design and natural product screening in this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. García-Echeverría C. Recent advances in the identification and development of 20S proteasome inhibitors. Mini Rev Med Chem 2002;2:247–259.

    Article  PubMed  Google Scholar 

  2. Myung J, et al. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 2001;21:245–273.

    Article  PubMed  CAS  Google Scholar 

  3. Kisselev AF, etal. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–758.

    Article  PubMed  CAS  Google Scholar 

  4. Adams J. Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 2002;8:S49—S54.

    Article  Google Scholar 

  5. Adams J. Proteasome inhibition in cancer: development of PS-341. Semin Oncol 2001;28:613–619.

    Article  PubMed  CAS  Google Scholar 

  6. Mundy GR, inventor; Osteoscreen Inc, assignee. Treatment of myeloma bone disease with proteasomal and NF-κB activity inhibitors. WO 0061167, 2000.

    Google Scholar 

  7. Anma T, et al, inventors; Takeda Chemical Industries, Ltd, assignee. Preparation of dipeptides and proteasome inhibitors. JP 11292833, 1999.

    Google Scholar 

  8. McCormack TA, et al. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone. Biochemistry 1998;37:7792–7800.

    Article  PubMed  CAS  Google Scholar 

  9. Stein RL, et al, inventors; ProScript, Inc, assignee. Preparation of peptide aldehyde derivatives as inhibitors of the 26S proteolytic complex and the 20S proteasome. US 5693617, 1997.

    Google Scholar 

  10. Iqbal M, et al. Potent inhibitors of proteasome. J Med Chem 1995;38:2276–2277.

    Article  PubMed  CAS  Google Scholar 

  11. Figueiredo-Pereira ME, et al. A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell. J Neurochem 1994;63:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  12. Figueiredo-Pereira ME, et al. Comparison of the effect of calpain inhibitors on two extralysosomal proteinases: the multicatalytic proteinase complex and m-calpain. J Neurochem 1994;62:1989–1994.

    Article  PubMed  CAS  Google Scholar 

  13. Rock KL, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994;78:761–771.

    Article  PubMed  CAS  Google Scholar 

  14. Wilk S, et al. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem 1983;40:842–849.

    Article  PubMed  CAS  Google Scholar 

  15. An B, et al. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998;5:1062–1075.

    Article  PubMed  CAS  Google Scholar 

  16. Loidl G, et al. Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes. Chem Biol 1999;6:197–204.

    Article  PubMed  CAS  Google Scholar 

  17. Loidl G, et al. Synthesis of bivalent inhibitors of eucaryotic proteasomes. J Pept Sci 2000;6:36–46.

    Article  PubMed  CAS  Google Scholar 

  18. Loidl G, et al. Bivalent inhibitors of the yeast proteasome. Proc Eur Pept Symp 1999;828–829.

    Google Scholar 

  19. Okada K, et al. 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 1999;274:23787–23793.

    Article  PubMed  CAS  Google Scholar 

  20. Conconi M, et al. Proteasome inactivation upon aging and on oxidation effect of HSP 90. Mol Biol Rep 1997;24:45–50.

    Article  PubMed  CAS  Google Scholar 

  21. Momose I, et al. Tyropeptins A and B, new proteasome inhibitors produced by Kitastospora sp. MK993-dF2 I. Taxonomy, isolation, physico-chemical properties and biological activities. J Antibiot 2001;54:997–1003.

    Article  PubMed  CAS  Google Scholar 

  22. Momose I, et al. Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2 II. Structure determination and synthesis. J Antibiot 2001;54:1004–1012.

    Article  PubMed  CAS  Google Scholar 

  23. Lynas JF, et al. Inhibitors of the chymotrypsin-like activity of proteasome based on di- and tri-peptidyl a-keto aldehydes (glyoxals). Bioorg Med Chem Lett 1998;18:373–378.

    Article  Google Scholar 

  24. Chatterjee S, et al. P’-extended alpha-ketoamide inhibitors of proteasome. Bioorg Med Chem Lett 1999;9:2603–2606.

    Article  PubMed  CAS  Google Scholar 

  25. Wang L, et al, inventors; CV Therapeutics Inc, assignee. a-Ketoamide inhibitors of 20S proteasome. WO 9937666, 1999.

    Google Scholar 

  26. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    PubMed  CAS  Google Scholar 

  27. Adams J, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 1998;8:333–338.

    Article  PubMed  CAS  Google Scholar 

  28. Adams J, et al., inventors; ProScript, Inc, assignee. Boronic ester and acid compounds, synthesis and uses. WO 9613266, 1996.

    Google Scholar 

  29. Siman R, et al., inventors; Cephalon Inc, assignee. Multicatalytic protease inhibitors for use as antitumor agents. WO 9930707, 1999.

    Google Scholar 

  30. Palmer JT. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 1995;38:3193–3196.

    Article  PubMed  CAS  Google Scholar 

  31. Bogyo M, et al. Covalent modification of the active site threonine of proteasomal β-subunits and the Escherichia coli homolog Hs1V by a new class of inhibitors. Proc Natl Acad Sci USA 1997;94:6629–6634.

    Article  PubMed  CAS  Google Scholar 

  32. Bogyo M, et al. Substrate binding and sequence preference of the proteasome revealed by active-sitedirected affinity probes. Chem Biol 1998;5:307–320.

    Article  PubMed  CAS  Google Scholar 

  33. Nazif T, et al. Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc Nall Acad Sci USA 2001;98:967–2972.

    Article  Google Scholar 

  34. Kessler BM, et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic β3-subunits. Chem Biol 2001;8:913–929.

    Article  PubMed  CAS  Google Scholar 

  35. Lehr P, et al. Inhibitors of human immunodeficiency virus type 1 protease containing 2-aminobenzylsubstituted 4-amino-3-hydroxy-5-phenylpentanoic acid: synthesis, activity, and oral bioavailability. J Med Chem 1996;39:2060–2067.

    Article  PubMed  CAS  Google Scholar 

  36. Billich A, et al. Potent and orally bioavailable HIV-1 proteinase inhibitors containing the 2-aminobenzylstatine moiety. Antiv Chem Chemother 1995;6:327–336.

    CAS  Google Scholar 

  37. Scholz D, et al. Inhibitors of the HIV-1 proteinase containing 2-heterosubstituted-4-amino-3-hydroxy5-phenylpentanoic acid: synthesis, enzyme inhibition, and antiviral activity. J Med Chem 1994;37:3079–3089.

    Article  PubMed  CAS  Google Scholar 

  38. García-Echeverría C, et al. A new structural class of non-covalent and selective inhibitors of the chymotrypsin-like activity of the 20S proteasome. Bioorg Med Chem Lett 2000;11:1317–1319.

    Article  Google Scholar 

  39. Groll M, et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 1997;386:463–471.

    Article  PubMed  CAS  Google Scholar 

  40. Loewe J, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 1995;268:533–539.

    Article  CAS  Google Scholar 

  41. Furet P, et al. Modeling of the binding mode of a non-covalent inhibitor of the 20S proteasome. Application to structure-based analogue design. Bioorg Med Chem Lett 2001;11:1321–1324.

    Article  PubMed  CAS  Google Scholar 

  42. Furet P, et al. Structure-based optimisation of 2-aminobenzylstatine derivatives: potent and selective inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorg Med Chem Lett 2002;12:1331–1334.

    Article  PubMed  CAS  Google Scholar 

  43. Lum RT, et al. Selective inhibition of the chymotrypsin-like activity of the 20S proteasome by — methoxy-1-indanone dipeptide benzamides. Bioorg Med Chem Lett 1998; 8:209–214.

    Article  PubMed  CAS  Google Scholar 

  44. Lum RT, et al. A new structural class of proteasome inhibitors that prevent NF-κ activation. Biochem Pharmacol 1998;55:1391–1397.

    Article  PubMed  CAS  Google Scholar 

  45. Andre P, et al, inventors; INSERM, assignee. Novel use of HIV protease inhibiting compounds. WO 9963998, 1999.

    Google Scholar 

  46. Andre P, et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci USA 1998;95:13120–13124.

    Article  PubMed  CAS  Google Scholar 

  47. Retterstol K, et al. Results of intensive long-term treatment of familial hypercholesterolemia. Am J Cardiol 1996;78:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  48. Rao S, et al. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci USA 1999;96:7797–7802.

    Article  PubMed  CAS  Google Scholar 

  49. Figueiredo-Pereira ME, et al. The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsin-like activity of the bovine pituitary 20S proteasome. J Biol Chem 1996;271:16455–16459; Erratum in: J Biol Chem 1996;271:23602.

    Article  PubMed  CAS  Google Scholar 

  50. Meyer S, et al. Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-κ activation. FEBS Lett 1997;413:354–358.

    Article  PubMed  CAS  Google Scholar 

  51. Piccinini M, et al. Proteasomes are a target of the anti-tumour drug vinblastine. Biochem J 2001;356:835–841.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

García-Echeverría, C. (2004). Other Proteasome Inhibitors. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics