Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 223 Accesses

Abstract

Anthracycline chemotherapeutics display activity against a broad range of cancers and are therefore in clinical use for therapy of patients with both hematologic malignancies and solid tumors. However, these drugs have the ability to activate pathways such as nuclear factor-κB and p44/42 mitogen-activated protein kinase which play roles in inducible chemoresistance and promote tumor cell survival. Because proteasome inhibitors block activation of these pathways, it is possible that combinations of an anthracycline and a proteasome inhibitor could induce higher levels of tumor cell apoptosis. Furthermore, other mechanisms of resistance to anthracyclines, such as P-glycloprotein expression and downregulation of topoisomerase II, may also be abrogated by proteasome inhibitors, further supporting the development of such regimens. This chapter describes some of the molecular mechanisms by which addition of a proteasome inhibitor to an anthracycline could result in enhanced antitumor efficacy. In addition, the available preclinical and early clinical data are critically reviewed, to afford the reader some insight into the promise of this area of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Riggs CEJ. Antitumor antibiotics and related compounds. In: The Chemotherapy Source Book. (Perry MC, ed). Williams & Wilkins, Baltimore, 1997:345–386.

    Google Scholar 

  2. Kiyomiya K, et al. Mechanism of specific nuclear transport of Adriamycin: the mode of nuclear translocation of Adriamycin-proteasome complex. Cancer Res 2001;61:2467–2471.

    PubMed  CAS  Google Scholar 

  3. Kiyomiya K, et al. Proteasome is a carrier to translocate doxorubicin from cytoplasm into nucleus. Life Sci 1998;62:1853–1860.

    Article  PubMed  CAS  Google Scholar 

  4. Kumatori A, et al. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 1990;87:7071–7075.

    Article  PubMed  CAS  Google Scholar 

  5. Kanayama H, et al. Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res 1991;51:6677–6685.

    PubMed  CAS  Google Scholar 

  6. Shimbara N, et al. Regulation of gene expression of proteasomes (multi-protease complexes) during growth and differentiation of human hematopoietic cells. J Biol Chem 1992;267:18100–18109.

    PubMed  CAS  Google Scholar 

  7. Ciftci O, et al. Regulation of the nuclear proteasome activity in myelomonocytic human leukemia cells after Adriamycin treatment. Blood 2001;97:2830–2838.

    Article  PubMed  CAS  Google Scholar 

  8. Poizat C, et al. Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 2000;20:8643–8654.

    Article  PubMed  CAS  Google Scholar 

  9. Isoe T, et al. Inhibition of different steps of the ubiquitin system by cisplatin and aclarubicin. Biochim Biophys Acta 1992;1117:131–135.

    Article  PubMed  CAS  Google Scholar 

  10. Figueiredo-Pereira ME, et al. The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsin-like activity of the bovine pituitary 20 S proteasome [published erratum appears in J Biol Chem 1996;271:23602]. J Biol Chem 1996;271:16455–16459.

    Article  PubMed  CAS  Google Scholar 

  11. Karanes C, et al. Phase I trial of aclacinomycin-A. A clinical and pharmacokinetic study. Invest New Drugs 1983;1:173–179.

    Article  PubMed  CAS  Google Scholar 

  12. Spataro V, et al. Resistance to diverse drugs and ultraviolet light conferred by overexpression of a novel human 26 S proteasome subunit. J Biol Chem 1997;272:30470–30475.

    Article  PubMed  CAS  Google Scholar 

  13. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001;107:241–246.

    Article  PubMed  CAS  Google Scholar 

  14. Wang CY, et al. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999;5:412–417.

    Article  PubMed  Google Scholar 

  15. Palombella VJ, et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994;78:773–785.

    Article  PubMed  CAS  Google Scholar 

  16. Cusack JC, Jr., et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001;61:3535–3540.

    PubMed  CAS  Google Scholar 

  17. Russo SM, et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 2001;50:183–193.

    Article  PubMed  CAS  Google Scholar 

  18. Das KC, et al. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem 1997;272:14914–14920.

    Article  PubMed  CAS  Google Scholar 

  19. Orlowski RZ, et al. Evidence that inhibition of p44/42 mitogen activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. J Biol Chem 2002;277:27864–27871.

    Article  PubMed  CAS  Google Scholar 

  20. Dent P, et al. The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity. Leukemia 1998;12:1843–1850.

    Article  PubMed  CAS  Google Scholar 

  21. Schaeffer HJ, et al. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999;19:2435–2444.

    PubMed  CAS  Google Scholar 

  22. Cross TG, et al. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000;256:34–41.

    Article  PubMed  CAS  Google Scholar 

  23. Bonni A, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [see comments]. Science 1999;286:1358–1362.

    Article  PubMed  CAS  Google Scholar 

  24. Fang X, et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 1999;18:6635–6640.

    Article  PubMed  CAS  Google Scholar 

  25. Jan MS, et al. Bad overexpression sensitizes NIH/3T3 cells to undergo apoptosis which involves caspase activation and ERK inactivation. Biochem Biophys Res Commun 1999;264:724–729.

    Article  PubMed  CAS  Google Scholar 

  26. Holmstrom TH, et al. MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J 2000;19:5418–5428.

    Article  PubMed  CAS  Google Scholar 

  27. Arai M, et al. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca (2+)-ATPase gene transcription. Circ Res 2000;86:8–14.

    Article  PubMed  CAS  Google Scholar 

  28. Nielsen D, et al. Cellular resistance to anthracyclines. Gen Pharmacol 1996;27:251–255.

    Article  PubMed  CAS  Google Scholar 

  29. Robert J. Multidrug resistance in oncology: diagnostic and therapeutic approaches. Eur J Clin Invest 1999;29:536–545.

    Article  PubMed  CAS  Google Scholar 

  30. Bartlett NL, et al. Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 1994;12:835–842.

    PubMed  CAS  Google Scholar 

  31. Warner E, et al. Phase II study of dexverapamil plus anthracycline in patients with metastatic breast cancer who have progressed on the same anthracycline regimen. Clin Cancer Res 1998;4:1451–1457.

    PubMed  CAS  Google Scholar 

  32. Loo TW, et al. Superfolding of the partially unfolded core-glycosylated intermediate of human P-glycoprotein into the mature enzyme is promoted by substrate-induced transmembrane domain interactions. J Biol Chem 1998;273:14671–14674.

    Article  PubMed  CAS  Google Scholar 

  33. Loo TW, et al. The human multidrug resistance P-glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy. FASEB J 1999;13:1724–1732.

    PubMed  CAS  Google Scholar 

  34. Beck WT, et al. Mechanisms of resistance to drugs that inhibit DNA topoisomerases. Semin Cancer Biol 1991;2:235–244.

    PubMed  CAS  Google Scholar 

  35. Tomida A, et al. Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anticancer Drug Des 1999;14:169–177.

    PubMed  CAS  Google Scholar 

  36. Nakajima T, et al. Degradation of topoisomerase IIalpha during adenovirus E1A-induced apoptosis is mediated by the activation of the ubiquitin proteolysis system. J Biol Chem 1996;271:24842–24849.

    Article  PubMed  CAS  Google Scholar 

  37. Kim HD, et al. Glucose-regulated stresses cause degradation of DNA topoisomerase IIalpha by inducing nuclear proteasome during G1 cell cycle arrest in cancer cells. J Cell Physiol 1999;180:97–104.

    Article  PubMed  CAS  Google Scholar 

  38. Ogiso Y, et al. Proteasome inhibition circumvents solid tumor resistance to topoisomerase II-directed drugs. Cancer Res 2000;60:2429–2434.

    PubMed  CAS  Google Scholar 

  39. Smith PJ, et al. Multilevel therapeutic targeting by topoisomerase inhibitors. Br J Cancer Suppl 1994;23:S47–S51.

    PubMed  CAS  Google Scholar 

  40. Mao Y, et al. 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem 2001;276:40652–40658.

    Article  PubMed  CAS  Google Scholar 

  41. Laurent G, et al. Signaling pathways activated by daunorubicin. Blood 2001;98:913–924.

    Article  PubMed  CAS  Google Scholar 

  42. Meriin AB, et al. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. J Biol Chem 1998;273:6373–6379.

    Article  PubMed  CAS  Google Scholar 

  43. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    PubMed  CAS  Google Scholar 

  44. Fenteany G, et al. Lactacystin, proteasome function, and cell fate. J Biol Chem 1998;273:8545–8548

    Article  PubMed  CAS  Google Scholar 

  45. Yuan R, et al. P53-independent downregulation of p73 in human cancer cells treated with Adriamycin. Cancer Chemother Pharmacol 2001;47:161–169.

    Article  PubMed  CAS  Google Scholar 

  46. Lin ZP, et al. Prevention of brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG-132: involvement of NF-kappaB activation in drug resistance. Cancer Res 1998;58:3059–3065.

    PubMed  CAS  Google Scholar 

  47. Tabata M, et al. Roles of NF-kappaB and 26 S proteasome in apoptotic cell death induced by topoisomerase I and II poisons in human nonsmall cell lung carcinoma. J Biol Chem 2001;276:8029–8036.

    Article  PubMed  CAS  Google Scholar 

  48. Brandes LM, et al. Reversal of physiological stress-induced resistance to topoisomerase II inhibitors using an inducible phosphorylation site-deficient mutant of I kappa B alpha. Mol Pharmacol 2001;60:559–567.

    PubMed  CAS  Google Scholar 

  49. Dickson RB, et al. Growth factors in breast cancer. Endocr Rev 1995;16:559–589.

    PubMed  CAS  Google Scholar 

  50. Mueller H, et al. Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 2000;89:384–388.

    Article  PubMed  CAS  Google Scholar 

  51. Teicher BA, et al. The proteasome inhibitor PS-341 in cancer therapy. Clin CancerRes 1999;5:2638–2645.

    CAS  Google Scholar 

  52. Thomas JP, et al. A phase I and pharmacodynamic study of the proteasome inhibitor PS-341 in combination with doxorubicin. In: Proceedings of the American Society of Clinical Oncology, Orlando, FL, 2002, vol 21.

    Google Scholar 

  53. Sparano JA, et al. Liposomal anthracyclines for breast cancer. Semin Oncol 2001;28:32–40.

    PubMed  CAS  Google Scholar 

  54. Muggia F, et al. Phase III data on Caelyx in ovarian cancer. Eur J Cancer 2001;37(suppl 9):S15–S18

    Article  PubMed  CAS  Google Scholar 

  55. Muggia FM. Liposomal encapsulated anthracyclines: new therapeutic horizons. Curr Oncol Rep 2001;3:156–162.

    Article  PubMed  CAS  Google Scholar 

  56. Lyass O, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 2000 89:1037–1047.

    Article  PubMed  CAS  Google Scholar 

  57. Berry G, et al. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol 1998;9:711–716.

    Article  PubMed  CAS  Google Scholar 

  58. Singal PK, et al. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998;339:900–905.

    Article  PubMed  CAS  Google Scholar 

  59. Stinchcombe TE, et al. PS-341 is active in multiple myeloma: preliminary report of a phase I trial of the proteasome inhibitor PS-341 in patients with hematologic malignancies. In: Proceedings of the American Society of Hematology, San Francisco, CA, 2000, vol 96.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orlowski, R.Z. (2004). Anthracyclines and Bortezomib. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics