Skip to main content

Biological Theories of Depression and Implications for Current and New Treatments

  • Chapter
Pharmacotherapy of Depression

Abstract

Unipolar major depressive disorder is a common condition that has both emotional (mood and anxiety) and physical aspects (1). The physical manifestations are common features of depression present in up to 80% of depressed patients (2). These physical symptoms occur in nearly all body systems and are often the presenting features in the nonpsychiatric setting. The most common physical symptoms are sleep disruption, fatigue, pain and discomfort, and appetite disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fawcett J, Kravitz HM. Anxiety syndromes and their relationship to depressive illness. J Clin Psychiatry 1983; 44: 8–11.

    PubMed  CAS  Google Scholar 

  2. Gerber PD, Barrett JE, Barrett JA, et al. The relationship of presenting physical complaints to depressive symptoms in primary care patients. J Gen Int Med 1992; 7: 170–173.

    CAS  Google Scholar 

  3. Posse M, Hallstrom T. Depressive disorders among somatizing patients in primary health care. Acta Psychiatr Scand 1998; 98: 187–192.

    PubMed  CAS  Google Scholar 

  4. Kroenke K, Price RK. Symptoms in the community: prevalence, classification, and psychiatric comorbidity. Arch Intern Med 1993; 153: 2474–2480.

    PubMed  CAS  Google Scholar 

  5. Hammen C, Burge D, Burney E, Adrian C. Longitudinal study of diagnoses in children of women with unipolar and bipolar affective disorder. Arch Gen Psychiatry 1990; 47: 1112–1117.

    PubMed  CAS  Google Scholar 

  6. Warner V, Weissman MM, Fendrich M, Wickramaratne P, Moreau D. The course of major depression in the offspring of depressed parents. Incidence, recurrence, and recovery. Arch Gen Psychiatry 1992; 49: 795–801.

    PubMed  CAS  Google Scholar 

  7. Kendler KS, Walters EE, Neale MC, Kessler RC, Heath AC, Eaves LJ. The structure of the genetic and environmental risk factors for six major psychiatric disorders in women. Phobia, generalized anxiety disorder, panic disorder, bulimia, major depression, and alcoholism. Arch Gen Psychiatry 1995; 52: 374–373.

    PubMed  CAS  Google Scholar 

  8. Holmes S, Robins L. The influence of childhood disciplinary experiences on the development of alcoholism and depression. J Child Psychol Psychiatry Allied Professions 1987; 28: 399–415.

    CAS  Google Scholar 

  9. Magarinow AM, Dweslandes A, McEwen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113–122.

    Google Scholar 

  10. Kaufman J, Plotsky PM, Nemeroff CB, Charney DS. Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry 2000; 48: 778–790.

    PubMed  CAS  Google Scholar 

  11. Lopez JF, Akil H, Watson SJ. Neural circuits mediating stress. Biol Psychiatry 1999; 46: 1461–1471.

    PubMed  CAS  Google Scholar 

  12. Duman RS, Charney DS. Cell atrophy and loss in major depression. Biol Psychiatry 1999; 45: 1083–1084.

    PubMed  CAS  Google Scholar 

  13. Duman RS, Malbertg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000; 48: 732–739.

    PubMed  CAS  Google Scholar 

  14. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000; 20: 9104–9110.

    PubMed  CAS  Google Scholar 

  15. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000; 48: 766–777.

    PubMed  CAS  Google Scholar 

  16. Sheline YI. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity.Biol Psychiatry 2000; 48:791–800.

    Google Scholar 

  17. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin–releasing factor. Pharmacol Rev 1991; 43: 425–473.

    PubMed  CAS  Google Scholar 

  18. Koenig JL. Pituitary gland: neuropeptides, neurotransmitters and growth factors. Toxicol Pathol 1989; 17: 256–265.

    PubMed  CAS  Google Scholar 

  19. Francis DD, Calji C, Champagne F, Plotsky P, Meaney M. The role of corticotropin–releasing factor–norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biol Psychiatry 1999; 46: 1153–1166.

    PubMed  CAS  Google Scholar 

  20. McAllister–Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med 1998; 28: 573–584.

    Google Scholar 

  21. Jezovz D, Ochedalski T, Glickman M, Kiss A, Aguilera G. Central corticotropin–releasing hormone receptors modulate hypothalamic–pituitary–adrenocortical and sympathoadrenal activity during stress. Neurosci 1999; 94: 797–802.

    Google Scholar 

  22. Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF. Disrupted 24–hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 1973; 28: 19–24.

    PubMed  CAS  Google Scholar 

  23. Carroll BJ. Use of the dexamethasone suppression test in depression. J Clin Psychiatry 1982; 43: 44–50.

    PubMed  CAS  Google Scholar 

  24. Carroll BJ, Curtis GC, Mendels J. Neuroendocrine regulation in depression II. Discrimination of depressed from non–depressed patients. Arch Gen Psychiatry 1976; 33: 1051–1058.

    PubMed  CAS  Google Scholar 

  25. Arama GW, Baldessarini RJ, Ornstein M. The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatry 2002; 42: 1193–1204.

    Google Scholar 

  26. Nathan KI, Musselman DL, Schatzberg AS, Nemeroff CB. Biology of mood disorders, In: Schatzberg AF, Nemeroff CB, eds. The American Psychiatric Press Textbook of Psychopharmacology. Washington, DC: The American Psychiatric Press 1995; pp. 439–478.

    Google Scholar 

  27. Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropinreleasing factor–like immunoreactivity in depressed patients. Science 1984; 226: 1342–1344.

    PubMed  CAS  Google Scholar 

  28. Gold MS, Pottash AC, Extein I. Symptomless autoiommune thyroiditis in depression. Psychiatry Res 1982; 6: 261–269.

    PubMed  CAS  Google Scholar 

  29. Gold PW, Loriaux DL, Roy A, et al. Responses to corticotropin–releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. NEJM 1986; 314: 1329–1335.

    PubMed  CAS  Google Scholar 

  30. Luo X, Kiss A, Rabadan–Diehl C, Aguilera G. Regulation of hypothalamic and pituitary corticotropin–releasing hormone receptor messenger ribonucleic acid by adrenalectomy and glucocorticoids. Endocrinol 1995; 136: 3877–3883.

    CAS  Google Scholar 

  31. Kant GJ, Leu JR, Anderson SM, Mougey EH. Effects of chronic stress on plasma corticosterone, ACTH and prolactin. Physiol Behav 1987; 40: 775–779.

    PubMed  CAS  Google Scholar 

  32. Irwin J, Ahluwalia P, Zacharko RM, Anisman H. Central norepinephrine and plasma corticosterone following acute and chronic stressors: influence of social isolation and handling. Pharmacol Biochem Behav 1986; 24: 1151–1154.

    PubMed  CAS  Google Scholar 

  33. Stanton ME, Gutierrez YR, Levine S. Maternal deprivation potentiates pituitary–adrenal stress responses in infant rats. Behavioral Neurosci 1988; 102: 692–700.

    CAS  Google Scholar 

  34. Levine S, Atha K, Wiener SG. Early experience effects on the development of fear in the squirrel monkey. Behavioral Neural Biol 1993; 60: 225–233.

    CAS  Google Scholar 

  35. McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. Prog Brain Res 2000; 122: 25–34.

    PubMed  CAS  Google Scholar 

  36. Lopez JF, Chalmers DT, Little KY, Watson SJ. A.E. Bennett Research Reward. Regulation of serotonin 1A, a glucocorticoid and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depressed. Biol Psychiatry 1998; 43: 547–573.

    PubMed  CAS  Google Scholar 

  37. Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin–and oxytocin–expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996; 53: 137–143.

    PubMed  CAS  Google Scholar 

  38. Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF. Corticotropin–releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry 1995; 152: 1372–1376.

    PubMed  CAS  Google Scholar 

  39. Sheline Y, Wang P, Csernansky J, Vannier M. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    PubMed  CAS  Google Scholar 

  40. Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 1985; 5: 1222–1227.

    PubMed  CAS  Google Scholar 

  41. Bremner JD. Does stress damage the brain? Biol Psychiatry1999; 45: 797–805.

    Google Scholar 

  42. Ohgoh M, Kimura M, Ogura H, Katayama K, Nishizawa Y. Apoptotic cell death of cultured cerebral cortical neurons induced by withdrawal of astroglial trophic support. Exp Neurol 1998; 149: 51–63.

    PubMed  CAS  Google Scholar 

  43. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry 1999; 46: 1472–1479.

    PubMed  CAS  Google Scholar 

  44. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    PubMed  CAS  Google Scholar 

  45. Alexopoulos GS, Young RC, Meyers BS, Abrams RC, Shamoian CA. Late–onset depression. Psychiatr Clin North Am 1988; 11: 101–115.

    PubMed  CAS  Google Scholar 

  46. Koenderink MJ, Uylings HB, Mrzljak L. Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex: a quantitative Golgi analysis. Brain Res 1994; 653: 173–182.

    PubMed  CAS  Google Scholar 

  47. Moore GJ, Bebchuk JM, Parrish JK, et al. Temporal dissociation between lithium–induced changes in frontal lobe myo–inositol and clinical response in manic–depressive illness. Am J Psychiatry 1999; 156: 1902–1908.

    PubMed  CAS  Google Scholar 

  48. Young EA, Haskett RF, Murphy–Weinberg V, Watson SJ, Akil H. Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 1991; 48: 693–699.

    PubMed  CAS  Google Scholar 

  49. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM. Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 1989; 9: 1705–1711.

    PubMed  CAS  Google Scholar 

  50. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research 1992; 588: 341–345.

    PubMed  CAS  Google Scholar 

  51. Endo Y, Nishimura JI, Kobayashi S, Kimura F. Chronic stress exposure influences local cerebral blood flow in the rat hippocampus. Neurosci1999; 93: 551–555.

    Google Scholar 

  52. Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure in primates. J Neurosci 1985; 5: 1222–1227.

    PubMed  CAS  Google Scholar 

  53. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 1990; 10: 2897–2902.

    PubMed  CAS  Google Scholar 

  54. Wooley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research 2002; 531: 225–231.

    Google Scholar 

  55. Starkman MG, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 1992; 32: 756–765.

    PubMed  CAS  Google Scholar 

  56. Bremner JD, Narayan M, AndersonER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157: 115–118.

    PubMed  CAS  Google Scholar 

  57. Sheline YI, Wang PW, Gado MH, Csemansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    PubMed  CAS  Google Scholar 

  58. Herman JP, Schafer MK, Young EA, et al. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo–pituitary–adrenocortical axis. J Neurosci 1989; 9: 3072–3082.

    PubMed  CAS  Google Scholar 

  59. Feldman S, Conforti N. Participation of the dorsal hippocampus in the glucocorticoid feedback effect on adrenocortical activity. Neuroendocrinol 1980; 30: 52–55.

    CAS  Google Scholar 

  60. Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrine Reviews 1986; 7: 284–301.

    PubMed  CAS  Google Scholar 

  61. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment–resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 1998; 172: 527–532.

    PubMed  CAS  Google Scholar 

  62. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295–318.

    PubMed  CAS  Google Scholar 

  63. Smith MA, Makino S, Kvetnansky R, Post RM. Stress alters the expression of brain–derived neurotrophic factor and neurotrophin–3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768–1777.

    PubMed  CAS  Google Scholar 

  64. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry J–M. Decreased serum brain–derived neurotrophic factor levels in major depressive patients. Psychiatry Res 2002; 109: 143–148.

    PubMed  CAS  Google Scholar 

  65. Shirayama Y, Chen AC–H, Nakagawa S, Russell DS, Duman RS. Brain–derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    PubMed  CAS  Google Scholar 

  66. Dowlatshahi D, MacQueen GM, Wang JK, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 1998; 352: 1754–1755.

    PubMed  CAS  Google Scholar 

  67. Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365–2372.

    PubMed  CAS  Google Scholar 

  68. Bayer T, Schramm M, Feldmann N, Knable M, Falkai P. Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder. Prog Neuropsychopharm Biol Psych 2000; 24: 881–888.

    CAS  Google Scholar 

  69. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997; 8: 389–404.

    PubMed  CAS  Google Scholar 

  70. Sulser F. The role of CREB and other transcription factors in the pharmacotherapy and etiology of depression. Ann Med 2002; 34: 348–356.

    PubMed  CAS  Google Scholar 

  71. Holsboer F. Current theories on the pathophysiology of mood disorders. In: Montgomery SA, Halbreich U, eds. Pharmacology for mood, anxiety, and cognitive disorders. Washington, DC: The American Psychiatric Press 2000, pp. 13–35.

    Google Scholar 

  72. Prange AJ Jr, Loosen PT, Wilson IC, et al. The therapeutic use of hormones of the thyroid axis in depression. In: Post RM, Ballenger JC, eds. Neurobiology of mood disorders (Frontiers of Clinical Neuroscience, Vol 1 ). New York: Marcel Dekker 1990, pp. 311–320.

    Google Scholar 

  73. Whybrow PC, Winokur A, Bauer MS. Rapid cycling bipolar affective disorder. I. Association with grade I hypothyroidism. Arch Gen Psychiatry 1990; 47: 427–432.

    PubMed  Google Scholar 

  74. Mendlewicz J, Linkowski P, Kerkhofs M, et al. Diurnal hypersecretion of growth hormone in depression. J Clin Endocrin Metabol 1985; 60: 505–512.

    CAS  Google Scholar 

  75. Powell LH, Lovallo WR, Matthews KA, et al. Physiologic markers of chronic stress in premenopausal, middle–aged women. Psychosom Med 2002; 64: 502–509.

    PubMed  CAS  Google Scholar 

  76. Siever LJ, Uhde TW, Jimerson DC, et al. Differential inhibitory norepinephrine responses to clonidine in 25 depressed patients and 25 normal control subjects. Am J Psychiatry 1984; 141: 733–741.

    PubMed  CAS  Google Scholar 

  77. Amsterdam JD, Maislin G, Skolnick B, Berwish N, Winokur A. Multiple hormone responses to clonidine administration in depressed patients and healthy volunteers. Biol Psychiatry 1989; 26: 265–278

    PubMed  CAS  Google Scholar 

  78. Laakman G, Hinz A, Voderholzer U, et al. The influence of psychotropic drugs and releasing hormones on anterior pituitary hormone secretion in healthy subjects and depressed patients. Pharmacopsychiatry 1990; 23: 18–26.

    Google Scholar 

  79. Agren H, Lundqvist G. Low levels of somatostatin in human CSF mark depressive episodes. Psychoneuroendocrinol 1984; 9: 233–248.

    CAS  Google Scholar 

  80. Rubinow DR, Gold PW, Post RM, et al. CSF somatostatin in affective illness. Arch Gen Psychiatry 1983; 40: 409–412.

    PubMed  CAS  Google Scholar 

  81. Siever LJ, Davis KL. Overview: towards a dysregulation hypothesis of depression. Am J Psychiatry 1985; 142: 1017–1031.

    PubMed  CAS  Google Scholar 

  82. Mitchell P, Smythe G. Hormonal responses to fenfluramine in depressed and control subjects. J Affect Disord 1990; 19: 43–51.

    PubMed  CAS  Google Scholar 

  83. O’Keane V, Dinan TG. Prolactin and cortisol responses to d–fenfluramine in major depression: evidence for diminished responsivity of central serotonergic function. Am J Psychiatry 1991; 148: 1009–1015.

    PubMed  Google Scholar 

  84. Price LH, Charney DS, Delgado PL, Heninger GR. Serotonin function and depression: neuroendocrine and mood responses to intravenous L–tryptophan in depressed patients and healthy comparison subjects. Am J Psychiatry 1991; 148: 1518–1525.

    PubMed  CAS  Google Scholar 

  85. Golden RN, Hsiao J, Lane E, et al. Abnormal neuroendocrine responsivity to acute intravenous clomipramine challenge in depressed patients. Psychiatry Res 1990; 31: 39–47.

    PubMed  CAS  Google Scholar 

  86. Golden RN, Ekstrom D, Brown TB, et al. Neuroendocrine effects of intravenous clomipramine in depressed patients and healthy subjects. Am J Psychiatry 1992; 149: 1163–1175.

    Google Scholar 

  87. Kripke DF. Critical interval hypotheses for depression. Chronobiol Lint 1984; 1: 73–80.

    CAS  Google Scholar 

  88. Lewy AJ. Circadian Phase sleep and mood disorders. IN: David KL, Charney D, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology. The Fifth Generation of Progress. New York: Lippincott Williams & Wilkins 2002, pp. 1879–1893.

    Google Scholar 

  89. Petito JM, Folds JD, Ozer H, Quade D, Evans DL. Altered diurnal variation in circulating natural killer cell phenotypes and cytotoxic activity in major depression. Am J Psychiatry 1992; 148: 694–696.

    Google Scholar 

  90. Schildkarut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122: 509–522.

    Google Scholar 

  91. Blier P, Montigy C. Clarifications on the effects of 5–HT1A agonists and selective 5–HT reuptake inhibitors on the 5–HT system. Neuropsychopharmacol 1996; 15: 213–216.

    CAS  Google Scholar 

  92. Artigas F, Romero L, de Montigmy C, Bier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5–HT1A antagonists. Trends Neurosci 1996; 19: 378–383.

    PubMed  CAS  Google Scholar 

  93. Levine LR, Potter WM. The 5HT1A receptor: an unkept promise? Curr Opin CNS Invest Drugs 1999; 1: 448–452.

    CAS  Google Scholar 

  94. Griffith R, Sutin J. Reactive astrocyte formation in vivo is regulated by noradrenergic axons. J Comp Neurol 1996; 371: 362–375.

    PubMed  CAS  Google Scholar 

  95. Marek GJ. A novel approach to the identification of psychiatric drugs: serotonin–glutamate interactions in the prefrontal cortex. CNS Drug Review 2000; 6: 206–218.

    CAS  Google Scholar 

  96. Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RG, Tork I. Distribution, morphology and number of monoamine–synthesizing and substance P–containing neurons in the human dorsal raphe nucleus. Neurosci 1991; 42: 757–775.

    CAS  Google Scholar 

  97. Steinberg R, Alonso R, Griebel G, et al. Selective blockade of neurokinin–2 receptors produces antidepressant–like effects associated with reduced corticotropin–releasing factor function. J Pharmacol Exp Ther 2001; 299: 449–458.

    PubMed  CAS  Google Scholar 

  98. Delgado PL, Price LH, Miller HL, et al. Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug–free depressed patients. Arch Gen Psychiatry 1994; 51: 865–874.

    PubMed  CAS  Google Scholar 

  99. Delgado PL, Miller HL, Salomon RM, et al. Tryptophan–depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry 1999; 46: 212–220.

    PubMed  CAS  Google Scholar 

  100. Nishizawa S, Benkelfat C, Young SN, et al. Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 1997; 94: 5308–5313.

    PubMed  CAS  Google Scholar 

  101. Ellis PM, Salmud C. Is platelet imipramine binding reduced in depression? A meta–analysis. Biol Psychiatry 1994; 36: 292–299.

    PubMed  CAS  Google Scholar 

  102. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY. Serotonin receptors in suicide victims with major depression. Neuropsychopharmacol 1997; 16: 162–173

    CAS  Google Scholar 

  103. Staley JK, Malison RT, Innis RB. Imaging of the serotonergic system: interactions of neuroanatomical and functional abnormalities of depression. Biol Psychiatry 1998; 44: 534–549.

    PubMed  CAS  Google Scholar 

  104. Fujita M, Charney DS, Innis RB. Imaging serotonergic neurotransmission in depression: hippocampal pathophysiology may mirror global brain H L alterations. Biol Psychiatry 2000; 48: 801–812.

    PubMed  CAS  Google Scholar 

  105. Linnoila VM, Virkkunen M. Aggression, suicidality, and serotonin. J Clin Psychiatry 1992; 53 (S51): 46–51.

    PubMed  Google Scholar 

  106. Ramboz S, Oosting R, Amara DA, et al. Serotonin receptor 1A knockout: an animal model of anxiety–related disorder. Proc Natl Acad Sci USA 1998; 95: 14476–14481.

    PubMed  CAS  Google Scholar 

  107. Julius D. Serotonin receptor knockouts: a moody subject. Proc Natl Acad Sci USA 1998; 95: 15153–15154.

    PubMed  CAS  Google Scholar 

  108. Heisler LK, Chu HM, Brennan TJ, et al. Elevated anxiety and antidepressant–like responses in serotonin 5–HT1A receptor mutant mice. Proc Natl Acad Sci USA 1998; 95: 15049–15054.

    PubMed  CAS  Google Scholar 

  109. Miller HL, Delgado PL, Salomon RM, Heninger GR, Charney DS. Effects of a–methyl–paratyrosine (AMPT) in drug–free depressed patients. Neuropsychopharmacol 1996; 14: 151–157.

    CAS  Google Scholar 

  110. Woodward DJ, Moises HC, Waterhouse BD, Hoffer BJ, Freedman R. Modulatory actions of norepinephrine in the central nervous system. Fed Proc 1979; 38: 2109–2116.

    PubMed  CAS  Google Scholar 

  111. Aston–Jones G. Norepinephrine. In: David KL, Charney D, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology. The Fifth Generation of Progress. New York: Lippincott Williams & Wilkins 2002, pp. 47–58.

    Google Scholar 

  112. Abercrombie ED, Jacobs BI. Single–unit response of noradrenaline neurons in the locus coeruleus of freely moving cats. 1. Acutely presented stressful and nonstressful stimuli. J Neurosci 1987; 7: 2837–2843.

    PubMed  CAS  Google Scholar 

  113. Hellhammer DH, Hingtgen JN, Wade SE, Shea PA, Aprison MH. Serotonergic changes in specific areas of rat brain associated with activity–stress gastric lesions. Psychosom Med 1983; 45: 115–122.

    PubMed  CAS  Google Scholar 

  114. Lehnert H, Reinstein DK, Strowbridge BW, Wurtman RJ. Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res 1984; 303: 215–223.

    PubMed  CAS  Google Scholar 

  115. Rosenblatt S, Chanley JD, Leighton WP. The investigation of adrenergic metabolism with 7H3–norepinephrine in psychiatric disorders. II. Temporal changes in the distribution of urinary tritiated metabolites in affective disorders. J Psychiatr Res 1969; 6: 321–333.

    PubMed  CAS  Google Scholar 

  116. Potter WZ, Manji HK. Catecholamines in depression: an update. Clin Chem 1994; 40: 279–287.

    PubMed  CAS  Google Scholar 

  117. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    PubMed  CAS  Google Scholar 

  118. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5–HT2A receptor–mediated regulation of brain–derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 1997; 17: 2785–2795.

    PubMed  CAS  Google Scholar 

  119. Rajkowsha G. Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits? Prog Brain Res 2000; 126: 397–412.

    Google Scholar 

  120. Young LT. Postreceptor pathways for signal transduction in depression and bipolar disorder. Psychiatry Neurosci 2001; 26: S17–S22.

    Google Scholar 

  121. Manier DH, Shelton RC, Sulser F. Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB–P? J Neural Transm 2002; 109: 91–99.

    PubMed  CAS  Google Scholar 

  122. Osman OT, Potter WZ. Potentiation of dopamine in the treatment of refractory depression. In: Amsterdam JD, ed. Advances in Neuropsychiatry and Psychopharmacology: Refractory depression (Vol 2 ). New York: Raven 1991, pp. 41–52.

    Google Scholar 

  123. Willner P. Dopaminergic mechanisms in depression and mania. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven 1995, pp. 921–931.

    Google Scholar 

  124. Rush AJ, Ryan ND. Current and emerging therapeutics for depression. In: Davis KL, Harney D, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology: The fifth Generation of Progress. Philadelphia, PA: Lippincott Williams and Williams 2002, pp. 1081–1095.

    Google Scholar 

  125. Garlow SJ, Musselman DL, Nemerof CB. The neurochemistry of mood disorders: clinical studies. In: Davidson RJ, Post RM, eds. Neurobiology of Mental Illness. New York: Oxford University Press 1999, pp. 348–364.

    Google Scholar 

  126. Roy A, Pickar D, Douillet P, Karoum F, Linnoila M. Urinary monoamines and monoamine metabolites in subtypes of unipolar depressive disorder and normal controls. Psychological Medicine 1986; 16: 541–546.

    PubMed  CAS  Google Scholar 

  127. Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Rao BS. CSF amine metabolites in depression. Biol Psychiatry 1992; 31: 112–118.

    PubMed  CAS  Google Scholar 

  128. D’haenen HA, Bossuyt A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry 1994; 35: 128–132.

    PubMed  Google Scholar 

  129. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression–striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacol 1996; 126:91–94.

    Google Scholar 

  130. Larish R, Klimke A, Vosberg H, Gaebel W, Mueller–Gaertner HW. Cingulate function in depression. Neuro Report 1997; 8:i–ii.

    Google Scholar 

  131. Klimek V, Schenck, Han H, Stockmeier CA, Ordway GA. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol Psychiatry 2002; 52: 740–748.

    PubMed  CAS  Google Scholar 

  132. Wong DT, Bymaster FP. Dual serotonin and noradrenaline uptake inhibitor class of antidepressants potential for greater efficacy or just hype? Prog Drug Research 2002; 58: 169–222.

    CAS  Google Scholar 

  133. Lindley SE, Bengoechea TG, Schatzberg AF, Wong DL. Glucocorticoid effects on mesotelencephalic dopamine neurotransmission. Neuropsychopharmacol 1999; 21: 399–407.

    CAS  Google Scholar 

  134. Lyons DM, Lopez JM, Yang C, Shatzberg AF. Stress–level cortisol treatment impairs inhibitory control of behavior in monkeys. J Neurosci 2000; 20: 7816–7821.

    PubMed  CAS  Google Scholar 

  135. Agren H, Metford IN, Ruderfer MV, Linnoila M, Potter WZ. Interacting neurotransmitter systems. A non–experimental approach to the 5HTAA–HVA correlation in human CSF. J Psychiatr Res 1986; 20: 175–193.

    PubMed  CAS  Google Scholar 

  136. Mantyh, PW, Hunt SP, Maggio JE. Substance P receptors: localization by light microscopic autoradiography in rat brain using [3H]SP as the radioligand. Brain Res 1984; 307: 147–165.

    PubMed  CAS  Google Scholar 

  137. Arai H, Emson PC. Regional distribution of neuropeptide K and other tachykinins (neurokinin A, neurokinin B and substance P) in rat central nervous system. Brain Res 1986; 399: 240–249.

    PubMed  CAS  Google Scholar 

  138. Hokfelt T, Johansson O, Holets V, Meister B, Melander T. Distribution of neuropeptides with special reference to their coexistence with classical transmitters. In: Meltzer HY, ed. Psychopharmacology: the third generation of progress. New York: Raven 1987, pp. 401–416.

    Google Scholar 

  139. Chang HM, Wang L, Zhang XP, Kream RM, Yeh ET. Modulation of Substance P release in primary sensory neurons by misoprostol and prostaglandins. Am J Ther; 3: 276–279.

    Google Scholar 

  140. Huang SM,, Bisogno T, Trevisani M, et al. An endogenous capsaicin–like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 2002; 99: 8400–8405.

    Google Scholar 

  141. Haddjeri N, Blier P. Sustained blockade of neurokinin–1 receptors enhances serotonin neurotransmission. Biol Psychiatry 2001; 50: 191–199.

    PubMed  CAS  Google Scholar 

  142. Liu R, Ding Y, Aghaj anian G. Neurokinins activate local glutamatergic inputs to serotonergic neurons of the dorsal raphe nucleus. Neuropsychopharmacol 2002; 27: 329.

    CAS  Google Scholar 

  143. Millan MJ, Lejeune F, Nantenil G, Gobert A. Selective blockade of neurokinin (NK)(1) receptors facilitates the activity of adrenergic pathways projecting to frontal cortex and dorsal hippocampus in rats. J Neurochem 2001; 76: 1949–1954.

    PubMed  CAS  Google Scholar 

  144. Vassout A, Schaub M, Gentsch C, Ofner S, Schilling W, Veenstra S. CGP 49823, a novel NK1 receptor antagonist: behavioural effects. Neuropeptides 1994; 26: S38.

    Google Scholar 

  145. Kramer MS, Cutler N, Feighner J, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998; 281: 1640–1645.

    PubMed  CAS  Google Scholar 

  146. Rupniak NM, Carlson EC, Harrison T, et al. Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea–pigs and mice. Neuropharmacol 2000; 39: 1413–1421.

    CAS  Google Scholar 

  147. Takayama H, Ota Z, Ogawa N. Effect of immobilization stress on neuropeptides and their receptors in rat central nervous system. Regulatory Peptides 1986; 15: 239–248.

    PubMed  CAS  Google Scholar 

  148. Bannon MJ, Deutch AY, Tam SY, Zamir N, Eskay RL, Lee JM, Maggio JE, Roth RH. Mild footshock stress dissociates substance P from substance K and dynorphin from Met–and Leuenkephalin. Brain Research 1986; 381: 393–396.

    PubMed  CAS  Google Scholar 

  149. Walsh DM, Stratton SC, Harvey FJ, Beresford IJ, Hagan RM. The anxiolytic–like activity of GR159897, a non–peptide NK2 receptor antagonist, in rodent and primate models of anxiety. Psychopharmacol 1995; 121: 186–191.

    CAS  Google Scholar 

  150. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death. Biol Psychiatry 2000; 48: 755–765.

    PubMed  CAS  Google Scholar 

  151. Shen J, Rothman DL. Magnetic resonance spectroscopic approaches to studying neuronal glial interactions. Biol Psychiatry 2002; 52: 694–700.

    PubMed  CAS  Google Scholar 

  152. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM. Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci. 1989; 9: 1705–1711.

    PubMed  CAS  Google Scholar 

  153. Nowak G, Ordway GA, Paul IA. Alterations in the N–methyl–D–aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 1995; 675: 157–164.

    PubMed  CAS  Google Scholar 

  154. Paul IA, Nowak G, Layer RT, Popick P, Skolnick P. Adaptation of N–methyl–D–aspartate receptor complex following chronic antidepressant treatments. J Pharmaco Exp Ther 1994; 269: 95–102.

    CAS  Google Scholar 

  155. Skolnick P, Miller R, Young A, Boje K, Trullas R. Chronic treatment with 1–aminocyclopropanecarboxylic acid desensitizes behavioral responses to compounds acting at the Nmethyl–D–aspartate receptor complex. Psychopharmacol (Berl) 1992; 107: 489–496.

    CAS  Google Scholar 

  156. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    PubMed  CAS  Google Scholar 

  157. Rogoz Z, Skuza G, Maj J, Danysz W. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacol 2002; 42: 1024–1030.

    CAS  Google Scholar 

  158. Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN. 5HT2 receptor changes in major depression. Biol Psychiatry 1990; 27: 489–496.

    PubMed  CAS  Google Scholar 

  159. Shiffer HH. Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol Neurobiol 2002; 25: 191–212.

    Google Scholar 

  160. Petty F. GABA and mood disorders: a brief review and hypothesis. J Affect Disorder 1995; 34: 275–281.

    CAS  Google Scholar 

  161. Lloyd KG, Thuret F, Pilc A. Upregulation of y–aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol ExpTherap 1985; 235: 191–199.

    CAS  Google Scholar 

  162. Kimber JR, Cross JA, Horton RW. Benzodiazepine and GABA–A receptors in rat brain following chronic antidepressant drug administration. Biochem Pharmacol 1987; 36: 4173–4175.

    PubMed  CAS  Google Scholar 

  163. Liu R, Jolas T, Aghajanian G. Serotonin 5–HT (2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 2000; 873: 34–45.

    PubMed  CAS  Google Scholar 

  164. Stoll AL, Rueter S. Treatment augmentation with opiates in severe and refractory major depression. Am J Psychiatry 1999; 156: 2017.

    Google Scholar 

  165. Akbarian S, Rios M, Liu RJ, et al. Brain–derived neurotrophic factor is essential for opiate–induced plasticity of norepinephrine neurons. J Neurosci 2002; 22: 4153–4162.

    PubMed  CAS  Google Scholar 

  166. Sher L. The placebo effect on mood and behavior: the role of the endogenous opioid system. Medical Hypotheses 1997; 48: 347–349.

    PubMed  CAS  Google Scholar 

  167. Amanzio M, Pollo A, Maggi G, Benedetti F. Response variability to analgesics: a role for nonspecific activation of endogenous opioids. Pain 2001; 90: 205–215.

    PubMed  CAS  Google Scholar 

  168. Cardinali DP. The human circadian: how the biological clock influences sleep and emotion. Neuroendocrinol Lett 2000; 21: 9–15.

    PubMed  Google Scholar 

  169. Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacol 2000; 22: 335–345.

    CAS  Google Scholar 

  170. Lewy AJ, Bauer VK, Cutler NL, et al. Morning vs. evening light treatment in patients with winter depression. Arch Gen Psychiatry 1998; 55: 890–896.

    PubMed  CAS  Google Scholar 

  171. Nofzinger EA, Price JC, Meltzer CC, et al. Towards a neurobiology of dysfunctional arousal in depression: the relationship between beta EEG power and regional cerebral glucose metabolism during NREM sleep. Psychiatry Res 2000; 98: 71–91.

    PubMed  CAS  Google Scholar 

  172. Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res 1997; 770: 192–201.

    PubMed  CAS  Google Scholar 

  173. Clark CP, Frank LR, Brown GG. Sleep deprivation, EEG, and functional MRI in depression: preliminary results. Neuropsychopharmacol 2001; 25: S79–S84.

    CAS  Google Scholar 

  174. Vgontzas AN, Chroussos GP. Sleep, the hypothalamic–pituitary–adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol Metab Clin North Am 2002; 31: 15–36.

    PubMed  CAS  Google Scholar 

  175. Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. A meta–analysis. Arch Gen Psychiatry 1992; 49: 651–668.

    PubMed  CAS  Google Scholar 

  176. Simon GE, Von Korff M, Piccinelli M, Fullerton C, Ormel J. An international study of the relation between somatic symptoms and depression. NEJM 1999; 341: 1329–1335.

    PubMed  CAS  Google Scholar 

  177. Stahl SM. Does depression hurt? J Clin Psychiatry 2002; 63: 273–274.

    PubMed  Google Scholar 

  178. Goldstein DJ, Lu Y, Detke M, Hudson J. Duloxetine relieves the painful physical symptoms associated with depression Psychosomatics 2004; in press.

    Google Scholar 

  179. Petrovic P, Ingvar M. Imaging cognitive modulation of pain processing. Pain 2002; 95: 1–5.

    PubMed  Google Scholar 

  180. Yu J, Smith GP. Affinity maturation of phage–displayed peptide ligands. Methods in Enzymology 1996; 267: 3–27.

    PubMed  CAS  Google Scholar 

  181. Gamaro GD, Manoli LP, Torres IL, Silveira R, Dalmaz C. Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 2003; 42: 107–114.

    PubMed  CAS  Google Scholar 

  182. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite–regulating pathways in the hypothalamic regulation of body weight. Endocrine Rev 1999; 20: 68–100.

    CAS  Google Scholar 

  183. Danish University Antidepressant Group. Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance, but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affect Disord 1986; 18: 289–299.

    Google Scholar 

  184. Nelson JC, Mazure CM, Bowers MB Jr, Jatlow PI. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Arch Gen Psychiatry 1991; 48: 303–307.

    PubMed  CAS  Google Scholar 

  185. Entsuah AR, Huang H, Thase ME. Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo. J Clin Psychiatry 2001; 62: 869–877.

    PubMed  CAS  Google Scholar 

  186. Malhi GS, Moore J, McGuffin P. The genetics of major depressive disorder. Curr Psychiatry Reports 2000; 2: 165–169.

    CAS  Google Scholar 

  187. Yamada M, Higuchi T. Functional genomics and depression research. Beyond the monoamine hypothesis. Eur Neuropsychopharmacol 2002; 12: 235–244.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldstein, D.J., Potter, W.Z. (2004). Biological Theories of Depression and Implications for Current and New Treatments. In: Ciraulo, D.A., Shader, R.I. (eds) Pharmacotherapy of Depression. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-792-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-792-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6172-6

  • Online ISBN: 978-1-59259-792-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics