Skip to main content

Treatment with Monoclonal Antibodies

  • Chapter
Principles of Molecular Oncology

Abstract

All intact therapeutic antibodies (Abs) now on the market are of the IgG class. IgG molecules are often depicted as Y-shaped structures. While not a true representation of its tertiary structure, the Y shape accurately represents the key features of an IgG molecule. Essentially, an Ab contains three components—two identical Fabs (for fragment—antigen [Ag] binding, the arms of the Y) and an Fc (for fragment crystallizable, the stem of the Y). Each Fab contains an Ag-binding site. The Fc contains structural features that determine the downstream consequences of Ag binding, often called the effector function of the Ab. For example, the Fc portion determines whether an Ab binding a cell-surface receptor simply prevents signaling through that receptor or, alternatively, causes the cell’s destruction through complement fixation or targeting immune effector cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng. 2001; 74: 288–294.

    PubMed  CAS  Google Scholar 

  2. Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002; 277: 26733–26740.

    PubMed  CAS  Google Scholar 

  3. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA. 1984; 81: 6851–6855.

    PubMed  CAS  Google Scholar 

  4. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988; 332: 323–327.

    PubMed  CAS  Google Scholar 

  5. Huse WD, Sastry L, Iverson SA, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989; 246: 1275–1281.

    PubMed  CAS  Google Scholar 

  6. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990; 348: 552–554.

    PubMed  CAS  Google Scholar 

  7. Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA. 1997; 94: 4937–4942.

    PubMed  CAS  Google Scholar 

  8. Mendez MJ, Green LL, Corvalan JR, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet. 1997; 15: 146–156.

    PubMed  CAS  Google Scholar 

  9. Lonberg N, Taylor LD, Harding FA, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature. 1994; 368: 856–859.

    PubMed  CAS  Google Scholar 

  10. Kuroiwa Y, Tomizuka K, Shinohara T, et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol. 2000; 18: 1086–1090.

    PubMed  CAS  Google Scholar 

  11. Gessner JE, Heiken H, Tamm A, Schmidt RE. The IgG Fc receptor family. Ann Hematol. 1998; 76: 231–248.

    PubMed  CAS  Google Scholar 

  12. Schuurman J, Perdok GJ, Gorter AD, Aalberse RC. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol. 2001; 38: 1–8.

    PubMed  CAS  Google Scholar 

  13. Angal S, King DJ, Bodmer MW, et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol. 1993; 30: 105–108.

    PubMed  CAS  Google Scholar 

  14. Presta LG. Engineering antibodies for therapy. Curr Pharm Biotechnol. 2002; 3: 237–256.

    PubMed  CAS  Google Scholar 

  15. Reddy MP, Kinney CA, Chaikin MA, et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol. 2000; 164: 1925–1933.

    PubMed  CAS  Google Scholar 

  16. Carpenter PA, Pavlovic S, Tso JY, et al. Non-Fc receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells. J Immunol. 2000; 165: 6205–6213.

    PubMed  CAS  Google Scholar 

  17. Schneider H, Chaovapong W, Matthews DJ, et al. Homodimerization of erythropoietin receptor by a bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood. 1997; 89: 473–482.

    PubMed  CAS  Google Scholar 

  18. Akamizu T, Moriyama K, Miura M, Saijo M, Matsuda F, Nakao K. Characterization of recombinant monoclonal antithyrotropin receptor antibodies (TSHRAbs) derived from lymphocytes of patients with Graves’ disease: epitope and binding study of two stimulatory TSHRAbs. Endocrinology. 1999; 140: 1594–1601.

    PubMed  CAS  Google Scholar 

  19. Ichikawa K, Liu W, Zhao L, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med. 2001; 7: 954–960.

    PubMed  CAS  Google Scholar 

  20. Trauth BC, Klas C, Peters AM, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989; 245: 301–305.

    PubMed  CAS  Google Scholar 

  21. Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001; 276: 6591–6604.

    PubMed  CAS  Google Scholar 

  22. Waldmann TA, Strober W, Blaese RM. Variations in the metabolism of immunoglobulins measured by turnover rates. In: Immunoglobulins: Biological Aspects and Clinical Uses. National Academy of Sciences, Washington, DC, 1970; pp. 33–51.

    Google Scholar 

  23. Trang JM. Pharmacokinetics and metabolism of therapeutic and diagnostic antibodies. In: Protein Pharmacokinetics and Metabolism. Plenum Press, New York, NY 1992; pp. 223–270.

    Google Scholar 

  24. Lin YS, Nguyen C, Mendoza JL, et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther. 1999; 288: 371–378.

    PubMed  CAS  Google Scholar 

  25. Wurster U, Haas J. Passage of intravenous immunoglobulin and interaction with the CNS. J Neurol Neurosurg Psychiatry. 1994; 57 (Suppl.): 21–25.

    PubMed  Google Scholar 

  26. Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood. 2003; 101: 466–468.

    PubMed  CAS  Google Scholar 

  27. Junghans RP. Finally! The Brambell receptor (FcRB): mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res. 1997; 16: 29–57.

    PubMed  CAS  Google Scholar 

  28. Garty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of immunoglobulin G subclasses. Clin Diagn Lab Immunol. 1994; 1: 667–669.

    PubMed  CAS  Google Scholar 

  29. Einhorn MS, Granoff DM, Nahm MH, Quinn A, Shackelford PG. Concentrations of antibodies in paired maternal and infant sera: relationship to IgG subclass. J Pediatr. 1987; 111: 783–788.

    PubMed  CAS  Google Scholar 

  30. Dickinson BL, Badizadegan K, Wu Z, et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest. 1999; 104: 903–911.

    PubMed  CAS  Google Scholar 

  31. Spiekermann GM, Finn PW, Ward ES, et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med. 2002; 196: 303–310.

    PubMed  CAS  Google Scholar 

  32. Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J, Stern H. Problems of delivery of monoclonal antibodies: pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet. 1995; 28: 126–142.

    PubMed  CAS  Google Scholar 

  33. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987; 47: 3039–3051.

    PubMed  CAS  Google Scholar 

  34. Netti PA, Hamberg LM, Babich JW, et al. Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc Natl Acad Sci USA. 1999; 96: 3137–3142.

    PubMed  CAS  Google Scholar 

  35. Flessner MF, Dedrick RL. Tissue-level transport mechanisms of intraperitoneally-administered monoclonal antibodies. J Control Release. 1998; 53: 69–75.

    PubMed  CAS  Google Scholar 

  36. Fujimori K, Covell DG, Fletcher JE, Weinstein JN. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med. 1990; 31: 1191–1198.

    PubMed  CAS  Google Scholar 

  37. van Osdol W, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier.” Cancer Res. 1991; 51: 4776–4784.

    PubMed  Google Scholar 

  38. Adams GP, Schier R, McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001; 61: 4750–4755.

    PubMed  CAS  Google Scholar 

  39. Weiner LM. Monoclonal antibody therapy of cancer. Semin Oncol. 1999; 26: 43–51.

    PubMed  CAS  Google Scholar 

  40. Weiner LM, Adams GP. New approaches to antibody therapy. Oncogene. 2000; 19: 6144–6151.

    PubMed  CAS  Google Scholar 

  41. Brambell FWR, Hemmings WA, Morris IG. A theoretical model of Y-globulin catabolism. Nature. 1964; 203: 1352–1355.

    PubMed  CAS  Google Scholar 

  42. Zhu X, Meng G, Dickinson BL, et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol. 2001; 166: 3266–3276.

    PubMed  CAS  Google Scholar 

  43. Bleeker WK, Teeling JL, Hack CE. Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect. Blood. 2001; 98: 3136–3142.

    PubMed  CAS  Google Scholar 

  44. Trang JM, LoBuglio AF, Wheeler RH, et al. Pharmacokinetics of a mouse/human chimeric monoclonal antibody (C-17–1A) in metastatic adenocarcinoma patients. Pharm Res. 1990; 7: 587–592.

    PubMed  CAS  Google Scholar 

  45. Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001; 13: 1551–1559.

    PubMed  CAS  Google Scholar 

  46. LoBuglio AF, Wheeler RH, Trang J, et al. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA. 1989; 86: 4220–4224.

    PubMed  CAS  Google Scholar 

  47. Uttenreuther-Fischer MM, Huang CS, Yu AL. Pharmacokinetics of human-mouse chimeric anti-GD2 MAb ch14.18 in a phase I trial in neuroblastoma patients. Cancer Immunol Immunother. 1995; 41: 331–338.

    PubMed  CAS  Google Scholar 

  48. Walker RE, Spooner KM, Kelly G, J et al. Inhibition of immunoreactive tumor necrosis factor-alpha by a chimeric antibody in patients infected with human immunodeficiency virus type 1. J Infect Dis. 1996; 174: 63–68.

    PubMed  CAS  Google Scholar 

  49. Van Zaanen HC, Lokhorst HM, Aarden LA, LJ et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol. 1998; 102: 783–790.

    PubMed  Google Scholar 

  50. Tobinai K, Kobayashi Y, Narabayashi M, et al. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. The IDEC-C2B8 Study Group. Ann Oncol. 1998; 9: 527–534.

    PubMed  CAS  Google Scholar 

  51. Ward RL, Packham D, Smythe AM, et al. Phase I clinical trial of the chimeric monoclonal antibody (c30.6) in patients with metastatic colorectal cancer. Clin Cancer Res. 2000; 6: 4674–4683.

    PubMed  CAS  Google Scholar 

  52. Kovarik JM, Nashan B, Neuhaus P, et al. A population pharmacokinetic screen to identify demographic-clinical covariates of basiliximab in liver transplantation. Clin Pharmacol Ther. 2001; 69: 201–209.

    PubMed  CAS  Google Scholar 

  53. Schaumann W, Kaufmann B, Neubert P, Smolarz A. Kinetics of the Fab fragments of digoxin antibodies and of bound digoxin in patients with severe digoxin intoxication. Eur J Clin Pharmacol. 1986; 30: 527–533.

    PubMed  CAS  Google Scholar 

  54. Renard C, Grene-Lerouge N, Beau N, Baud F, Scherrmann JM. Pharmacokinetics of digoxin-specific Fab: effects of decreased renal function and age. Br J Clin Pharmacol. 1997; 44: 135–138.

    PubMed  CAS  Google Scholar 

  55. Adams GP, Schier R, Marshall K, et al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 1998; 58: 485–490.

    PubMed  CAS  Google Scholar 

  56. Goel A, Colcher D, Baranowska-Kortylewicz J, et al. Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res. 2000; 60: 6964–6971.

    PubMed  CAS  Google Scholar 

  57. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol. 2000; 18: 904–914.

    PubMed  CAS  Google Scholar 

  58. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996; 14: 737–744.

    PubMed  CAS  Google Scholar 

  59. Harris KA, Wahsington CB, Lieberman G, Lu JF, Mass R, Bruno R. A population pharmacokinetic (PK) model for trastuzumab (Herceptin) and implications for clinical dosing. Proc Am Soc Clin Oncol. 2002; 21: 123a (abstract 488).

    Google Scholar 

  60. Leyland-Jones B. Dose scheduling—Herceptin. Oncology. 2001; 61 31–36.

    PubMed  CAS  Google Scholar 

  61. Sanders LA, Feldman RG, Voorhorst-Ogink MM, et al. Human immunoglobulin G (IgG) Fc receptor IIA (CD32) polymorphism and IgG2-mediated bacterial phagocytosis by neutrophils. Infect Immun. 1995; 63: 73–81.

    PubMed  CAS  Google Scholar 

  62. Tan SY. FcgammaRIIa polymorphism in systemic lupus erythematosus. Kidney Blood Press Res. 2000; 23: 138–142.

    PubMed  CAS  Google Scholar 

  63. Lehrnbecher T, Foster CB, Zhu S, et al. Variant genotypes of the low-affinity Fcgamma receptors in two control populations and a review of low-affinity Fcgamma receptor polymorphisms in control and disease populations. Blood. 1999; 94: 4220–4232.

    PubMed  CAS  Google Scholar 

  64. Lehrnbecher TL, Foster CB, Zhu S, et al. Variant genotypes of FcgammaRIIIA influence the development of Kaposi’s sarcoma in HIV-infected men. Blood. 2000; 95: 2386–2390.

    PubMed  CAS  Google Scholar 

  65. Nieto A, Caliz R, Pascual M, Mataran L, Garcia S, Martin J. Involvement of Fcgamma receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum. 2000; 43: 735–739.

    PubMed  CAS  Google Scholar 

  66. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002; 99: 754–758.

    PubMed  CAS  Google Scholar 

  67. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100: 57–70.

    PubMed  CAS  Google Scholar 

  68. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980; 303: 878–880.

    PubMed  CAS  Google Scholar 

  69. Lewis GD, Figari I, Fendly B, et al. Differential responses of human tumor cell lines to antip185HER2 monoclonal antibodies. Cancer Immunol Immunother. 1993; 37: 255–263.

    PubMed  CAS  Google Scholar 

  70. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene. 1999; 18: 2241–2251.

    PubMed  CAS  Google Scholar 

  71. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol. 1999; 26: 60–70.

    PubMed  CAS  Google Scholar 

  72. Maloney DG. Mechanism of action of rituximab. Anticancer Drugs. 2001; 12: S1 - S4.

    PubMed  CAS  Google Scholar 

  73. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000; 6: 443–446.

    PubMed  CAS  Google Scholar 

  74. Ghetie MA, Picker LJ, Richardson JA, Tucker K, Uhr JW, Vitetta ES. Anti-CD19 inhibits the growth of human B-cell tumor lines in vitro and of Daudi cells in SCID mice by inducing cell cycle arrest. Blood. 1994; 83: 1329–1336.

    PubMed  CAS  Google Scholar 

  75. Shan D, Ledbetter JA, Press OW. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood. 1998; 91: 1644–1652.

    PubMed  CAS  Google Scholar 

  76. Takazoe K, Tesch GH, Hill PA, et al. CD44-mediated neutrophil apoptosis in the rat. Kidney Int. 2000; 58: 1920–1930.

    PubMed  CAS  Google Scholar 

  77. Newell MK, VanderWall J, Beard KS, Freed JH. Ligation of major histocompatibility complex class II molecules mediates apoptotic cell death in resting B lymphocytes. Proc Natl Acad Sci USA. 1993; 90:10, 459–10, 463.

    Google Scholar 

  78. Liu B, Fan Z. The monoclonal antibody 225 activates caspase-8 and induces apoptosis through a tumor necrosis factor receptor family-independent pathway. Oncogene. 2001; 20: 3726–3734.

    PubMed  CAS  Google Scholar 

  79. Ghetie MA, Podar EM, Ilgen A, Gordon BE, Uhr JW, Vitetta ES. Homodimerization of tumor-reactive monoclonal antibodies markedly increases their ability to induce growth arrest or apoptosis of tumor cells. Proc Natl Acad Sci USA. 1997; 94: 7509–7514.

    PubMed  CAS  Google Scholar 

  80. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285: 1182–1186.

    PubMed  CAS  Google Scholar 

  81. Jain RK. Determinants of tumor blood flow: a review. Cancer Res. 1988; 48: 2641–2658.

    PubMed  CAS  Google Scholar 

  82. Kubo H, Fujiwara T, Jussila L, et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood. 2000; 96: 546–553.

    PubMed  CAS  Google Scholar 

  83. Mills L, Tellez C, Huang S, et al. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res. 2002; 62: 5106–5114.

    PubMed  CAS  Google Scholar 

  84. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res. 1999; 5: 257–265.

    PubMed  CAS  Google Scholar 

  85. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002; 3: 611–618.

    PubMed  CAS  Google Scholar 

  86. Timmerman JM, Levy R. The history of the development of vaccines for the treatment of lymphoma. Clin Lymphoma. 2000; 1: 129–139.

    PubMed  CAS  Google Scholar 

  87. Akabani G, McLendon RE, Bigner DD, Zalutsky MR. Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: theoretical analysis. Int J Radiat Oncol Biol Phys. 2002; 54: 1259–1275.

    PubMed  Google Scholar 

  88. Mattes MJ. Radionuclide-antibody conjugates for single-cell cytotoxicity. Cancer. 2002; 94: 1215–1223.

    PubMed  CAS  Google Scholar 

  89. Kreitman RJ. Immunotoxins in cancer therapy. Curr Opin Immunol. 1999; 11: 570–578.

    PubMed  CAS  Google Scholar 

  90. Kreitman RJ. Toxin-labeled monoclonal antibodies. Curr Pharm Biotechnol. 2001; 2: 313–325.

    PubMed  CAS  Google Scholar 

  91. Juweid ME. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma: from clinical trials to clinical practice. J Nucl Med. 2002; 43: 1507–1529.

    PubMed  CAS  Google Scholar 

  92. Sievers EL, Linenberger M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol. 2001; 13: 522–527.

    PubMed  CAS  Google Scholar 

  93. Zein N, Sinha AM, McGahren WJ, Ellestad GA. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science. 1988; 240: 1198–1201.

    PubMed  CAS  Google Scholar 

  94. Sissi C, Aiyar J, Boyer S, Depew K, Danishefsky S, Crothers DM. Interaction of calicheamicin gamma1(I) and its related carbohydrates with DNA-protein complexes. Proc Natl Acad Sci USA. 1999; 96:10, 643–10, 648.

    Google Scholar 

  95. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002; 95: 1592–1600.

    PubMed  CAS  Google Scholar 

  96. Cook-Bruns N. Retrospective analysis of the safety of Herceptin immunotherapy in metastatic breast cancer. Oncology. 2001; 61: 58–66.

    PubMed  CAS  Google Scholar 

  97. Schneider JW, Chang AY, Rocco TP. Cardiotoxicity in signal transduction therapeutics: erbB2 antibodies and the heart. Semin Oncol. 2001; 28: 18–26.

    PubMed  CAS  Google Scholar 

  98. Schneider JW, Chang AY, Garratt A. Trastuzumab cardiotoxicity: Speculations regarding pathophysiology and targets for further study. Semin Oncol. 2002; 29: 22–28.

    PubMed  CAS  Google Scholar 

  99. Andrechek ER, Hardy WR, Girgis-Gabardo AA, et al. ErbB2 is required for muscle spindle and myoblast cell survival. Mol Cell Biol. 2002; 22: 4714–4722.

    PubMed  CAS  Google Scholar 

  100. Needle MN. Safety experience with IMC-C225, an anti-epidermal growth factor receptor antibody. Semin Oncol. 2002; 29: 55–60.

    PubMed  CAS  Google Scholar 

  101. Busam KJ, Capodieci P, Motzer R, Kiehn T, Phelan D, Halpern AC. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol. 2001; 144: 1169–1176.

    PubMed  CAS  Google Scholar 

  102. Roskos L, Lohner M, Osborn K, et al. Low pharmacokinetic variability facilitates optimal dosing of ABX-EGF in cancer patients. Proc Am Soc Clin Oncol. 2002; 21: 91a (abstract 362).

    Google Scholar 

  103. Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood. 1999; 94: 2217–2224.

    PubMed  CAS  Google Scholar 

  104. Gaston RS, Deierhoi MH, Patterson T, et al. OKT3 first-dose reaction: association with T cell subsets and cytokine release. Kidney Int. 1991; 39: 141–148.

    PubMed  CAS  Google Scholar 

  105. McCall AM, Shahied L, Amoroso AR, et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol. 2001; 166: 6112–6117.

    PubMed  CAS  Google Scholar 

  106. Curnow RT. Clinical experience with CD64-directed immunotherapy: an overview. Cancer Immunol Immunother. 1997; 45: 210–215.

    PubMed  CAS  Google Scholar 

  107. Lendvai N, Qu XW, Hsueh W, Casadevall A. Mechanism for the isotype dependence of antibody-mediated toxicity in Cryptococcus neoformans–infected mice. J Immunol. 2000; 164: 4367–4374.

    PubMed  CAS  Google Scholar 

  108. Figlin RA, Belldegrun AS, Crawford J, et al. ABX-EGF, a fully human anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) in patients with advanced cancer: phase 1 clinical results. Proc Am Soc Clin Oncol. 2002; 21: 10a (abstract 35).

    Google Scholar 

  109. Schwartz G, Dutcher J, Vogelzang N, et al. Phase 2 clinical trial evaluating the safety and effectiveness of ABX-EGF in renal cell cancer (RCC). Proc Am Soc Clin Oncol. 2002; 21: 24a (abstract 91).

    Google Scholar 

  110. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001; 1: 118–129.

    PubMed  CAS  Google Scholar 

  111. Grillo-Lopez AJ, Dallaire BK, McClure A, et al. Monoclonal antibodies: a new era in the treatment of non-Hodgkin’s lymphoma. Curr Pharm Biotechnol. 2001; 2: 301–311.

    PubMed  CAS  Google Scholar 

  112. Hainsworth JD. Monoclonal antibody therapy in lymphoid malignancies. Oncologist. 2000; 5: 376–384.

    PubMed  CAS  Google Scholar 

  113. Sakahara H, Saga T, Onodera H, et al. Anti-murine antibody response to mouse monoclonal antibodies in cancer patients. Jpn J Cancer Res. 1997; 88: 895–899.

    PubMed  CAS  Google Scholar 

  114. Ritter G, Cohen LS, Williams C, Jr., Richards EC, Old LJ, Welt S. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res. 2001; 61: 6851–6859.

    PubMed  CAS  Google Scholar 

  115. LoBuglio AF, Saleh MN. Advances in monoclonal antibody therapy of cancer. Am J Med Sci. 1992; 304: 214–224.

    PubMed  CAS  Google Scholar 

  116. Stein KE. Immunogenicity: concepts/issues/concerns. In: Biologics 2000—Comparability of Biotechnology Products. S. Karger, Basel, Switzerland, 2002, pp. 15–23.

    Google Scholar 

  117. Isenberg D, Shoenfeld Y. Autoantibodies, idiotypes, anti-idiotypes and autoimmunity. Acta Haematol. 1986; 76: 95–100.

    PubMed  CAS  Google Scholar 

  118. Khazaeli M, LoBuglio A, Falcey J, Paulter V, Fetzer M, Waksal H. Low immunogeni city of a chimeric monoclonal antibody (MoAb), IMC-C225, used to treat epidermal growth factor receptor–positive tumors. Proc Am Soc Clin Oncol. 2000; 19: 207a (abstract 808).

    Google Scholar 

  119. Posey JA, Khazaeli MB, Bookman MA, et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res. 2002; 8: 3092–3099.

    PubMed  CAS  Google Scholar 

  120. Kuus-Reichel K, Grauer LS, Karavodin LM, Knott C, Krusemeier M, Kay NE. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol. 1994; 1: 365–372.

    PubMed  CAS  Google Scholar 

  121. Klingbeil C, Hsu DH. Pharmacology and safety assessment of humanized monoclonal antibodies for therapeutic use. Toxicol Pathol. 1999; 27: 1–3.

    PubMed  CAS  Google Scholar 

  122. Jerne NK. Towards a network theory of the immune system. Ann Immunol (Paris). 1974; 125C: 373–389.

    CAS  Google Scholar 

  123. Hsu FJ, Kwak L, Campbell M, et al. Clinical trials of idiotype-specific vaccine in B-cell lymphomas. Ann NY Acad Sci. 1993; 690: 385–387.

    PubMed  CAS  Google Scholar 

  124. Chen TT, Tao MH, Levy R. Idiotype-cytokine fusion proteins as cancer vaccines: relative efficacy of IL-2, IL-4, and granulocyte-macrophage colony-stimulating factor. J Immunol. 1994; 153: 4775–4787.

    PubMed  CAS  Google Scholar 

  125. Kueger GG, Bell G, Huang S, et al. Clinical results of ABX-IL8, a fully human antibody used in the treatment of moderate to severe psoriasis. In: Preceedings of the 60th Annual Meeting of the American Academy of Dermatology 2002.

    Google Scholar 

  126. Adalimumab Prescribing Information. Abbot Laboratories, Chicago, IL, 2002.

    Google Scholar 

  127. Flynn JM, Byrd JC. Campath-1H monoclonal antibody therapy. Curr Opin Oncol. 2000; 12: 574–581.

    PubMed  CAS  Google Scholar 

  128. Grillo-Lopez AJ, White CA, Varns C, et al. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol. 1999; 26: 66–73.

    PubMed  CAS  Google Scholar 

  129. Linenberger ML, Maloney DG, Bernstein ID. Antibody-directed therapies for hematological malignancies. Trends Mol Med. 2002; 8: 69–76.

    PubMed  CAS  Google Scholar 

  130. Baselga J. Clinical trials of Herceptin (trastuzumab). Eur J Cancer. 2001; 37 (Suppl. 1): S18 - S24.

    PubMed  CAS  Google Scholar 

  131. Wood AM. Rituximab: an innovative therapy for non-Hodgkin’s lymphoma. Am J Health Syst Pharm. 2001; 58: 215–229.

    PubMed  CAS  Google Scholar 

  132. Johnson PW, Glennie MJ. Rituximab: mechanisms and applications. Br J Cancer. 2001; 85: 1619–1623.

    PubMed  CAS  Google Scholar 

  133. Coiffier B. Rituximab in the treatment of diffuse large B-cell lymphomas. Semin Oncol. 2002; 29: 30–35.

    PubMed  CAS  Google Scholar 

  134. Wilson WH. Chemotherapy sensitization by rituximab: experimental and clinical evidence. Semin Oncol. 2000; 27: 30–36.

    PubMed  CAS  Google Scholar 

  135. Petryk M, Grossbard ML. Rituximab therapy of B-cell neoplasms. Clin Lymphoma. 2000; 1: 186–194.

    PubMed  CAS  Google Scholar 

  136. McLaughlin P. Rituximab: perspective on single agent experience, and future directions in combination trials. Crit Rev Oncol Hematol. 2001; 40: 3–16.

    PubMed  CAS  Google Scholar 

  137. Maloney DG, Smith B, Rose A. Rituximab: mechanism of action and resistance. Semin Oncol. 2002; 29: 2–9.

    PubMed  CAS  Google Scholar 

  138. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002; 346: 235–242.

    PubMed  CAS  Google Scholar 

  139. Czuczman MS, Fallon A, Mohr A, et al. Rituximab in combination with CHOP or fludarabine in low-grade lymphoma. Semin Oncol. 2002; 29: 36–40.

    PubMed  CAS  Google Scholar 

  140. Grillo-Lopez AJ, White CA, Dallaire BK, et al. Rituximab: the first monoclonal antibody approved for the treatment of lymphoma. Curr Pharm Biotechnol. 2000; 1: 1–9.

    PubMed  CAS  Google Scholar 

  141. Grillo-Lopez AJ, Hedrick E, Rashford M, Benyunes M. Rituximab: ongoing and future clinical development. Semin Oncol. 2002; 29: 105–112.

    PubMed  CAS  Google Scholar 

  142. Mangel J, Buckstein R, Imrie K, et al. Immunotherapy with rituximab following high-dose therapy and autologous stem-cell transplantation for mantle cell lymphoma. Semin Oncol. 2002; 29: 56–69.

    PubMed  CAS  Google Scholar 

  143. Sacchi S, Federico M, Dastoli G, et al. Treatment of B-cell non-Hodgkin’s lymphoma with anti CD 20 monoclonal antibody Rituximab. Crit Rev Oncol Hematol. 2001; 37: 13–25.

    PubMed  CAS  Google Scholar 

  144. Kunkel L, Wong A, Maneatis T, et al. Optimizing the use of rituximab for treatment of B-cell non-Hodgkin’s lymphoma: a benefit-risk update. Semin Oncol. 2000; 27: 53–61.

    PubMed  CAS  Google Scholar 

  145. Keating MJ, O’Brien S, Albitar M. Emerging information on the use of rituximab in chronic lymphocytic leukemia. Semin Oncol. 2002; 29: 70–74.

    PubMed  CAS  Google Scholar 

  146. Ifthikharuddin JJ, Mieles LA, Rosenblatt JD, Ryan CK, Sahasrabudhe DM. CD-20 expression in post-transplant lymphoproliferative disorders: treatment with rituximab. Am J Hematol. 2000; 65: 171–173.

    PubMed  CAS  Google Scholar 

  147. Treon SP, Anderson KC. The use of rituximab in the treatment of malignant and nonmalignant plasma cell disorders. Semin Oncol. 2000; 27: 79–85.

    PubMed  CAS  Google Scholar 

  148. Dyer MJ. The role of CAMPATH-1 antibodies in the treatment of lymphoid malignancies. Semin Oncol. 1999; 26: 52–57.

    PubMed  CAS  Google Scholar 

  149. Nabhan C, Rosen ST. Conceptual aspects of combining rituximab and Campath-1H in the treatment of chronic lymphocytic leukemia. Semin Oncol. 2002; 29: 75–80.

    PubMed  CAS  Google Scholar 

  150. Leonard JP, Link BK. Immunotherapy of non-Hodgkin’s lymphoma with hLL2 (epratuzumab, an anti-CD22 monoclonal antibody) and Hu1D10 (apolizumab). Semin Oncol. 2002; 29: 81–86.

    PubMed  CAS  Google Scholar 

  151. Berman E. Recent advances in the treatment of acute leukemia: 1999. Curr Opin Hematol. 2000; 7: 205–211.

    PubMed  CAS  Google Scholar 

  152. Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995; 18 (5–6): 385–397.

    PubMed  CAS  Google Scholar 

  153. Weiner LM. An overview of monoclonal antibody therapy of cancer. Semin Oncol. 1999; 26: 41–50.

    PubMed  CAS  Google Scholar 

  154. Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev. 2001; 53: 171–216.

    PubMed  CAS  Google Scholar 

  155. Conry RM, Khazaeli MB, Saleh MN, et al. Phase I trial of an anti-CD19 deglycosylated ricin A chain immunotoxin in non-Hodgkin’s lymphoma: effect of an intensive schedule of administration. J Immunother Emphasis Tumor Immunol. 1995; 18: 231–241.

    PubMed  CAS  Google Scholar 

  156. MYLOTARGTM. Physicians’ Desk Reference. Medical Economics Company, 2002, pp. 3540–3543.

    Google Scholar 

  157. Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med. 2001; 345: 241–247.

    PubMed  CAS  Google Scholar 

  158. Saven A. Treatment of hairy-cell leukemia. N Engl J Med. 2001; 345: 1500–1501.

    PubMed  CAS  Google Scholar 

  159. Wiseman GA, White CA, Witzig TE, A et al. Radioimmunotherapy of relapsed non-Hodgkin’s lymphoma with zevalin, a 90Y-labeled anti-CD20 monoclonal antibody. Clin Cancer Res. 1999; 5: 3281s - 3286s.

    PubMed  CAS  Google Scholar 

  160. Becker W, Behr T. High dose radioimmunotherapy in relapsed B-cell lymphoma with I-131 rituximab. Ann Hematol. 2001; 80 (Suppl. 3): B130 - B131.

    PubMed  CAS  Google Scholar 

  161. Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001; 19: 3918–3928.

    PubMed  CAS  Google Scholar 

  162. Zevalin (IDEC, USA). Martindale, the Complete Drug Reference. Pharmaceutical Press, London, UK, 2002.

    Google Scholar 

  163. Knox SJ, Goris ML, Trisler K, et al. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res. 1996; 2: 457–470.

    PubMed  CAS  Google Scholar 

  164. Witzig TE. The use of ibritumomab tiuxetan radioimmunotherapy for patients with relapsed B-cell non-Hodgkin’s lymphoma. Semin Oncol. 2000; 27: 74–78.

    PubMed  CAS  Google Scholar 

  165. Gibson A. Iodine-131 tositumomab (Bexxar) in relapsed/refractory non-hodgkin’s lymphoma: update from the 2001 American Society of Hematology Meeting. Clin Lymphoma. 2002; 2: 209–211.

    PubMed  CAS  Google Scholar 

  166. Liu SY, Eary JF, Petersdorf SH, et al. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol. 1998; 16: 3270–3278.

    PubMed  CAS  Google Scholar 

  167. Press OW, Eary JF, Gooley T, et al. A phase I/II trial of iodine- 131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood. 2000; 96: 2934–2942.

    PubMed  CAS  Google Scholar 

  168. Brekken RA, Thorpe PE. VEGF-VEGF receptor complexes as markers of tumor vascular endothelium. J Control Release. 2001; 74: 173–181.

    PubMed  CAS  Google Scholar 

  169. Baselga J. Herceptin alone or in combination with chemotherapy in the treatment of HER2- positive metastatic breast cancer: pivotal trials. Oncology. 2001; 61: 14–21.

    PubMed  CAS  Google Scholar 

  170. Vogel CL, Cobleigh MA, Tripathy D, et al. First-line Herceptin monotherapy in metastatic breast cancer. Oncology. 2001; 61: 37–42.

    PubMed  CAS  Google Scholar 

  171. Bell R. Duration of therapy in metastatic breast cancer: management using Herceptin. Anticancer Drugs. 2001; 12: 561–568.

    PubMed  CAS  Google Scholar 

  172. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999; 17: 2639–2648.

    PubMed  CAS  Google Scholar 

  173. Baselga J. Current and planned clinical trials with trastuzumab (Herceptin). Semin Oncol. 2000; 27: 27–32.

    PubMed  CAS  Google Scholar 

  174. Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin Oncol. 1999; 26: 71–77.

    PubMed  CAS  Google Scholar 

  175. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001; 344: 783–792.

    PubMed  CAS  Google Scholar 

  176. Burris HA, III. Docetaxel (Taxotere) plus trastuzumab (Herceptin) in breast cancer. Semin Oncol. 2001; 28: 38–44.

    PubMed  CAS  Google Scholar 

  177. Dieras V, Beuzeboc P, Laurence V, Pierga JY, Pouillart P. Interaction between Herceptin and taxanes. Oncology. 2001; 61: 43–49.

    PubMed  Google Scholar 

  178. Pegram MD. Docetaxel and herceptin: foundation for future strategies. Oncologist. 2001; 6 (Suppl. 3): 22–25.

    PubMed  CAS  Google Scholar 

  179. Baselga J. Clinical trials of single-agent trastuzumab (Herceptin). Semin Oncol. 2000; 27: 20–26.

    PubMed  CAS  Google Scholar 

  180. Leyland-Jones B, Smith I. Role of Herceptin in primary breast cancer: views from North America and Europe. Oncology. 2001; 61: 2: 83–91.

    PubMed  CAS  Google Scholar 

  181. Nabholtz JM, Slamon D. New adjuvant strategies for breast cancer: meeting the challenge of integrating chemotherapy and trastuzumab (Herceptin). Semin Oncol. 2001; 28: 1–12.

    PubMed  CAS  Google Scholar 

  182. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol. 2001; 28: 13–19.

    PubMed  CAS  Google Scholar 

  183. Sparano JA. Cardiac toxicity of trastuzumab (Herceptin): implications for the design of adjuvant trials. Semin Oncol. 2001; 28: 20–27.

    PubMed  CAS  Google Scholar 

  184. Barton J, Blackledge G, Wakeling A. Growth factors and their receptors: new targets for prostate cancer therapy. Urology. 2001; 58: 114–122.

    PubMed  CAS  Google Scholar 

  185. Kim ES, Khuri FR, Herbst RS. Epidermal growth factor receptor biology (IMC-C225). Curr Opin Oncol. 2001; 13: 506–513.

    PubMed  CAS  Google Scholar 

  186. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000; 19: 6550–6565.

    PubMed  CAS  Google Scholar 

  187. Shawver LK, Slamon D, Ullrich A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell. 2002; 1: 117–123.

    PubMed  CAS  Google Scholar 

  188. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000; 103 (2): 211–225.

    PubMed  CAS  Google Scholar 

  189. Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 1993; 53: 2379–2385.

    PubMed  CAS  Google Scholar 

  190. Yoshida K, Tosaka A, Takeuchi S, Kobayashi N. Epidermal growth factor receptor content in human renal cell carcinomas. Cancer. 1994; 73: 1913–1918.

    PubMed  CAS  Google Scholar 

  191. Scher HI, Sarkis A, Reuter V, et al. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin Cancer Res. 1995; 1: 545–550.

    PubMed  CAS  Google Scholar 

  192. Porebska I, Harlozinska A, Bojarowski T. Expression of the tyrosine kinase activity growth factor receptors (EGFR, ERB B2, ERB B3) in colorectal adenocarcinomas and adenomas. Tumour Biol. 2000; 21: 105–115.

    PubMed  CAS  Google Scholar 

  193. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res. 2001; 7: 2958–2970.

    PubMed  CAS  Google Scholar 

  194. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995; 19: 183–232.

    PubMed  CAS  Google Scholar 

  195. Baselga J. The EGFR as a target for anticancer therapy—focus on cetuximab. Eur J Cancer. 2001; 37: S16 - S22.

    PubMed  CAS  Google Scholar 

  196. Herbst RS, Shin DM. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer. 2002; 94: 1593–1611.

    PubMed  CAS  Google Scholar 

  197. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest N Drugs. 1999; 17: 259–269.

    CAS  Google Scholar 

  198. Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol. 2002; 29: 27–36.

    PubMed  CAS  Google Scholar 

  199. Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-C225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR). Proc Am Soc Clin Oncol. 2001; 20: 3a (abstract 7).

    Google Scholar 

  200. Saltz L, Meropol N, Loehrer P, et al. Single agent IMC-C225 (ErbituxTM) has activity in CPT11-refractory colorectal cancer (CRC) that expresses the epidermal growth factor receptor (EGFR). Proc Am Soc Clin Oncol. 2002; 21: 127a (abstract 504).

    Google Scholar 

  201. Ciardiello F. An update of new targets for cancer treatment: receptor-mediated signals. Ann Oncol. 2002; 13: 29–38.

    PubMed  Google Scholar 

  202. Burtness B, LI Y, Flood W, Mattar B, Forastiere A. Phase III trial comparing cisplatin (C) + placebo (P) to C + anti-epidermal growth factor antibody (EGF-R) C225 in patients (pts) with metastatic/recurrent head & neck cancer (HNC). Proc Am Soc Clin Oncol. 2002; 21: 226a (abstract 901).

    Google Scholar 

  203. Gunnett K, Motzer R, Amato R, et al. Phase II study of anti-epidermal growth factor receptor (EGFr) antibody C225 alone in patients (pts) with metastatic renal cell carcinoma (RCC) (meeting abstract). Proc Am Soc Clin Oncol 1999; 18: 340a (abstract 1309).

    Google Scholar 

  204. Abbruzzese J, Rosenberg A, Xiong Q, et al. Phase II study of anti-epidermal growth factor receptor (EGFR) antibody cetuximab (IMC-C225) in combination with gemcitabine in patients with advanced pancreatic cancer. Proc Am Soc Clin Oncol. 2001; 20: 130a (abstract 518).

    Google Scholar 

  205. Kim E, Mauer A, Fossella F, et al. A phase II study of Erbitux (IMC-C225), an epidermal growth factor receptor (EGFR) blocking antibody, in combination with docetaxel in chemotherapy refractory/resistant patients with advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol. 2002; 21: 293a (abstract 1168).

    Google Scholar 

  206. Cohen R, Falcey J, Paulter V, Fetzer K, Waksal H. Safety profile of the monoclonal antibody (MoAb) IMC-C225, an anti-epidermal growth factor receptor (EGFr) used in the treatment of EGFr-positive tumors. Proc Am Soc Clin Oncol. 2000; 19: 474a (abstract 1862).

    Google Scholar 

  207. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001; 38: 17–23.

    PubMed  CAS  Google Scholar 

  208. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG, Jakobovits A. Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. 1999; 59: 1236–1243.

    PubMed  CAS  Google Scholar 

  209. Lynch DH, Yang XD. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin Oncol. 2002; 29: 47–50.

    PubMed  CAS  Google Scholar 

  210. Winquist E, Nabid A, Sicheri D, et al. A phase I dose escalation study of a humanized monoclonal antibody to EGFR (hR3) in patients with locally advanced squamous cell cancer of the head and neck (SCCHN) treated with radiotherapy (RT). Proc Am Soc Clin Oncol. 2002; 21: 232a (abstract 926).

    Google Scholar 

  211. Tewes M, Schleucher N, Dirsch O, et al. Results of a phase I trial of the humanized anti epidermal growth factor receptor (EGFR) monoclonal antibody EMD 72000 in patients with EGFR expressing solid tumors. Proc Am Soc Clin Oncol. 2002; 21: 95a (abstract 378).

    Google Scholar 

  212. Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer. 2001; 8: 83–96.

    PubMed  CAS  Google Scholar 

  213. Kuan CT, Wikstrand CJ, Bigner DD. EGFRvIII as a promising target for antibody-based brain tumor therapy. Brain Tumor Pathol. 2000; 17: 71–78.

    PubMed  CAS  Google Scholar 

  214. Nagane M, Lin H, Cavenee WK, Huang HJ. Aberrant receptor signaling in human malignant gliomas: mechanisms and therapeutic implications. Cancer Lett. 2001; 162: S17 - S21.

    PubMed  CAS  Google Scholar 

  215. Pedersen MW, Meltorn M, Damstrup L, Poulsen HS. The type III epidermal growth factor receptor mutation: biological significance and potential target for anti-cancer therapy. Ann Oncol. 2001; 12: 745–760.

    PubMed  CAS  Google Scholar 

  216. Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000; 5: 37–44.

    PubMed  CAS  Google Scholar 

  217. Harmey JH, Bouchier-Hayes D. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays. 2002; 24: 280–283.

    PubMed  CAS  Google Scholar 

  218. Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control. 2002; 9: 36–44.

    PubMed  Google Scholar 

  219. Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol. 2001; 2: 667–673.

    PubMed  CAS  Google Scholar 

  220. Yang J, Haworth L, Steinberg S, Rosenberg S, Novotny W. A randomized double-blind placebo-controlled trial of bevacizumab (anti-VEGF antibody) demonstrating a prolongation in time to progression in patients with metastatic renal cancer. Proc Am Soc Clin Oncol. 2002; 21: 5a (abstract 15).

    Google Scholar 

  221. Miller KD, Rugo HS, Cobleigh MA, et al. Phase III trial of capecitabine (Xeloda®) plus bevacizumab (AvastinTM) versus capecitabine alone in women with metastatic breast cancer (MBC) previously treated with an anthracycline and a taxane. In: Proceedings of the 26th Annual San Antonio Breast Cancer Symposium, 2002.

    Google Scholar 

  222. Fossella F, Tolcher A, Elliott M, et al. Phase I trial of the monoclonal antibody conjugate, BB-10901, for relapsed/refractory small cell lung cancer (SCLC) and other neuroendocrine (NE) tumors. Proc Am Soc Clin Oncol. 2002; 21: 309a (abstract 1232).

    Google Scholar 

  223. Rowinsky E, Ochoa L, Patnaik A, et al. SB-408075, a tumor-activated immunoconjugate targeting the C242 CanAg antigen with a potent maytansinoid payload: phase I, pharmacokinetic (PK), and biological studies. Proc Am Soc Clin Oncol. 2002; 21: 30a (abstract 118).

    Google Scholar 

  224. Nabell L, Faleh M, Marshall J, Hart L, O’Keefe C, et al. Phase II study of SGN-15 (cBR96- doxorubicin immunoconjugate) combined with docetaxel for the treatment of metastatic breast and colorectal carcinoma. Proc Am Soc Clin Oncol. 2002; 21: 15a (abstract 55).

    Google Scholar 

  225. Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med. 2002; 43: 693–713.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwab, G., Roskos, L., Davis, C.G. (2004). Treatment with Monoclonal Antibodies. In: Bronchud, M.H., Foote, M., Giaccone, G., Olopade, O.I., Workman, P. (eds) Principles of Molecular Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-664-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-664-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6276-1

  • Online ISBN: 978-1-59259-664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics