Skip to main content

Imaging Neurologic Manifestations of Oncologic Disease

  • Chapter
Book cover Cancer Neurology in Clinical Practice

Abstract

The advent of more effective chemotherapeutic regimens for systemic malignancies, which has afforded increased patient survival, has also resulted in a rise in the frequency of central nervous metastases and late disease complications. We are now seeing a wider variety of tumor types causing brain lesions in patients, where previously locally aggressive disease would have proved fatal (1, 2). Metastatic brain disease now affects 80,000-170,000 persons annually in the United States (3). The success of a variety of treatment approaches for single or limited brain metastases, including surgical resection, whole brain radiation, and stereotactic radiosurgery (SR), relies heavily on sensitive imaging tools. The main diagnostic tools are enhanced computed tomography (CT) or magnetic resonance imaging (MRI). However, the rapid development and refinement of structural and functional imaging acquisition and postprocessing technology have also permitted imaging approaches to be increasingly used, not only for diagnosis, but also for therapeutic planning and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clatterbuck RE, Sampath P, Olivi A. Transitional cell carcinoma presenting as a solitary brain lesion: a case report and review of the world literature. J Neurol Oncol 1998; 39 (1): 91–94.

    CAS  Google Scholar 

  2. Chamberlain M. Current concepts in leptomeningeal metastasis. Current Opinion Oncol 1992; 4: 533–539.

    CAS  Google Scholar 

  3. Davey P. Brain metastases. Curr Probl Cancer 1999; 23 (2): 59–98.

    PubMed  CAS  Google Scholar 

  4. Earnest FT; Ryu JH, Miller GM, Luetmer PH, Forstrom LA, Burnett OL, et al. Suspected non-small cell lung cancer: incidence of occult brain and skeletal metastases and effectiveness of imaging for detection: pilot study. Radiology 1999; 211 (1): 137–145.

    PubMed  Google Scholar 

  5. Nguyen LN, Maor MH, Oswald MJ. Brain metastases as the only manifestation of an undetected primary tumor. Cancer 1998; 83 (10): 2181–2184.

    PubMed  CAS  Google Scholar 

  6. Maesawa S, Kondziolka D, Thompson TP, Flickinger JC, Lunsford LD. Brain metastases in patients with no known primary tumor. Cancer 2000; 89 (5): 1095–1101.

    PubMed  CAS  Google Scholar 

  7. Kim DG, Kim CY, Paek SH, Lee DS, Chung JK, Jung HW, et al. Whole-body [18F]FDG PET in the management of metastatic brain tumours. Acta Neurochir 1998;140(7):665–673; discussion 673674.

    Google Scholar 

  8. Gupta NC, Nicholson P, Bloomfield SM. FDG-PET in the staging work-up of patients with suspected intracranial metastatic tumors. Ann Surg 1999; 230 (2): 202–206.

    PubMed  CAS  Google Scholar 

  9. Dhote R, Beuzeboc P, Thiounn N, Flam T, Zerbib M, Christoforov B, et al. High incidence of brain metastases in patients treated with an M-VAC regimen for advanced bladder cancer. Eur Urol 1998; 33 (4): 392–395.

    PubMed  CAS  Google Scholar 

  10. Mastronardi L, Lunardi P, Puzzilli F, Schettini G, Lo Bianco F, Ruggeri A. The role of MRI in the surgical selection of cerebral metastases. Zentralblatt Neurochirurg 1999; 60 (3): 141–145.

    CAS  Google Scholar 

  11. Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neuro Oncol 1999; 44 (3): 275–281.

    CAS  Google Scholar 

  12. Yokoi K, Kamiya N, Matsuguma H, Machida S, Hirose T, Mori K, et al. Detection of brain metastasis in potentially operable non-small cell lung cancer: a comparison of CT and MRI. Chest 1999; 115 (3): 714–719.

    PubMed  CAS  Google Scholar 

  13. Krol G, Sze G, Malkin M, Walker R. MR of cranial and spinal meningeal carcinomatosis: comparison with CT and myelography. Am J Roentgenol 1988; 151: 583–588.

    CAS  Google Scholar 

  14. Runge V, Clanton J, Price A, Herzer W, Allen J, Partain C, et al. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model. Am J Neuroradiol 1985;6(2)(MarchApril):139–147.

    Google Scholar 

  15. Akeson P, Vikhoff B, Stahlberg F, Holtas S. Brain lesion contrast in MR imaging. Dependence on field strength and concentration of gadodiamide injection in patients and phantoms. Acta Radiolog 1997; 38 (1): 14–18.

    CAS  Google Scholar 

  16. Meltzer C, Fukui M, Kanal E, Smirniotopoulos J. MR imaging of the meninges: Part 1. Normal anatomic features and nonneoplastic disease. Radiology 1996; 201: 297–308.

    PubMed  CAS  Google Scholar 

  17. Haustein J, Laniado M, Niendorf H-P, Louton T, Beck W, Planitzer J, et al. Triple-dose versus standard-dose gadopentetate dimeglumine: a randomized study in 199 patients. Radiology 1993; 186: 855–860.

    PubMed  CAS  Google Scholar 

  18. Thng C, Tay K, Chan L, Lim E, Khoo B, Huin E, et al. Magnetic resonance imaging of brain metastases: magnetisation transfer or triple dose gadolinium? Ann Acad Med Singapore 1999; 28: 529533.

    Google Scholar 

  19. Yuh WT, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. Am J Neuroradiol 1995; 16 (2): 373–380.

    PubMed  CAS  Google Scholar 

  20. Runge V, Wells J, Williams N, Lee C, Timoney J, Young A. Detect-ability of early brain meningitis on MR images with pathologic correlation. Radiology 1995; 197P: 480.

    Google Scholar 

  21. Kallmes D, Gray L, Brown M, Glass J. Triple dose gadolinium in the diagnosis of leptomeningeal metastases. Am Soc Neuroradiol Proc Book 1994: 208.

    Google Scholar 

  22. Sze G, Johnson C, Kawamura Y, Goldberg SN, Lange R, Friedland RJ, et al. Comparison of single-and triple-dose contrast material in the MR screening of brain metastases. Am J Neuroradiol 1998; 19 (5): 821–828.

    PubMed  CAS  Google Scholar 

  23. Gray L, MacFall J, Provenzale J, Kallmes D, Potchen M, Glass J. High-dose MR contrast agent for the diagnosis of leptomeningeal disease. Radiology 1995; 197 (P): 410.

    Google Scholar 

  24. Hawighorst H, Debus J, Schreiber W, Knopp MV, EngenhartCabillic R, Essig M, et al. Contrast-enhanced magnetization transfer imaging: improvement of brain tumor conspicuity and delineation for radiosurgical target volume definition. Radiother Oncol 1997; 43 (3): 261–267.

    PubMed  CAS  Google Scholar 

  25. Elster A, Mathews V, King J, Hamilton C. Improved detection of gadolinium enhancement using magnetization transfer imaging Neuroimag Clin NA 1994; 4 (1): 185–192.

    CAS  Google Scholar 

  26. Peretti-Viton P, Taieb D, Viton JM, Flori A, Muracciole X, Benguigui V, et al. Contrast-enhanced magnetisation transfer MRI in metastatic lesions of the brain. Neuroradiology 1998; 40 (12): 783–787.

    PubMed  CAS  Google Scholar 

  27. Essig M, Knopp MV, Schoenberg SO, Hawighorst H, Wenz F, Debus J, et al. Cerebral gliomas and metastases: assessment with contrast-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999; 210 (2): 551–557.

    PubMed  CAS  Google Scholar 

  28. Hwang TL, Close TP, Grego JM, Brannon WL, Gonzales F. Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer 1996; 77 (8): 1551–1555.

    PubMed  CAS  Google Scholar 

  29. De Shields MS, Ruether J. Lung carcinoma presenting as multiple cystic lesions in the brain. Delaware Med J 1998; 70 (2): 77–80.

    PubMed  Google Scholar 

  30. Olson M, Chernik N, Posner J. Infiltration of the leptomeninges by systemic cancer. Arch Neurol 1974; 30: 122–137.

    PubMed  CAS  Google Scholar 

  31. Moberg A, Reis G. Carcinosis meningum. Acta Med Scand 1961; 170: 747–755.

    PubMed  CAS  Google Scholar 

  32. Suzuki M, Takashima T, Kadoya M, Ueda T, Arakawa F, Ueda F, et al. Signal intensity of brain metastases on T2-weighted images: specificity for metastases from colonic cancers. Neurochirurgia 1993; 36 (5): 151–155.

    PubMed  CAS  Google Scholar 

  33. Dina TS. Primary central nervous system lymphoma versus toxoplasmosis in AIDS. Radiology 1991; 179: 823–828.

    PubMed  CAS  Google Scholar 

  34. Moon W, Koh B, Kim S, Kim Y, Rhim H, Cho 0, et al. Brenner tumor of the ovary: CT and MR findings. J Comp Assist Tomogr 2000; 24: 72–76.

    CAS  Google Scholar 

  35. Atlas S, Grossman R, Gomori J, Guerry D, Hackney D, Goldberg H, et al. MR imaging of intracranial metastatic melanoma. J Comput Assist Tomogr 1987; 11: 577–582.

    PubMed  CAS  Google Scholar 

  36. Isiklar I, Leeds N, Fuller G, Kumar A. Intracranial metastatic melanoma: correlation between MR imaging characteristics and melanin content. Am J Roentgenol 1995; 165: 1503–1512.

    CAS  Google Scholar 

  37. Gomori J, Grossman R, Goldberg H, Zimmerman R, Bilaniuk L. Intracranial hematomas: imaging by high-field MR. Radiology 1985; 157: 87–93.

    PubMed  CAS  Google Scholar 

  38. Novelli P, Kanal E, Fukui M. Differential diagnostic considerations for intense signal foci on diffusion weighted MR imaging. Presented at the American Society of Neuroradiology, Atlanta, GA, May 2000.

    Google Scholar 

  39. Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F. MR diffusion imaging of human intracranial tumours. Neuroradiology 1997; 39 (7): 483–489.

    PubMed  CAS  Google Scholar 

  40. Kim YJ, Chang KH, Song IC, Kim HD, Seong SO, Kim YH, et al. Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging. Am J Roentgenol 1998; 171 (6): 1487–1490.

    CAS  Google Scholar 

  41. Dev R, Gupta RK, Poptani H, Roy R, Sharma S, Husain M. Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses. Neurosurgery 1998; 42 (1): 37–42.

    PubMed  CAS  Google Scholar 

  42. Fukui M, Meltzer C, Kanal E, Smirniotopoulos J. MR imaging of the meninges: Part 2. Neoplastic disease. Radiology 1996; 201: 605–612.

    PubMed  CAS  Google Scholar 

  43. Meltzer C, Smirniotopoulos J, Fukui M. The dural tail. Int J Neuroradiol 1998; 4: 33–40.

    Google Scholar 

  44. Senegor M. Prominent meningeal “tail sign” in a patient with a metastatic tumor. Neurosurgery 1991; 29 (2): 294–296.

    PubMed  CAS  Google Scholar 

  45. Tsukada Y, Fouad A, Pickren J, Lane W. Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 1993; 52 (12): 2349–2354.

    Google Scholar 

  46. Miranda R, Glantz L, Myint M, Levy N, Jackson C, Rhodes C, et al. Stage lE non-Hodgkin’s lymphoma involving the dura. A clinicopathologic study of five cases. Arch Pathol Lab Med 1996; 120: 254–260.

    PubMed  CAS  Google Scholar 

  47. Bourekas E, Lewin J, Lanzieri C. Postcontrast meningeal MR enhancement secondary to intracranial hypotension caused by lumbar puncture. J Comput Assist Tomogr 1995; 19 (2): 299–301.

    PubMed  CAS  Google Scholar 

  48. Gupta S, Gupta R, Banerjee D, Gujal R. Problems with the “dural tail” sign. Neuroradiology 1993; 35: 541–542.

    PubMed  CAS  Google Scholar 

  49. Moran C, Anderson C, Caldemeyer K, Smith R. Meningeal myelomatosis: CT and MR appearances. Am J Neuroradiol 1994; 16: 1501–1503.

    Google Scholar 

  50. Ahmadi J, Hinton D. Dural invasion by craniofacial and calvarial neoplasms: MR imaging and histopathologic evaluation. Radiology 1993; 188 (3): 747–749.

    PubMed  CAS  Google Scholar 

  51. Henson R, Urich H. Carcinomatous Meningitis. In: Cancer and the Nervous System. Henson R, Urich H, ed. Blackwell Scientific Publications, Boston, 1982, pp. 101–119.

    Google Scholar 

  52. Wasserstrom W, Glass J, Posner J. Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer 1982; 49: 759–772.

    PubMed  CAS  Google Scholar 

  53. Sze G, Soletsky S, Bronen R, Krol G. MR imaging of the cranial meminges with emphasis on contrast enchancement and meningeal carcinomatosis. Am J Neuroradiol 1989; 10: 965–975.

    PubMed  CAS  Google Scholar 

  54. Freilich R, Krol G, DeAngelis L. Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol 1995; 38: 51–57.

    PubMed  CAS  Google Scholar 

  55. Glass J, Melamed M, Chernik N, Posner J. Malignant cells in cerebrospinal fluid (CSF): The meaning of a positive CSF cytology. Neurology 1979; 29: 1369–1375.

    CAS  Google Scholar 

  56. Chamberlain M, Sandy A, Press G. Leptomeningeal metastasis: a comparison of gadolinium-enhanced MR and contrast-enhanced CT of the brain. Neurology 1990; 40: 435–438.

    PubMed  CAS  Google Scholar 

  57. Yousem D, Patrone P, Grossman R. Leptomeningeal metastases: MR evaluation. J Comput Assist Tomogr 1990; 14 (2): 255–261.

    PubMed  CAS  Google Scholar 

  58. Sze G. Diseases of the intracranial meninges: MR imaging features. Am J Roentgenol 1993; 160: 727–733.

    CAS  Google Scholar 

  59. Davis P, Friedman N, Fry S, Malko J, Hoffmann J, Braun I. Leptomeningeal metastasis: MR imaging Radiology 1987; 163: 449454.

    Google Scholar 

  60. Watanabe M, Tanaka R, Takeda N. Correlation of MRI and clinical features in meningeal carcinomatosis. Neuroradiology 1993; 35: 512–515.

    PubMed  CAS  Google Scholar 

  61. Boogerd W, Hart A, van der Sande J, Engelsman E. Meningeal carcinomatosis in breast cancer. Prognostic factors and influence of treatment. Cancer 1991; 67 (6): 1685–1695.

    PubMed  CAS  Google Scholar 

  62. Yap H-Y, Yap B-S, Tashima C, DiStefano A, Blumenschein G. Meningeal carcinomatosis in breast cancer. Cancer 1978; 42: 283286.

    Google Scholar 

  63. Nugent J, Bunn P, Matthews M, Ihde D, Cohen M, Gazdar A, et al. CNS metastases in small cell bronchogenic carcinoma. Cancer 1979; 44: 1885–1893.

    PubMed  CAS  Google Scholar 

  64. Viadana E, Bross I, Pickren J. Cascade spread of blood-borne metastases in solid and nonsolid cancers of humans. In: Pulmonary Metastasis. Weiss L, Gilbert H, eds. GK Hall, Boston, 1978, pp. 142–167.

    Google Scholar 

  65. Grain G, Karr J. Diffuse leptomeningeal carcinomatosis. Clinical and pathologic characteristics. Neurology 1955; 5: 706–722.

    PubMed  CAS  Google Scholar 

  66. Madow L, Alpers B. Encephalitic form of metastatic carcinoma. Arch Neurol Psychiatry 1951; 65: 161–173.

    CAS  Google Scholar 

  67. Bennett JL, Galetta SL, Frohman LP, Mourelatos Z, Gultekin SH, Dalmau JO, et al. Neuro-ophthalmologic manifestations of a paraneoplastic syndrome and testicular carcinoma. Neurology 1999; 52 (4): 864–867.

    PubMed  CAS  Google Scholar 

  68. Wingerchuk DM, Noseworthy JH, Kimmel DW. Paraneoplastic encephalomyelitis and seminoma: importance of testicular ultrasonography. Neurology 1998; 51 (5): 1504–1507.

    PubMed  CAS  Google Scholar 

  69. Batocchi AP, De Rosa G, Evoli A, Tonali P, Greggi S, Scambia G, et al. Positive response to therapy in a patient with a seropositive paraneoplastic cerebellar degeneration and an endometrioid carcinoma of the vesicovaginal septum [letter]. J Neurol Neurosurg Psychiatry 1999; 67 (3): 412–413.

    PubMed  CAS  Google Scholar 

  70. Chabriat H, Chen QM, Poisson M, Delattre JY. [Paraneoplastic cerebellar degeneration]. Revue Neurologique 1994;150(2):105114.

    Google Scholar 

  71. Vernino S, Lennon VA. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol 2000; 47 (3): 297–305.

    PubMed  CAS  Google Scholar 

  72. Shavit YB, Graus F, Probst A, Rene R, Steck AJ. Epilepsia partialis continua: a new manifestation of anti-Hu-associated paraneoplastic encephalomyelitis. Ann Neurol 1999;45(2):255258

    Google Scholar 

  73. Gultekin S, Rosenfeld M, Voltz R, Eochen J, Posner J, Dalmau J. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000; 123: 1481–1494.

    PubMed  Google Scholar 

  74. Prabhu SS, Broaddus WC, Oveissi C, Berr SS, Gillies GT. Determination of intracranial tumor volumes in a rodent brain using magnetic resonance imaging, Evans blue, and histology: a comparative study. IEEE Trans Biomed Engineering 2000;47(2):259265.

    Google Scholar 

  75. Dorward NL, Alberti O, Palmer JD, Kitchen ND, Thomas DG. Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note. J Neurosurg 1999; 90 (1): 160–168.

    PubMed  CAS  Google Scholar 

  76. Beavis AW, Gibbs P, Dealey RA, Whitton VJ. Radiotherapy treatment planning of brain tumours using MRI alone. Br J Radiology 1998; 71 (845): 544–548.

    CAS  Google Scholar 

  77. Fountas KN, Kapsalaki EZ, Smisson HF, 3rd, Hartman LP, Johnston KW, Robinson JS, Jr. Results and complications from the use of a frameless stereotactic microscopic navigator system. Stereotactic Funct Neurosurg 1998; 71 (2): 76–82.

    CAS  Google Scholar 

  78. Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z, et al. A Phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir: GL1328 European-Canadian Study Group. Hum Gen Ther 1999; 10: 2325–2335.

    CAS  Google Scholar 

  79. Qureshi NH, Bankiewicz KS, Louis DN, Hochberg FH, Chiocca EA, Harsh GRt. Multicolumn infusion of gene therapy cells into human brain tumors: technical report. Neurosurgery 2000; 46 (3): 663–668.

    PubMed  CAS  Google Scholar 

  80. Black PM, Alexander E, 3rd, Martin C, Moriarty T, Nabavi A, Wong TZ, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 1999; 45 (3): 423–431.

    PubMed  CAS  Google Scholar 

  81. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 1999; 91 (5): 804–813.

    PubMed  CAS  Google Scholar 

  82. Hall WA, Martin AJ, Liu H, Nussbaum ES, Maxwell RE, Truwit CL. Brain biopsy using high-field strength interventional magnetic resonance imaging. Neurosurgery 1999;44(4):807–813; discussion 813–814.

    Google Scholar 

  83. Knauth M, Aras N, Wirtz CR, Dorfler A, Engelhorn T, Sartor K. Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. Am J Neuroradiol 1999; 20 (8): 1547–1553.

    PubMed  CAS  Google Scholar 

  84. Martin AJ, Hall WA, Liu H, Pozza CH, Michel E, Casey SO, et al. Brain tumor resection: intraoperative monitoring with high-fieldstrength MR imaging-initial results. Radiology 2000;215(1):221228.

    Google Scholar 

  85. Seifert V, Zimmermann M, Trantakis C, Vitzthum HE, Kuhnel K, Raabe A, et al. Open MRI-guided neurosurgery. Acta Neurochir 1999; 141 (5): 455–464.

    PubMed  CAS  Google Scholar 

  86. Bittar RG, Olivier A, Sadikot AF, Andermann F, Pike GB, Reutens DC. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 1999; 91 (6): 915–921.

    PubMed  CAS  Google Scholar 

  87. Papke K, Hellmann T, Renger B, Morgenroth C, Knecht S, Schuierer G, et al. Clinical applications of functional MRI at 1.0 T: motor and language studies in healthy subjects and patients. Eur Radiol 1999; 9 (2): 211–220.

    PubMed  CAS  Google Scholar 

  88. Lurito JT, Lowe MJ, Sartorius C, Mathews VP. Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comp Assist Tomogr 2000; 24 (1): 99–105.

    CAS  Google Scholar 

  89. Lee CC, Ward HA, Sharbrough FW, MeyerFB, Marsh WR, Raffel C, et al. Assessment of functional MR imaging in neurosurgical planning. Am J Neuroradiol 1999; 20 (8): 1511–1519.

    PubMed  CAS  Google Scholar 

  90. Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T. Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 1999; 10 (6): 738–748.

    PubMed  CAS  Google Scholar 

  91. Alberstone CD, Skirboll SL, Benzel EC, Sanders JA, Hart BL, Baldwin NG, et al. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg 2000; 92 (1): 79–90.

    PubMed  CAS  Google Scholar 

  92. Souweidane MM, Kim KH, McDowall R, Ruge MI, Lis E, Krol G, et al. Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatric Neurosurg 1999; 30 (2): 86–92.

    CAS  Google Scholar 

  93. Joe BN, Fukui MB, Meltzer CC, Huang QS, Day RS, Greer Pi, et al. Brain tumor volume measurement: comparison of manual and semiautomated methods. Radiology 1999; 212 (3): 811–816.

    PubMed  CAS  Google Scholar 

  94. Vaidyanathan M, Clarke LP, Hall LO, Heidtman C, Velthuizen R, Gosche K, et al. Monitoring brain tumor response to therapy using MRI segmentation. Magn Res Imag 1997; 15 (3): 323–334.

    CAS  Google Scholar 

  95. Taphoorn MJ, Potman RA, Barkhof F, Weerts JG, Valk J, Karim AB, et al. Quantitative computer-assisted analysis vs. visual estimation of MR imaging response of brain metastases to radiotherapy. Magn Res Imag 1997; 15 (1): 99–106.

    CAS  Google Scholar 

  96. Clarke LP, Velthuizen RP, Clark M, Gaviria J, Hall L, Goldgof D, et al. MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Res Imag 1998; 16 (3): 271–279.

    CAS  Google Scholar 

  97. Blankenberg FG, Teplitz RL, Ellis W, Salamat MS, Min BH, Hall L, et al. The influence of volumetric tumor doubling time, DNA ploidy, and histologic grade on the survival of patients with intracranial astrocytomas. Am J Neuroradiol 1995; 16 (5): 1001–1012.

    PubMed  CAS  Google Scholar 

  98. Peterson A, Meltzer C; Evanson E, Konziolka D. The MR imaging response of brain metastases after gamma knife stereotactic radio-surgery. Radiology 1999; 211: 807–814.

    PubMed  CAS  Google Scholar 

  99. Mehta M, Noyes W, Craig B, Lamond J, Auchter R, French M, et al. A cost-effectiveness and cost-utility analysis of radiosurgery vs. resection for single-brain metastases. Int J Radiation Oncol Biol Phys 1997; 39 (2): 445–454.

    CAS  Google Scholar 

  100. Young RF. Radiosurgery for the treatment of brain metastases. Sem Surg Oncol 1998; 14 (1): 70–78.

    CAS  Google Scholar 

  101. Shiau CY, Sneed PK, Shu HK, Lamborn KR, McDermott MW, Chang S, et al. Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 1997; 37 (2): 375–383.

    PubMed  CAS  Google Scholar 

  102. Hawighorst H, Essig M, Debus J, Knopp MV, Engenhart-Cabilic R, Schonberg SO, et al. Serial MR imaging of intracranial metastases after radiosurgery. Magn Res Imag 1997;15(10):11211132.

    Google Scholar 

  103. Gieger M, Wu JK, Ling MN, Wazer D, Tsai JS, Engler MJ. Response of intracranial melanoma metastases to stereotactic radiosurgery. Radiat Oncol Invest 1997; 5 (2): 72–80.

    CAS  Google Scholar 

  104. Jeffries BF, Kishore PRS, Singh KS, Ghatak NR, Krempa J. Contrast enhancement in the postoperative brain. Radiology 1981; 139: 409–413.

    PubMed  CAS  Google Scholar 

  105. Dooms GC, Hecht S, Brant-Zawadski M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging Radiology 1986; 158: 149–155.

    CAS  Google Scholar 

  106. Elster A, DiPersio D. Cranial postoperative site: assessment with contrast-enhanced MR imaging. Radiology 1990; 174: 93–98.

    PubMed  CAS  Google Scholar 

  107. Burke J, Podrasky A, Bradley W. Meninges: benign postoperative enhancement on MR images Radiology 1990; 174: 99–102.

    CAS  Google Scholar 

  108. van der Ree TC, Dippel DW, Avezaat CJ, Sillevis Smitt PA, Vecht CJ, van den Bent MJ. Leptomeningeal metastasis after surgical resection of brain metastases. J Neurol Neurosurg Psychiatry 1999; 66 (2): 225–227.

    PubMed  CAS  Google Scholar 

  109. Hudgins P, Davis P, Hoffman J, Jr. Gadopentetate dimeglumineenhanced MR imaging in children following surgery for brain tumor: spectrum of meningeal findings. Am J Neuroradiol 1991;12:301–307:

    Google Scholar 

  110. Mittl R, YousemD. Frequency of unexplained meningeal enhancement in the brain after lumbar puncture. Am J Neuroradiol 1994; 15: 633–638.

    PubMed  Google Scholar 

  111. Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 1991; 29: 347–355.

    PubMed  CAS  Google Scholar 

  112. Griffeth LK, Rich KM, Dehdashti F, Simpson JR, Fusselman MJ, McGuire AH, et al. Brain metastases from non-central nervous system tumors: evaluation with PET. Radiology 1993; 186: 37–44.

    PubMed  CAS  Google Scholar 

  113. Mogard J, Kihlstrom L, Ericson K, Karlsson B, Guo W-Y, S toneElander S. Recurrent tumors vs radiation effects after gamma knife radiosurgery of intracerebral metastases: diagnosis with PETFDG. J Comput Assist Tomogr 1994; 18: 177–181.

    PubMed  CAS  Google Scholar 

  114. Rozental JM, Levine RL, Mehta MP, Kinsella TJ, Levin AB, Algan O, et al. Early changes in tumor metabolism after treatment: the effects of stereotactic radiotherapy. J Radiat Oncol Biol Phys 1991; 20: 1053–1060.

    CAS  Google Scholar 

  115. Maruyama I, Sadato N, Waki A, Tsuchida T, Yoshida M, Fujibayashi Y, et al. Hyperacute changes in glucose metabolism of brain tumors after stereotactic radiosurgery: a PET study. J Nuclear Med 1999; 40 (7): 1085–1090.

    CAS  Google Scholar 

  116. Ogawa R, Uemura K, Shishido F, Yamaguchi T, Murakami M, Inugami A, et al. Changes of cerebral blood flow, and oxygen and glucose metabolism following radiochemotherapy of gliomas: a PET study. J Comput Assist Tomogr 1988; 12: 290–297.

    PubMed  CAS  Google Scholar 

  117. Rege SD, Chaiken L, Hoh CK, Choi Y, Lufkin R, Anzai Y, et al. Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: quantitation with PET. Radiology 1993; 189: 807–812.

    PubMed  CAS  Google Scholar 

  118. Thiel A, Pietrzyk U, Sturm V, Herholz K, Hovels M, Schroder R. Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic resonance imaging coregistration: technical case report. Neurosurgery 2000; 46 (1): 232–234.

    PubMed  CAS  Google Scholar 

  119. Strother S, Anderson J, Xu X-L, Liow J, Bonar D, Rottenberg D. Quantitative comparisons of image registration techniques based on high-resolution of MRI of the brain. J Comput Assist Tomogr 1994; 18 (6): 954–962.

    PubMed  CAS  Google Scholar 

  120. Lee J, Umsawasdi T, Ya-Yen L, Barkley J, HT, Murphy W, Welch S, et al. Neurotoxicity in long-term survivors of small cell lung cancer. Int J Radiat Oncol Biol Phys 1986; 12: 313–321.

    PubMed  CAS  Google Scholar 

  121. Lee Y-Y, Nauert C, Glass J. Treatment-related white matter changes in cancer patients. Cancer 1986; 57: 1473–1482.

    PubMed  CAS  Google Scholar 

  122. Burger P, Kamenar E, Schold S, Fay J, Phillips G, Herzig G. Encephalopathy following high-dose BCNU therapy. Cancer 1981; 48: 1318–1327.

    Google Scholar 

  123. Gutin P, Levi J, Wiernik P, Walker M. Treatment of malignant meningeal disease with thioTEPA: a phase II study. Cancer Treat Reports 1977; 61: 885–887.

    CAS  Google Scholar 

  124. Filley CM. Toxic leukoencephalopathy. Clin Neuropharmacol 1999; 22 (5): 249–260.

    PubMed  CAS  Google Scholar 

  125. Price RA, Jamieson P. The central nervous system in childhood leukemia II. subacute leukoencephalopathy. Cancer 1975; 35: 306318.

    Google Scholar 

  126. Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 1994; 12 (3): 627–642.

    PubMed  CAS  Google Scholar 

  127. Nieder C, Nestle U, Niewald M, Schnabel K. Accelerated radiotherapy for brain metastases. Radiother Oncol 1997; 45 (1): 17–22.

    PubMed  CAS  Google Scholar 

  128. Olsen DR, Kambestad BK, Kristofferson DT. Calculation of radiation induced complication probabilities for brain, liver and kidney, and the use of a reliability model to estimate critical volume fractions. Br J Radiol 1994; 67: 1218–1225.

    PubMed  CAS  Google Scholar 

  129. Van Tassel P, Bruner JM, Maor MH, Leeds NE, Gleason MJ, Yung WK, et al. MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas. Am J Neuroradiol 1995; 16 (4): 715–726.

    PubMed  Google Scholar 

  130. Edwards-Brown MK, Jakacki RI. Imaging the central nervous system effects of radiation and chemotherapy of pediatric tumors. Neuroimag Clin NA 1999; 9 (1): 177–193.

    CAS  Google Scholar 

  131. Armstrong CL, Corn BW, Ruffer JE, Pruitt AA, Mollman JE, Phillips PC. Radiotherapeutic effects on brain function: double dissociation of memory systems. Neuropsychiatr Neuropsychol Behav Neurol 2000; 13 (2): 101–111.

    CAS  Google Scholar 

  132. Poussaint TY, Siffert J, Barnes PD, Pomeroy SL, Goumnerova LC, Anthony DC, et al. Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. Am J Neuroradiol 1995; 16 (4): 693–699.

    PubMed  CAS  Google Scholar 

  133. Tamura M, Ono N, Zama A, Fujimaki H, Ohye C. Delayed brain hemorrhage associated with prophylactic whole brain irradiation for pediatric malignant brain tumor: a case report. Childs Nery Sys 1993; 9 (5): 300–301.

    CAS  Google Scholar 

  134. Casey AT, Marsh HT, Uttley D. Intracranial aneurysm formation following radiotherapy. Br J Neurosurg 1993; 7 (5): 575–579.

    PubMed  CAS  Google Scholar 

  135. Schlegel U, Pels H, Oehring R, Blumcke I. Neurologic sequelae of treatment of primary CNS lymphomas. J Neuro Oncol 1999; 43 (3): 277–286.

    CAS  Google Scholar 

  136. Hazuka MB, Kinzie JJ, Davis KA, DeBoise DA. Treatment-related central nervous system toxicity: MR imaging evaluation with CT and clinical correlation. Magn Res Imag 1989; 7 (6): 669–676.

    CAS  Google Scholar 

  137. Radcliffe J, Bunin GR, Sutton LN, Goldwein JW, Phillips PC. Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: age-dependent effects of whole brain radiation. Int J Dev Neurosci 1994; 12 (4): 327–334.

    PubMed  CAS  Google Scholar 

  138. Waldrop S, Davis P, Padgett C, Shapiro M, Morris R. Treatment of brain tumors in children is associated with abnormal MR spectroscopic ratios in brain tissue remote from the tumor site. Am J Neuroradiol 1998; 19: 963–970.

    PubMed  CAS  Google Scholar 

  139. Gulaldi NC, Kostakoglu L, Uzal D, Hayran M, Elahi N, Uysal U, et al. Impact of radiotherapy on normal brain tissue: semi-automated quantification of decrease in perfusion. Ann Nucl Med 2000; 14 (1): 17–23.

    PubMed  CAS  Google Scholar 

  140. Mulhern RK, Reddick WE, Palmer SL, Glass JO, Elkin TD, Kun LE, et al. Neurocognitive deficits in medulloblastoma survivors and white matter loss. Ann Neurol 1999; 46 (6): 834–841.

    PubMed  CAS  Google Scholar 

  141. Nishio S, Morioka T, Inamura T, Takeshita I, Fukui M, Sasaki M, et al. Radiation-induced brain tumours: potential late complications of radiation therapy for brain tumours. Acta Neurochir 1998; 140 (8): 763–770.

    PubMed  CAS  Google Scholar 

  142. Salminen E, Pukkala E, Teppo L. Second cancers in patients with brain tumours: impact of treatment. Eur J Cancer 1999;35(1):102105.

    Google Scholar 

  143. Walter A, Hancock M, Pui C, Hudson M, Ochs J, Rivera G, et al. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’ s Research Hospital. J Clin Oncol 1998; 16: 3761–3767.

    PubMed  CAS  Google Scholar 

  144. Little MP, de Vathaire F, Shamsaldin A, Oberlin O, Campbell S, Grimaud E, et al. Risks of brain tumour following treatment for cancer in childhood: modification by genetic factors, radiotherapy and chemotherapy. Int J Cancer 1998; 78 (3): 269–375.

    PubMed  CAS  Google Scholar 

  145. Bonham B, Dominguez E, Fukui M, Paterson D, Pankey G, Wagener M, et al. Central nervous system lesions in liver transplant recipients: prospective assessment of indications for biopsy and implications for management. Transplantation 1998; 66: 1596 1604.

    Google Scholar 

  146. Hall WA, Martinez AJ. Neuropathology of pediatric liver transplantation. Pediatr Neurosci 1989; 15 (6): 269–275.

    PubMed  CAS  Google Scholar 

  147. Martinez AJ. The neuropathology of organ transplantation: comparison and contrast in 500 patients. Pathol Res Practice 1998; 194 (7): 473–486.

    CAS  Google Scholar 

  148. Martinez A, Estol C, Faris A. Neurological Complications of Liver Transplantation. Neurol Clin 1988; 6: 327–348.

    PubMed  CAS  Google Scholar 

  149. Truwit C, Denaro C, Lake J, et al. MR Imaging of Reversible Cyclosporin A-Induced Neurotoxicity. Am J Neurorad 1991; 12: 651–659.

    CAS  Google Scholar 

  150. Schwartz RB, Bravo SM, Klufas RA, Hsu L, Barnes PD, Robson CD, et al. Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. Am J Roentgenol 1995; 165 (3): 627–631.

    CAS  Google Scholar 

  151. Eidelman B, Abu-Elmagd K, Wilson J, et al. Neurologic Complications of FK 506. Transplant Proc 1991; 23: 3175–3178.

    PubMed  CAS  Google Scholar 

  152. Jarosz JM, Howlett DC, Cox TC, Bingham JB. Cyclosporinerelated reversible posterior leukoencephalopathy: MRI. Neuroradiology 1997; 39 (10): 711–715.

    PubMed  CAS  Google Scholar 

  153. Singh N, Bonham C, Fukui M. Immunosuppressive associated leukoencephalopathy in organ transplant recipients. Transplantation 2000 (in press).

    Google Scholar 

  154. Appignani BA, Bhadelia RA, Blacklow SC, Wang AK, Roland SF, Freeman RB, Jr. Neuroimaging findings in patients on immunosuppressive therapy: experience with tacrolimus toxicity. Am J Roentgenol 1996; 166 (3): 683–688.

    CAS  Google Scholar 

  155. Thyagarajan GK, Cobanoglu A, Johnston W. FK506-induced fulminant leukoencephalopathy after single-lung transplantation. Ann Thor Surg 1997; 64 (5): 1461–1464.

    CAS  Google Scholar 

  156. Small S, Fukui M, Bramblett G, Eidelman B. Immunosuppression induced leukoencephalopathy from tacrolimus (FK506). Ann Neurol 1996; 40: 575–580.

    PubMed  CAS  Google Scholar 

  157. Flomenbaum MA, Jarcho JA, Schoen FJ. Progressive multifocal leukoencephalopathy fifty-seven months after heart transplantation. J Heart Lung Transplant 1991; 10 (6): 888–893.

    PubMed  CAS  Google Scholar 

  158. McCormick WF, Schochet SS, Jr., Sarles HE, Calverley JR. Progressive multifocal leukoencephalopathy in renal transplant recipients. Arch Int Med 1976; 136 (7): 829–834.

    CAS  Google Scholar 

  159. Paterson DL, Gayowski T, Singh N. Could a herpesvirus mimic tacrolimus-induced leukoencephalopathy? Ann Neurol 1997; 42 (2): 270.

    PubMed  CAS  Google Scholar 

  160. Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med 1996; 334 (8): 494–500.

    PubMed  CAS  Google Scholar 

  161. Lanzino G, Cloft H, Hemstreet MK, West K, Alston S, Ishitani M. Reversible posterior leukoencephalopathy following organ transplantation. Description of two cases. Clin Neurol Neurosurg 1997; 99 (3): 222–226.

    PubMed  CAS  Google Scholar 

  162. Hall W, Martinez A, Dummer S. Central nervous system infection in the chronically immunosuppressed. Medicine 1982; 61: 166168.

    Google Scholar 

  163. Schroth G, Kretzschmar K, Gawehn J, Voigt K. Advantage of magnetic resonance imaging in the diagnosis of cerebral infections. Neuroradiology 1987; 29 (2): 120–126.

    PubMed  CAS  Google Scholar 

  164. Tsuchiya K, Inaoka S, Mizutani Y, Hachiya J. Fast fluid-attenuated inversion-recovery MR of intracranial infections. Am J Neuroradiol 1997; 18 (5): 909–913.

    PubMed  CAS  Google Scholar 

  165. Desprechins B, Stadnik T, Koerts G, Shabana W, Breucq C, Osteaux M. Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. Am J Neuroradiol 1999; 20 (7): 1252–1257.

    PubMed  CAS  Google Scholar 

  166. Guppy KH, Thomas C, Thomas K, Anderson D. Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen: Chaetomium atrobrunneum: case report. Neurosurgery 1998; 43 (6): 1463–1469.

    PubMed  CAS  Google Scholar 

  167. Hagensee ME, Bauwens JE, Kjos B, Bowden RA. Brain abscess following marrow transplantation: experience at the Fred Hutchinson Cancer Research Center, 1984–1992. Clin Infectious Dis 1994; 19 (3): 402–408.

    CAS  Google Scholar 

  168. Ashdown BC, Tien RD, Felsberg GJ. Aspergillosis of the brain and paranasal sinuses in immunocompromised patients: CT and MR imaging findings. Am J Roentgenol 1994; 162 (1): 155–159.

    CAS  Google Scholar 

  169. DeLone D, Goldstein R, Petermann G, Salamat M, Miles J, Knechtle S, et al. Disseminated aspergillosis involving the brain: distribution and imaging characteristics. Am J Neuroradiol 1999; 20 (9): 1597–1604.

    PubMed  CAS  Google Scholar 

  170. Miaux Y, Ribaud P, Williams M, Guermazi A, Gluckman E, Brocheriou C, et al. MR of cerebral aspergillosis in patients who have had bone marrow transplantation. Am J Neuroradiol 1995; 16 (3): 555–562.

    PubMed  CAS  Google Scholar 

  171. Carpentier AF, Bernard L, Poisson M, Delattre JY. [Central nervous system infections in patients with malignant diseases]. Revue Neurologique 1996; 152 (10): 587–601.

    PubMed  CAS  Google Scholar 

  172. Williams RL, Fukui MB, Meltzer CC, Swarnkar A, Johnson DW, Welch W. Fungal spinal osteomyelitis in the immunocompromised patient: MR findings in three cases. Am J Neuroradiol 1999; 20 (3): 381–385.

    PubMed  CAS  Google Scholar 

  173. Israelski DM, Remington JS. Toxoplasmosis in patients with cancer. Clin Infect Dis 1993; 17 (Suppl 2): S423 - S435.

    PubMed  Google Scholar 

  174. Maschke M, Dietrich U, Prumbaum M, Kastrup O, Turowski B, Schaefer UW, et al. Opportunistic CNS infection after bone marrow transplantation. Bone Marrow Transplant 1999;23(11):11671176.

    Google Scholar 

  175. Schiff D, Rosenblum MK. Herpes simplex encephalitis (HSE) and the immunocompromised: a clinical and autopsy study of HSE in the settings of cancer and human immunodeficiency virus-type 1 infection. Hum Pathol 1998; 29 (3): 215–222.

    PubMed  CAS  Google Scholar 

  176. Weaver S, Rosenblum MK, DeAngelis LM. Herpes varicella zoster encephalitis in immunocompromised patients. Neurology 1999; 52 (1): 193–195.

    PubMed  CAS  Google Scholar 

  177. Lentz D, Jordan JE, Pike GB, Enzmann DR. MRI in varicella-zoster virus leukoencephalitis in the immunocompromised host. J Comp Assist Tomogr 1993; 17 (2): 313–316.

    CAS  Google Scholar 

  178. Herrold JM, Hahn JS. Disseminated multifocal herpes zoster leukoencephalitis and subcortical hemorrhage in an immunosuppressed child. J Child Neurol 1994; 9 (1): 56–58.

    PubMed  CAS  Google Scholar 

  179. White ML, Edwards-Brown MK. Fluid attenuated inversion recovery (FLAIR) MRI of herpes encephalitis. J Comp Assist Tomogr 1995; 19 (3): 501–502.

    CAS  Google Scholar 

  180. McNeil B. Value of bone scanning in neoplastic disease. Semin Nucl Med 1984; 14: 277–286.

    PubMed  CAS  Google Scholar 

  181. Barron K, Hirano A, Araki S, Terry R. Experiences with metastatic neoplasms involving the spinal cord. Neurology 1959; 9: 91–106.

    PubMed  CAS  Google Scholar 

  182. Constans J, de Divitiis E, Donzelli R, Spaziante R, Meder J, Haye C. Spinal metastases with neurological manifestations. Review of 600 cases. J Neurosurg 1983; 59: 111–118.

    PubMed  CAS  Google Scholar 

  183. Gilbert R, Kim J-H, Posner J. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol 1978; 3: 40–51.

    PubMed  CAS  Google Scholar 

  184. Colletti PM, Siegel HJ, Woo MY, Young HY, Terk MR. The impact on treatment planning of MRI of the spine in patients suspected of vertebral metastasis: an efficacy study. Comp Med Imag Graphics 1996; 20 (3): 159–162.

    CAS  Google Scholar 

  185. Bushnell DL, Kahn D, Huston B, Bevering CG. Utility of SPECT imaging for determination of vertebral metastases in patients with known primary tumors. Skel Radiol 1995; 24 (1): 13–16.

    CAS  Google Scholar 

  186. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207: 349–356.

    PubMed  CAS  Google Scholar 

  187. Edelstyn G, Gillespie P, Grebbell F. The radiological demonstration of osseous metastasesChwr(133) Experimental. observations. Clin Radiol 1967;18’`15K-162,.

    Google Scholar 

  188. Gosfield Ed, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993; 34 (12): 2191–2198.

    Google Scholar 

  189. Holder L. Clinical radionuclide bone imaging. Radiology 1990; 176: 607–614.

    PubMed  CAS  Google Scholar 

  190. Even-Sapir E, Martin R, Barnes D, Pringle C, Iles S, Mitchell M. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology 1993; 187: 193–198.

    PubMed  CAS  Google Scholar 

  191. Baker L, Goodman S, Perkash I, Lane B, Enzmann D. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology 1990; 174: 495–502.

    PubMed  CAS  Google Scholar 

  192. Carmody R, Yang P, Seeley G, Seeger J, Unger E, Johnson J. Spinal cord compression due to metastatic disease: diagnosis with MR imaging versus myelography. Radiology 1989; 173: 225–229.

    PubMed  CAS  Google Scholar 

  193. Daffner R, Lupetin A, Dash N, Deeb Z, Sefczek R, Schapiro R. MRI in the detection of malignant infiltration of bone marrow. Am J Roentgenol 1985;;146:353–358.

    Google Scholar 

  194. Smoker W, Godersky J, Knutzon R, Keyes W, Norman D, Bergman W. The role of MR imaging in evaluating metastatic spinal disease. Am J Neuroradiol 1987; 8: 901–908.

    Google Scholar 

  195. Hollis P, Malis L, Zappulla R. Neurological deterioration after lumbar puncture below complete spinal subarachnoid block. J Neurosurg 1986; 64: 253–256.

    PubMed  CAS  Google Scholar 

  196. Kosuda S, Kaji T, Yokoyama H, Yokokawa T, Katayama M, Iriye T, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med 1996; 37 (6): 975–958.

    PubMed  CAS  Google Scholar 

  197. Mehta RC, Marks MP, Hinks RS, Glover GH, Enzmann DR. MR evaluation of vertebral metastases: Tl-weighted, short-inversiontime inversion recovery, fast spin-echo, and inversion-recovery fast spin-echo sequences. Am J Neuroradiol 1995; 16 (2): 281–288.

    PubMed  CAS  Google Scholar 

  198. Crasto C, Duca S, Davini O, Rizzo L, Pavanello I, Avataneo T, et al. MRI diagnosis of intramedullary metastases from extra-CNS tumors. Eur Radiol 1995; 7: 732–736.

    Google Scholar 

  199. Schiff D, O’Neill BP. Intramedullary spinal cord metastases: clinical features and treatment outcome. Neurology 1996; 47 (4): 906–912.

    PubMed  CAS  Google Scholar 

  200. Merboldt K, Hanicke W, Gyngell M, Frahm J, Bruhn H. The influence of flow and motion in MRI of diffusion using a modified CE-FAST sequence. Magn Reson Med 1989; 12: 198–208.

    PubMed  CAS  Google Scholar 

  201. Khaw FM, Worthy SA, Gibson MJ, Gholkar A. The appearance on MRI of vertebrae in acute compression of the spinal cord due to metastases. J Bone Joint Surg (Brit) 1999; 81 (5): 830–834.

    CAS  Google Scholar 

  202. Schiff D, O’Neill BP, Wang CH, O’Fallon JR. Neuroimaging and treatment implications of patients with multiple epidural spinal metastases. Cancer 1998; 83 (8): 1593–1601.

    PubMed  CAS  Google Scholar 

  203. Pallis C, Louis S, Morgan R. Radiation myelopathy. Brain 1961; 84: 460–479.

    PubMed  CAS  Google Scholar 

  204. Martin D, Delacollette M, Collignon J, Dooms G, Lenelle J, Moonen G, et al. Radiation-induced myelopathy and vertebral necrosis. Neuroradiology 1994; 36: 405–407.

    PubMed  CAS  Google Scholar 

  205. Wang PY, Shen WC, Jan JS. MR imaging in radiation myelopathy. Am J Neuroradiol 1992; 13: 1049–1055.

    PubMed  CAS  Google Scholar 

  206. Wang G-J, Volkow ND, Lau YH, Fowler JS, Meek A, Park T, et al. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy. J Nucl Med 1994; 35: 213 P.

    Google Scholar 

  207. Wang PY, Shen WC, Jan JS. Serial MRI changes in radiation myelopathy. Neuroradiology 1995; 37 (5): 374–347.

    PubMed  CAS  Google Scholar 

  208. Koehler P, Verbiest H, Jager J, Vecht C. Delayed radiation myelopathy: serial MR imaging and pathology. Clin Neurol Neurosurg 1996; 98: 197–201.

    PubMed  CAS  Google Scholar 

  209. Melki P, Halimi P, Wibault P, Masnou P, Doyon D. MRI in chronic progressive radiation myelopathy. J Comput Assist Tomogr 1994; 18: 1–6.

    PubMed  CAS  Google Scholar 

  210. Komachi H, Tsuchiya K, Ikeda M, Koike R, Matsunaga T, Ikeda K. Radiation myelopathy: a clinicopathological study with special reference to correlation between MRI findings and neuropathology. J Neurol Sci 1995; 132: 228–232.

    PubMed  CAS  Google Scholar 

  211. Blomlie V, Lien H, Iversen T, Winderen M, Tvera K. Radiation-induced insufficiency fractures of the sacrum: evaluation with MR imaging. Radiology 1993; 188: 241–244.

    PubMed  CAS  Google Scholar 

  212. Mammon J, Schweitzer M. MRI of occult sacral insufficiency fractures following radiation therapy. Skel Radiol 1995; 24: 101–104.

    Google Scholar 

  213. Gangi A, Dietemann J-L, Mortazavi R, Pfleger D, Kauff C, Roy C. CT-guided interventional procedures for pain management in the lumbosacral spine. Radiographies 1998; 18: 621–633.

    CAS  Google Scholar 

  214. Wilbourn A. Brachial Plexus Disorders. In: Peripheral Neuropathy. Dyck P, Thomas P, eds. W.B. Saunders, Philadelphia, 1993, pp. 911–950.

    Google Scholar 

  215. Thyagarajan D, Cascino T, Harms G. Magnetic resonance imaging of brachial plexopathy in cancer. Neurology 1995; 45: 421–427.

    PubMed  CAS  Google Scholar 

  216. Wittenberg K, Adkins M. MR imaging of nontraumatic brachial plexopathies: frequency and spectrum of findings. Radiographies 2000; 20 (4): 1023–1032.

    CAS  Google Scholar 

  217. Gerard J, Franck N, Moussa Z, Hildebrand J. Acute ischemic brachial plexus neuropathy following radiation therapy. Neurology 1989; 39: 450–451.

    PubMed  CAS  Google Scholar 

  218. Salner A, Botnick L, Herzog A, Goldstein M, Harris J, Levene M, et al. Reversible brachial plexopathy following primary radiation therapy for breast cancer. Cancer Treat Rep 1981; 65: 797–802.

    PubMed  CAS  Google Scholar 

  219. Iyer R, Fenstermacher M, Libshitz H. MR imaging of the treated brachial plexus. Am J Roentgenol 1996; 167: 225–229.

    CAS  Google Scholar 

  220. Fardin P, Lelli S, Negrin P, Maluta S. Radiation-induced brachial plexopathy: clinical and electromyographical (EMG) considerations in 13 cases. Electromyogr Clin Neuorophysiol 1990; 30: 277–282.

    CAS  Google Scholar 

  221. Glazer H, Lee J, Levitt R, Heiken J, Ling D, Totty W, et al. Radiation fibrosis: differentiation from recurrent tumor by MR imaging Radiology 1985; 156: 721–726.

    CAS  Google Scholar 

  222. Wouter van Es H, Engelen A, Witkamp T, Ramos L, Feldberg M. Radiation-induced brachial plexopathy: MR imaging Skeletal Radiol 1997; 26: 284–288.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meltzer, C.C., Fukui, M.B. (2003). Imaging Neurologic Manifestations of Oncologic Disease. In: Schiff, D., Wen, P.Y. (eds) Cancer Neurology in Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-317-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-317-0_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4703-4

  • Online ISBN: 978-1-59259-317-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics