Skip to main content

Cell Transplantation for Spinal Cord Injury Repair

  • Chapter
Neurobiology of Spinal Cord Injury

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The annual incidence of spinal cord injury (SCI) is estimated at 30–70 cases per million in the United States (Krauss et al., 1995; Braken et al., 1981; Griffin et al., 1985). In addition to the devastating personal consequences of SCI for the individual and family, the postinjury financial costs are estimated to be in excess of 4 billion dollars (Reier et al., 1994). Postinjury intervention strategies, such as the use of steroids (Braken et al., 1990, 1997), are helping to decrease the magnitude of the deficit, but injury to the spinal cord has remained largely irreversible (Reier et al., 1994; Waxman and Kocsis, 1997; Bregman, 1998). However, recent advances in transplant strategies suggest that there may be a window of opportunity following SCI during which the introduction of heterologous cells into the injury site will promote regeneration of the injured axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson, A., Barker, P. A., Alderson, F. D., Miller, E D., and Murphy, R. A. (1991) Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron 7, 265–275.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, M. S. and Shipley, M. T. (1993) Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J. Comp. Neurol. 328, 501–526.

    Article  PubMed  CAS  Google Scholar 

  • Bandtlow, C. E., Heumann, R., Schwabb, M. E., and Thoenen H. (1987) Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 6, 891–899.

    PubMed  CAS  Google Scholar 

  • Barber, P. C. and Lindsay, R. M. (1982) Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes. Neuroscience 7, 3077–3090.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, S. C., Hutchins, A. M., and Noble M. (1993) Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dey. Biol. 155, 337–350.

    Article  CAS  Google Scholar 

  • Bartolomei, J. C. and Greer C. A. (1998) Differential axon extension from DRG cells on poly-L-lysine, laminin, ensheathing cell and cortical astrocyte substrates. Soc. Neurosci. Abst. 24, 1054.

    Google Scholar 

  • Bartolomei, J. C. and Spencer D. D. (1999) Fetal mesencephalic tissue implantation. Techniques Neurosurg, 5, 73–78.

    Article  Google Scholar 

  • Bernstein, J. J. and Goldberg W. J. (1995) Experimental spinal cord transplantation as a mechanism of spinal cord regeneration. Paraplegia 33, 250–253.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, W. E (1976) Invasion of Schwann cells into the spinal cord of the rat following local injection of lysolecithin Neuropathol. Appl. Neurobiol. 2, 21–39.

    Article  Google Scholar 

  • Blakemore, W. E and Crang A. J. (1985) The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J. Neurol. Sci. 70, 207–223.

    Article  PubMed  CAS  Google Scholar 

  • Blight A. R. (1983) Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line sampling. Neuroscience 10, 521–543.

    Article  PubMed  CAS  Google Scholar 

  • Bracken M. B., Shephard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. E, Fazl, M., Fehlings, M., Herr, D. L., Hitchon, P. W., Marshall, L. E, Nockels, R. P., Pascale, V., Perot, P. L., Piepmeier, J., Sonntag, V. K. H., Wagner, E, Wilberger, J. E., Winn, H. R., and Young W. (1997) Administration of methylprednisolone for 24 or 48 hours or trilizad mesylate for 48 hours in the treatment of acute spinal cord injury. JAMA 277, 1597–1604.

    Article  PubMed  CAS  Google Scholar 

  • Braken M. B., Shepard, M. J., Collins, W. F., et al. (1990) A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury; results of the second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 322, 1405–1411.

    Article  Google Scholar 

  • Bracken M. B., Freeman, D. H., and Hellebrand K. (1981) Incidence of acute traumatic hospitalized spinal cord injury in the United States, 1970–1977. Am. J. Epidemiol. 3, 615–622.

    Google Scholar 

  • Bregman, B.S. (1998) Regeneration in the spinal cord. Curr. Opin. Neurobiol. 8, 800–807.

    Article  PubMed  CAS  Google Scholar 

  • Bregman, B. S., Kunkel-Bagden, E., Reier, P. J., Dai, H. N., McAtee, M., and D. Gao (1993) Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp. Neurol. 123, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Bregman B. S., and Reier P. J. (1986) Neural tissue transplant rescue axotomized rubrospinal cells from retrograde death. J. Comp. Neurol. 244, 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Bunge R P, Puckett, W. R., and Hiester E. D. (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv. Neurol. 72, 305–315.

    PubMed  CAS  Google Scholar 

  • Cadelli, D.S., Bandtlow, C. E., and Schwab M. E. (1995) Oligodendrocyte-and myelin-associated inhibitors of neurite outgrowth: their involvement in the lack of CNS regeneration. Exp. Neurol. 115, 189–192.

    Article  Google Scholar 

  • Charriere-Bertrand C., Garner, C., Tardy, M., and Nunez J. (1991) Expression of various microtubule-associated protein 2 forms in the developing mouse brain and in cultured neurons and astrocytes. J. Neurochem. 56, 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Chen, A., Xu, X. M., Kleitman, N., and Bunge M. B. (1996) Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp. Neurol. 138, 261–276.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H., Cao, Y., and Olson L. (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510–513.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, K. and Greer, C. A. (1996) Immunocytochemical analyses of astrocyte development in the olfactory bulb. Dev. Brain Res. 95, 28–37.

    Article  CAS  Google Scholar 

  • Chuah M. I. and Au, C. (1991) Olfactory Schwann cells are derived from precursors cells in the olfactory bulb epithelium. J. Neurosci. Res. 29, 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Chuah, M. I. and Au, C. (1994) Olfactory cell cultures on ensheathing cell monolayers. Chem. Senses 19, 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Cuschieri, A. and Bannister L. H. (1975) The development of the olfactory mucosa in the mouse: light microscopy. J. Anat. 119, 277–286.

    PubMed  CAS  Google Scholar 

  • Davies, S. J., Field, P. M., and Raisman G. (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp. Neurol. 142, 203–216.

    Google Scholar 

  • Davies, S. J., Field, P. M., and Raisman G. (1997) Embryonic tissue induces growth of adult axons from myelinated fiber tracts. Exp. Neurol. 145, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Deckner M. L., Frisen, J. Verge, V. M. K., Hokfelt, T., and Risling M. (1993) Localization of neurotrophin receptors in the olfactory epithelium and bulb. Neuroreport 5, 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Devon, R. and Doucette R. (1992) Olfactory ensheathing cells myelinate dorsal root ganglion neuntes. Brain Res. 589, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Diener P. S. and Bregman B. S. (1994) Neurotrophic factors prevent the death of CNS neurons after spinal cord lesions in newborn rat. Neuroreport 5, 1913–1917.

    Article  PubMed  CAS  Google Scholar 

  • Diener, P. S. and Bregman B. S. (1998a) Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J. Neurosci. 18, 763–778.

    PubMed  CAS  Google Scholar 

  • Diener, P. S. and Bregman B. S. (1998b) Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat. J. Neurosci. 18, 779–793.

    PubMed  CAS  Google Scholar 

  • Doucette R. (1984) The glial cells in the nerve fiber layer of the rat olfactory bulb. Anat. Rec. 210, 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Doucette, R. (1990) Glial influences on axonal growth in the primary olfactory system. Glia 3, 433–449.

    Article  PubMed  CAS  Google Scholar 

  • Doucette, R. (1991) PNS-CNS transitional zone of the first cranial nerve. J. Comp. Neurol. 312, 451–466.

    Article  PubMed  CAS  Google Scholar 

  • Doucette, R. (1993a) Glial progenitor cells of the nerve fiber layer of the olfactory bulb: effect of astrocyte growth media. J. Neurosci. Res. 35, 274–287.

    Article  PubMed  CAS  Google Scholar 

  • Doucette, R. (1993b) Glial cells in the nerve fiber layer of the main olfactory bulb of embryonic and adult mammals. Microsc. Res. Tech. 24, 113–130.

    Article  PubMed  CAS  Google Scholar 

  • Doucette, R. (1995) Olfactory ensheathing cells: potential for glial cell transplantation into areas of CNS injury. Histol. Histopathol. 10, 503–507.

    PubMed  CAS  Google Scholar 

  • Doucette R. (1996) Immunocytochemical localization of laminin, fibronectin and collagen type IV in the nerve layer of the olfactory bulb. Int. J. Dev Neurosci. 14, 945–959.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, I. D., Hammang, J. P., and Gilmore S. A. (1988) Schwann cell myelination of the myelin deficient rat spinal cord following X-irradiation. Glia 1, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Farbman, A. I. (1994) Developmental biology of olfactory sensory neurons. Semin. Cell Biol. 5, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, J. (1995) Spinal cord transplants: a future treatment for spinal injury? (Editorial]. Paraplegia 33, 491–492.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett J. and Keynes R. J. (1990) Peripheral nerve regeneration. Annu. Rev. Neurosci. 13, 43–60.

    Article  PubMed  CAS  Google Scholar 

  • Felts, R A. and Smith K. J. (1992) Conduction properties of central nerve fibers remyelinated by Schwann cells. Brain Res. 574, 178–192.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini, I. A. and Barnett S. C. (1996) Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dey. Biol. 173, 327–343.

    Article  CAS  Google Scholar 

  • Franklin, R. J., Gilson, J. M., Franceschini, I. A., and Barnett S. C. (1996) Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Franklin R J M and Blakemore W. F. (1993) Migration of Schwann cells. Requirements for Schwann cell migration within CNS environments: A viewpoint. Int. J. Dey. Neurosci. 11, 641–649.

    Article  CAS  Google Scholar 

  • Friedman D., Scherer, S. S., Rudge, J. S., et al. (1992) Regulation of cilliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron 9, 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Gong Q. Z., Bailey, M. S., Pixley, S. K., Ennis, M. Liu, W., and Shipley M. T. (1994) Localization an deregulation of the low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration. J. Comp. Neurol. 344, 336–348.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M. N., Silver, J., and Jacobberger J. W. (1993) Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines. Brain Res. 619, 199–213.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, M. L., Malemud, C. J., and Silver J. (1993) Role of astroglial extracellular matrix in the formation of rat olfactory bulb glomeruli. Exp. Neurol. 123, 91–105.

    Article  CAS  Google Scholar 

  • Graziadei P. P. C. and Monti-Graziadei G. A. (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III Deafferentation and reinnervation of the olfactory bulb following section of fila olfactoria in rat. J. Neurocytol. 9, 145–162.

    Article  PubMed  CAS  Google Scholar 

  • Graziadei, P. P. C. and Monti-Graziadei G. A. (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Griffin M. R., Opitz, J. L., Kurland, L. T., Ebersold M. J., and O’Fallon W. M. (1985) Traumatic spinal cord injury in Olmsted County, Minnesota, 1935–1981. Am. J. Epidemiol. 121, 884–895.

    PubMed  CAS  Google Scholar 

  • Griffith I. R. and McCulloch. M. C. (1983) Nerve fibers in spinal cord impact injuries. 1. Changes in the myelin sheath during the initial five weeks. J. Neurol. Sci. 58, 335–345.

    Article  Google Scholar 

  • Guest, J. D., Rao, A., Olson, L., Bunge, M. B., and Bunge R. P. (1997) The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 148, 502–522.

    Article  PubMed  CAS  Google Scholar 

  • Hatten, M. E., Liem, R. K., Shelanski, M. L., and Mason C. A. (1991) Astroglia in CNS injury. Glia 4, 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W., Hinds, P. L., and McNelly N. A. (1984) An autoradiographic study of the mouse olfactory epithelium: evidence for long-lived receptors. Anat. Rec. 210, 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Honmou, O., Felts, P. A., Waxman, S. G., and Kocsis J. D. (1996) Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J. Neurosci. 16, 3199–3208.

    PubMed  CAS  Google Scholar 

  • Hotz, M. A., Gong, J., Traganos, E, and Darzynkiewicz Z. (1994) Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Houle J. D. and Reier P. J. (1988) Transplantation of fetal spinal cord tissue into chronically injured adult rat spinal cord. J. Comp. Neurol. 269, 535–547.

    Article  PubMed  CAS  Google Scholar 

  • Huard, J. M. T., Youngentob, S. L., Goldstein, B. J., Luskin, M. B., and Schwob J. E. (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J. Comp. Neurol. 400, 469–486.

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A., and Kocsis J. D. (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J. Neurosci. 18, 6176–6185.

    PubMed  CAS  Google Scholar 

  • Itoh, Y., Sugawara, T., Kowada, M., and Tessler A. (1992) Time course of dorsal root axon regeneration into transplants of fetal spinal cord: I. A light microscopic study. J. Comp. Neurol. 323, 198–208.

    Article  PubMed  CAS  Google Scholar 

  • Itoyama, Y., Webster, H. D., Richardson, E. P. J., and Trapp B. D. (1983) Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann. Neurol. 14, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Jakeman L. B., Reier, P. J., Bregman B. S., et al. (1989) Differentiation of substantia gelatinosa-like regions in intraspinal and intracerebral transplantation of embryonic spinal cord tissue in the rat. Exp. Neurol. 103, 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Jessen K. R. and Mirsky R. (1991) Schwann cell precursor and their development. Glia 4, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Jessen, K. R., Morgan, L., Stewart, H. J. S., and Mirsky, R. (1990) Three markers of adult non-myelin-forming Schwann cell, 217c(Ran-1), A5E3 and GFAP. Development and regulation by neuron-Schwann cell interactions. Development 109, 91–103.

    PubMed  CAS  Google Scholar 

  • Kafitz, K. W. and Greer, C. A. (1997) Role of laminin and axonal extension from olfactory receptor cells. J. Neurobiol. 32, 298–310.

    Article  PubMed  CAS  Google Scholar 

  • Kafitz, K. W. and Greer, C. A. (1998) Differential expression of extracellular matrix and cell adhesion molecules in the olfactory nerve and glomerular layers of adult rats. J. Neurobiol. 34, 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, J., Silberman, T. A., and McArthur, D. L. (1995) Epidemiology of spinal cord injury, in Principles of Spinal Surgery (Sonntag, V. K. H. and Menezes, A. H., eds.) McGraw-Hill, New York, pp. 41–58

    Google Scholar 

  • Li, Y., Field, P. M., and Raisman G (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J. Neurosci. 18, 10514–10524.

    PubMed  CAS  Google Scholar 

  • Li, Y. and Raisman, G. (1995) Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp. Neurol. 134, 102–111.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Field, P. M., and Raisman, G. (1997a) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277, 2000–2002.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. and Raisman, G. (1997b) Integration of transplanted cultured Schwann cells into the long myelinated fiber tracts of the adult spinal cord. Exp. Neurol. 145, 397–411.

    Article  PubMed  CAS  Google Scholar 

  • Liesi, P. (1985) Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones. EMBOJ. 4, 2505–2511.

    CAS  Google Scholar 

  • Liu, K. L., Chuah, M. I., and Lee, K. K. (1995) Soluble factors from the olfactory bulb attract olfactory Schwann cells. J. Neurosci. 15, 990–1000.

    PubMed  CAS  Google Scholar 

  • Mackay-Sim, A. and Kittel, P. (1991) Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J. Neurosci. 11, 979–984.

    PubMed  CAS  Google Scholar 

  • Martin, D., Schoenen, J., Delree, P., Leprince, P., Rogister, B., and Moonen, G. (1991) Grafts of syngenic cultured, adult dorsal root ganglion-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies. Neurosci. Lett. 124, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. H., French-Constant, C., and Raff, M. C. (1989) The macroglial cells of the rat optic nerve. Annu. Rev. Neurosci. 12, 517–534.

    Article  PubMed  CAS  Google Scholar 

  • Miragall, F., Kadmon, G., Husmann, M., and Schachner, M. (1988) Expression of cell adhesion molecules in the olfactory system of the adult mouse. Presence of the embryonic form of N-CAM. Dev. Biol. 129, 516–531.

    Article  PubMed  CAS  Google Scholar 

  • Miya, D., Giszter, S., Mori, F., Adipudi, V., Tessler, A., and Murray, M. (1997) Fetal transplants alter the development of function after spinal cord transection in newborn rats. J. Neurosci. 17, 1856–1872.

    Google Scholar 

  • Mori, S. and Leblond, C. P. (1969) Electron microscopic features and proliferation of astrocytes in the corpus callosum of the rat. J. Comp. Neurol. 137, 197–226.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts, P., Wang, F., Dulac, C., et al. (1996) The molecular biology of olfactory perception. Cold Spring Harbor Symp. Quant. Biol. LXI, 135–145.

    Google Scholar 

  • Murray, M. (1997) Strategies and mechanisms of recovery after spinal cord injury. Adv. Neurol. 72, 219–225.

    PubMed  CAS  Google Scholar 

  • Navarro, X., Valero, A., Gudino, G., et al. (1999) Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Ann. Neurol. 45, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Nicol, D. J., Granat, M. H., Baxendale, R. H., and Tuson, S. J. M. (1995) Evidence for a human spinal stepping generator. Brain Res. 684, 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Paino, C. L. and Bunge, M. B. (1991) Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp. Neurol. 114, 254–257.

    Article  PubMed  CAS  Google Scholar 

  • Pallini, R., Fernandez, E., Gangitano, C., Del Fa, A., Olivieri-Sangiacomo, C., and Sbriccoli, A. (1989) Studies on embryonic transplants to the transected spinal cord of adult rats. J. Neurosurg. 70, 451–462.

    Google Scholar 

  • Raisman, G. (1985) Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 14, 237–254.

    Article  PubMed  CAS  Google Scholar 

  • Ramón-Cueto, A. and Avila, J. (1998) Olfactory ensheathing glia: properties and function. Brain Res. Bull. 46, 175–187.

    Article  PubMed  Google Scholar 

  • Ramón-Cueto, A. and Nieto-Sampedro, M. (1992) Glial cells from adult rat olfactory bulb: immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47, 213–220.

    Article  PubMed  Google Scholar 

  • Ramón-Cueto, A. and Nieto-Sampedro, M. (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp. Neurol. 127, 232–244.

    Article  PubMed  Google Scholar 

  • Ramón-Cueto, A., Perez, J., and Nieto-Sampedro, M. (1993) In vitro enfolding of olfactory neuntes by p75 NGF receptor positive ensheathing cells from adult rat olfactory bulb. Eur. J. Neurosci. 5, 1172–1180.

    Article  PubMed  Google Scholar 

  • Ramón-Cueto, A., Plant, G. W., Avila, J., and Bunge, M. B. (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18, 3803–3815.

    PubMed  Google Scholar 

  • Ramón-Cueto, A. and Valverde, F. (1995) Olfactory bulb ensheathing glia: a unique cell type with axonal growth-promoting properties. Glia 14, 163–173.

    Article  PubMed  Google Scholar 

  • Ramóny Cajal, S. (1928) Studies on Degeneration and Regeneration of the Nervous System. Oxford Press, London.

    Google Scholar 

  • Reier, P. J., Anderson, D. K., Young, W., Michel, M. E., and Fessier, R. (1994) Workshop on intraspinal transplantation and clinical application. J. Neurotrauma 11, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Reier, P. J., Bregman, and Wujek, J. R. (1986) Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J. Comp. Neurol. 247, 275–296.

    Article  PubMed  CAS  Google Scholar 

  • Reier, P. J., Strokes, B. T., Thompson, F. J., and Anderson, D. K. (1992) Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp. Neurol. 115, 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, P. M., McGuinness, U. M., and Aguayo, A. J. (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265.

    Article  PubMed  CAS  Google Scholar 

  • Ronnett, G. V., Hester, L. D., and Snyder, S. H. (1991) Primary culture of neonatal rat olfactory neurons. J. Neurosci. 11, 1243–1255.

    PubMed  CAS  Google Scholar 

  • Roskams, A. J. I., Bethel, M. A., Hurt, K. J., and Ronnet, G. V. (1996) Sequential expressions of Trks A,B, and C in the regenerating olfactory neuroepithelium. J. Neurosci. 16, 1294–1307.

    PubMed  CAS  Google Scholar 

  • Schwab, M. E., Kapfhammer, J. P., and Bandtlow, C. E. (1993) Inhibitors of neurite growth. Annu. Rev. Neurosci. 16, 565–595.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M. and Greer, C. A. (1998) Olfactory bulb, in The Synaptic Organization of the Brain. (Shepherd, G. M., ed.), Oxford University Press, New York, pp. 159–204.

    Google Scholar 

  • Singer, M. S., Shepherd, G. M., and Greer, C. A. (1995) Olfactory receptors guide axons. Nature 377, 19–20.

    PubMed  CAS  Google Scholar 

  • Sonigra, R. J., Brighton, R C. Jacoby, J. Hall, S., and Wigley, C. B. (1999) Adult rat olfactory nerve ensheathing cells are effective promoters of adult central nervous system neurite outgrowth in coculture. Glia. 25, 256–269.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, B. T. and Reier, P. J. (1992) Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Exp. Neurol. 116, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Tessler, A. (1991) Intraspinal transplants. Ann. Neurol. 29, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Tessler, A., Fischer, I., Giszter, S., et al. (1997) Embryonic spinal cord transplants enhance locomotor performance in spinalized newborn rats. Adv. Neurol. 72, 291–303.

    PubMed  CAS  Google Scholar 

  • Valverde, F. and Lopez-Mascaraque, L. (1991) Neuroglial arrangements in the olfactory glomeruli of the hedgehog. J. Comp. Neurol. 307, 658–674.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, E, Santacana, M., and Heredia, M. (1992) Formation of an olfactory glomerulus: morphological aspects of development and organization. Neuroscience 49, 255–275.

    Article  PubMed  CAS  Google Scholar 

  • Van Eldik, L. J., Christie-Pope, B., Bolin, L. M., Shooter, E. M., and Whetsell, W. O. (1991) Neurotrophic activity of S10013 in cultures of dorsal root ganglia from embryonic chick and fetal rat. Brain Res. 542, 280–285.

    Article  PubMed  Google Scholar 

  • Vickland, H., Westrum, L. E., Kott, J. N., Patterson, S. L., and Bothwell, M. A. (1991) Nerve growth factor receptor expression in the young and adult rat olfactory system. Brain Res. 565, 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S. G. and Kocsis, J. D. (1997) Spinal cord repair progress towards a daunting goal. Neuroscientist 3, 263–269.

    Article  Google Scholar 

  • Williams, R. and Rush, R. A. (1988) Electron microscopic immunocytochemical localization of nerve growth factor in developing mouse olfactory neurons. Brain Res. 463, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Wirth, E. D., Theele, D. P., Mareci, T. H., Anderson, D. K., Brown, S. A., and Reier, P. J. (1992) In vivo magnetic resonance imaging of fetal cat neural tissue transplants in the adult cat spinal cord. J. Neurosurg. 76, 261–274.

    Article  PubMed  Google Scholar 

  • Xu, X. M., Guenard, V., Kleitman, N., Aebischer, R, and Bunge, M. B. (1995a) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp. Neurol. 134, 261–272.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X. M., Guenard, V., Kleitman, N., and Bunge, M. B. (1995b) Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. 351, 145–160.

    Article  PubMed  CAS  Google Scholar 

  • Zurn, A. D., Nick, H., and Monrad, D. (1988) A glial-derived nexin promotes neurite outgrowth in cultured chick sympathetic neurons. Dev. Neurosci. 10, 17–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bartolomei, J.C., Greer, C.A. (2000). Cell Transplantation for Spinal Cord Injury Repair. In: Kalb, R.G., Strittmatter, S.M. (eds) Neurobiology of Spinal Cord Injury. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-200-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-200-5_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-126-4

  • Online ISBN: 978-1-59259-200-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics