Skip to main content

Neurologic Concerns

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

Neurologic function is critical for astronauts to operate in the complex flight environment of space and during readaptation to gravity following return. The altered gravitoinertial environment of space flight can significantly affect neurologic function and sensorimotor performance. High-risk tasks requiring optimal neurologic function on orbit include rendezvous and docking, robotic operations, and extravehicular activity (EVA). Neurologic readaptation to gravity is crucial for piloted entry and landing. Postflight activities such as egress from the spacecraft also require a high degree of performance. Neurological disturbances associated with space flight may result in delay or incorrect interpretation in the acquisition and processing of visually acquired information. The most common neurologic difficulties encountered in space flight are space motion sickness (SMS) and postflight neurovestibular symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vein AA, Koppen H, Haan J, Terwindt GM, Ferrari MD. Space headache: a new secondary headache. Cephalalgia. 2009;29:683–6.

    CAS  PubMed  Google Scholar 

  2. Clement G, Vieville T, Lestienne F, Berthoz A. Modifications of the gain asymmetry and beating field of vertical optokinetic nystagmus in microgravity. Neurosci Lett. 1986;63:271–4.

    CAS  PubMed  Google Scholar 

  3. Clement G, Wood SJ, Reschke MF. Effects of microgravity on the interaction of vestibular and optokinetic nystagmus in the vertical plane. Aviat Space Environ Med. 1992;63:778–84.

    CAS  PubMed  Google Scholar 

  4. Clement G. Alteration of eye movements and motion perception in microgravity. Brain Res Rev. 1998;28:161–72.

    CAS  PubMed  Google Scholar 

  5. Young LR. Vestibular reactions to spaceflight: human factors issues. Aviat Space Environ Med. 2000;71(Suppl):A100–4.

    CAS  PubMed  Google Scholar 

  6. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH. Spaceflight and neurovestibular adaptation. J Clin Pharmacol. 1994;34:609–17.

    CAS  PubMed  Google Scholar 

  7. Black FO, Paloski WH. Computerized dynamic posturography: what have we learned from space? Otolaryngol Head Neck Surg. 1998;118:S45–51.

    CAS  PubMed  Google Scholar 

  8. Ashkenas IL, Hoh RH, Teper GL. Analyses of shuttle orbiter approach and landing. J Guid Control Dyn. 1983;6(6):448–55.

    Google Scholar 

  9. Moore ST, MacDougall HG, Lesceu X, Speyer J-J, Wuyts F, Clark JB. Head-eye coordination during simulated orbiter landing. Aviat Space Environ Med. 2008;79:888–98.

    PubMed  Google Scholar 

  10. Clark JB. Assessment of neurologic function following short duration spaceflight utilizing a standardized rating scale, in abstracts of the 6th NASA symposium on the role of the vestibular organs in the exploration of space. J Vestib Res. 2001/2002;11:321–2.

    Google Scholar 

  11. McCluskey R, Clark JB, Stepaniak P. Correlation of space shuttle landing performance with cardiovascular and neurovestibular dysfunction resulting from space flight. In: Human systems 2001: the international conference on technologies for human factors and psycho-social adaptation in space and terrestrial applications. Houston: NASA; 2001.

    Google Scholar 

  12. Kornilova LN. Orientation illusions in spaceflight. J Vestib Res. 1997;7(6):429–40.

    CAS  PubMed  Google Scholar 

  13. Merlin PW, Bendrick GA, Holland DA. Breaking the mishap chain: human factors lessons learned from aerospace accidents and incidents in research, flight test, and development. 2011. NASA Special Publication NASA SP-2011-594.

    Google Scholar 

  14. Orr J, Barshi I, Statler I, Dennehy N. A comprehensive analysis of the X-15 Flight 3-65 Accident. 2014. NASA/TM-2014-218538.

    Google Scholar 

  15. Gerathewohl SJ, Stallings HD. Experiments during weightlessness: a study of the oculo-agravic illusion. J Aviat Med. 1958;29:504–16.

    CAS  PubMed  Google Scholar 

  16. Merfeld DM. Effect of spaceflight on the ability to sense and control roll tilt: human neurovestibular experiments on spacelab life sciences 2. J Appl Physiol. 1996;81:50–7.

    CAS  PubMed  Google Scholar 

  17. Graybiel A, Knepton J. Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med. 1976;47:873–82.

    CAS  PubMed  Google Scholar 

  18. Bock O, Weigelt C, Bloomberg JJ. Cognitive demand of sensorimotor performance during an extended space mission: a dual-task study. Aviat Space Environ Med. 2010;81(9):819–24.

    PubMed  Google Scholar 

  19. Manzey D, Lorenz B, Schiewe A, Finell G, Thiele G. Dual task performance in space: results from a single-case study during a short-term space mission. Hum Factors. 1995;37:667–81.

    CAS  PubMed  Google Scholar 

  20. Manzey D, Lorenz B, Polyakov VV. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight. Ergonomics. 1998;41:537–59.

    CAS  PubMed  Google Scholar 

  21. Clément G, Wood SJ. Motion perception during tilt and translation after space flight. Acta Astronaut. 2013;92(1):48–52. https://doi.org/10.1016/j.actaastro.2012.03.011.

    Article  Google Scholar 

  22. Clément G, Wood SJ. Rocking or rolling—perception of ambiguous motion after returning from space. PLoS One. 2014;9(10):e111107.

    PubMed  PubMed Central  Google Scholar 

  23. Reschke MF, Parker DE. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch. Aviat Space Environ Med. 1987;58:A153–8.

    CAS  PubMed  Google Scholar 

  24. Clément G, Moore ST, Raphan T, Cohen B. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res. 2001;138:410–8.

    PubMed  Google Scholar 

  25. Clément G, Denise P, Reschke MF, Wood SJ. Human ocular counter-rolling and roll tilt perception during off-vertical axis rotation after spaceflight. J Vestib Res. 2007;17:209–15.

    PubMed  Google Scholar 

  26. Mittelstaedt H. The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci. 1999;871:334–44.

    CAS  PubMed  Google Scholar 

  27. Clément G, Skinner A, Richard G, Lathan C. Geometric illusions in astronauts during long-duration spaceflight. Neuroreport. 2012;23(15):894–9.

    PubMed  Google Scholar 

  28. Clark TK, Young LR, Stimpson AJ, Duda KR, Oman CM. Numerical simulation of human orientation perception during lunar landing. Acta Astronaut. 2011; https://doi.org/10.1016/j.actaastro.2011.04.016.

  29. Clarke AH, Schönfeld U. Modification of unilateral otolith responses following spaceflight. Exp Brain Res. 2015;233(12):3613–24.

    PubMed  Google Scholar 

  30. Paloski WH, Oman CM, Bloomberg JJ, Reschke MF, Wood SJ, Harm DL, Peters BT, Mulavara AP, Locke JP, Stone LS. Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J Gravit Physiol. 2008;15(2):1–29

    Google Scholar 

  31. Johnston RS, Dietlein LF, Berry CA. Biomedical results of Apollo. NASA SP-368 (1975).

    Google Scholar 

  32. Bloomberg JJ, Reschke MF, Clement GR, Mulavara AP, Taylor LC. Risk of impaired control of spacecraft/associated systems and decreased mobility due to vestibular/sensorimotor alterations associated with space flight. NASA evidence report; 2015.

    Google Scholar 

  33. Bacal K, Billica R, Bishop S. Neurovestibular symptoms following space flight. J Vestib Res. 2004;13:93–102.

    Google Scholar 

  34. Harm DL, Parker DE. Perceived self orientation and self motion in microgravity, after landing and during preflight adaptation training. J Vestib Res. 1993;3:297–301.

    CAS  PubMed  Google Scholar 

  35. Harm DL, Reschke MF, Parker DE. Visual-vestibular integration: motion perception reporting. In: Sawin CF, Taylor GR, Smith WL, editors. Extended duration orbiter medical project, vol. NASA/SP-1999-534. Houston: NASA Johnson Space Center; 1999. p. 5.2-1–5.2-12.

    Google Scholar 

  36. De Winkel KN, Clément G, Groen EL, Werkhoven PJ. The perception of verticality in lunar and Martian gravity conditions. Neurosci Lett. 2012;529(1):7–11.

    PubMed  Google Scholar 

  37. Harris LR, Jenkin M, Dyde RT. The perception of upright under lunar gravity. J Gravitat Physiol. 2012;19:9–16.

    Google Scholar 

  38. Bloomberg JJ, Peters BT, Cohen HS, Mulavara AP. Enhancing astronaut performance using sensorimotor adaptability training. Front Syst Neurosci. 2015;9:129. https://doi.org/10.3389/fnsys.2015.00129.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jain V, Wood SJ, Feiveson AH, Black FO, Paloski WH. Diagnostic accuracy of dynamic posturography testing after short-duration spaceflight. Aviat Space Environ Med. 2010;81(7):625–31.

    PubMed  Google Scholar 

  40. Mulavara AP, Feiveson A, Feidler J, Cohen HS, Peters BT, Miller CA, Brady R, Bloomberg JJ. Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res. 2010;202(3):649–59.

    PubMed  Google Scholar 

  41. Ellis SR. Collision in space: human factors elements of the Mir- Progress 234 collision. Ergon Des. 2000;8(1):4–9.

    CAS  PubMed  Google Scholar 

  42. Graybiel A, Miller EF, Homick JL. Experiment M131, human vestibular function. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab (NASA SP-377); 1977. p. 74–103.

    Google Scholar 

  43. Greenisen MC, Bishop PA, Sothmann M. The interaction of the space shuttle launch and entry suits and sustained weightless on astronaut egress locomotion. 29th Session of the Texas Chapter/American College of Sports Medicine (TACSM); Annual Meeting, Odessa, 29 Feb 2008.

    Google Scholar 

  44. Bishop PA, Lee SM, Conza NE, Clapp LL, Moore AD Jr, Williams WJ, Guilliams ME, Greenisen MC. Carbon dioxide accumulation, walking performance, and metabolic cost in the NASA launch and entry suit. Aviat Space Environ Med. 1999;70(7):656–65.

    CAS  PubMed  Google Scholar 

  45. Lee SM, Moore AD Jr, Fritsch-Yelle JM, Greenisen MC, Schneider SM. Inflight exercise affects stand test responses after space flight. Med Sci Sports Exerc. 1999;31(12):1755–62.

    CAS  PubMed  Google Scholar 

  46. Oman CM. Spatial orientation and navigation in microgravity. In: Mast F, Jancke L, editors. Spatial processing in navigation, imagery and perception. Boston: Springer; 2007.

    Google Scholar 

  47. Aoki H, Oman CM, Natapoff A. Virtual-reality-based 3D navigation training for emergency egress from spacecraft. Aviat Space Environ Med. 2007;78(8):774–83.

    PubMed  Google Scholar 

  48. Homick JL, Miller EF II. Apollo flight crew vestibular assessment. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington, DC: US Government Printing Office; 1975. p. 323–40. NASA SP-368.

    Google Scholar 

  49. Guedry FE. Relations between vestibular nystagmus and visual performance. Aerosp Med. 1968;39:570–9.

    PubMed  Google Scholar 

  50. Mohler SR, Nicogossian AET, Mc Cormack PD, Mohler SR Jr. Tumbling and spaceflight: the Gemini VIII experience. Aviat Space Environ Med. 1990;61:62–6.

    CAS  PubMed  Google Scholar 

  51. Grose VL. Deleterious effect on astronaut capability to vestibular ocular disturbance during spacecraft and roll acceleration. Aerosp Med. 1967;38:1138–44.

    CAS  PubMed  Google Scholar 

  52. Howard IP. Human visual orientation. Toronto: Wiley; 1982.

    Google Scholar 

  53. Howard IP, Childerson L. The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception. 1994;23:753–62.

    CAS  PubMed  Google Scholar 

  54. Howard IP. Visual reorientation illusions as a function of age. Aviat Space Environ Med. 2000;71(Suppl):A87–91.

    CAS  PubMed  Google Scholar 

  55. Held R, Dichgans J, Bauer J. Characteristics of moving visual areas influencing spatial orientation. Science. 1975;141:722–3.

    Google Scholar 

  56. Muller C, Wiest G, Kornilova L, Deecke L. Visuo-vestibular interaction in determination of orientation behavior in weightlessness. Wien Med Wochenschr. 1993;143:630–2.

    CAS  PubMed  Google Scholar 

  57. Reschke MF, Bloomberg JJ, Paloski WH, Harm DL, Parker DE. Neurophysiologic aspects: sensory and sensorimotor function in space physiology and medicine. 3rd ed. Philadelphia: Nicogossian AE, Huntoon CL, and Pool SL. Lea & Febiger; 1994. p. 261–85.

    Google Scholar 

  58. Benson AJ, Kass JR, Vogel H. European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation. Exp Brain Res. 1986;64:264–71.

    CAS  PubMed  Google Scholar 

  59. Reschke MF, Anderson DJ, Homick JL. Vestibulospinal response modification as determined with the H reflex during the Spacelab 1 flight. Ex Brain Res. 1986;64:367–79.

    CAS  Google Scholar 

  60. Young LR, Oman CM, Merfeld D, Watt DGD, Roy S, Deluca C, et al. Spatial orientation and posture during and following weightlessness: human experiments on Spacelab-Life-Sciences-1. J Vestib Res. 1993;3:231–40.

    CAS  PubMed  Google Scholar 

  61. Morgan C. NASA-5 Mike Foale: Collision and Recovery. In: Shuttle—Mir NASA SP-2001-4225 NASA Johnson Space Center, Houston; 2001, p 104–17, and accompanying CD ROM: Foale CM. NASA Mir Oral History. Session 1, 16 June 1998; Session 2, 7 July 1998; Session 3, 31 July 1998.

    Google Scholar 

  62. BBC Television HORIZON. Mir Mortals segment, April 23, 1998, Random postproductions, 1 Golden Square, London; 1998.

    Google Scholar 

  63. Oman CM, Lichtenberg BK, Money KE. Space motion sickness monitoring experiment: Spacelab 1. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 217–46.

    Google Scholar 

  64. Clark JB, Rupert AH. Spatial disorientation and dysfunction of orientation/equilibrium reflexes: clinical evaluation and aeromedical considerations. Aviat Space Environ Med. 1992;63:914–8.

    CAS  PubMed  Google Scholar 

  65. Scheuring RA, Clark JB, Jones JA. Return to flying duties following centrifuge or vibration exposures. Presented at the 82nd Aerospace Medical Association Annual Meeting, May 8–12th, Anchorage; 2011.

    Google Scholar 

  66. Vieville T, Clement G, Lestienne F, Berthoz A. Adaptive modifications of the optokinetic vestibulo-ocular reflex in microgravity. In: Keller EL, Zee DS, editors. Adaptive processes in visual and oculomotor systems. New York: Pergamon Press; 1986. p. 111–20.

    Google Scholar 

  67. Uri JJ, Linder BJ, Moore TP, Pool SL, Thornton WE. Saccadic eye movements during space flight. NASA TM-100475, NASA, Washington, DC; 1989.

    Google Scholar 

  68. Kornilova LN, Goncharenko AM, Godo G, Elkan K, Grigorova V, et al. Pathogenesis of sensory disorders in microgravity. Physiologist. 1991;34:S36–9.

    CAS  PubMed  Google Scholar 

  69. Thornton WE, Uri JJ, Moore TP, Pool SL. Studies of the horizontal vestibulo-ocular reflex in spaceflight. Arch Otolaryngol. 1989;115:943–9.

    CAS  Google Scholar 

  70. Kornilova LN, Grigorova V, Bodo G. Vestibular function and sensory interaction in space flight. J Vestib Res. 1993;3:219–30.

    CAS  PubMed  Google Scholar 

  71. Kornilova LN, Grigorova V, Bodo F, Chernobyl'skii LM. Neurophysiological patterns of vestibular adaptation to microgravity. Aviakosm Ekolog Med. 1995;29:23–30.

    CAS  PubMed  Google Scholar 

  72. Mergner T, Rosemeier T. Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—a conceptual model. Brain Res Rev. 1998;28:118–35.

    CAS  PubMed  Google Scholar 

  73. Von Baumgarten R, Benson A, Berthoz A, Brandt T, Brand U, et al. Effects of rectilinear acceleration and optokinetic and caloric stimulations in space. Science. 1984;225:208–12.

    Google Scholar 

  74. Oman CM, Balkwill MD. Horizontal angular VOR, nystagmus dumping, and sensation duration in Spacelab SLS-1 crew members. J Vestib Res. 1993;3:315–30.

    CAS  PubMed  Google Scholar 

  75. Clement G, Lestienne F. Adaptive modifications of postural attitude in conditions of weightlessness. Exp Brain Res. 1988;72:381–9.

    CAS  PubMed  Google Scholar 

  76. Lackner JR, Levine MS. Changes in apparent body orientation and sensory localization induced by vibration of postural muscles: vibratory myesthetic illusions. Aviat Space Environ Med. 1979;50:346–54.

    CAS  PubMed  Google Scholar 

  77. Grigoriev AI, Yegorov AD eds. Preliminary medical results of the 180 day flight of prime crew 6 on Space Station Mir. Presented at 4th meeting of the US USSR Joint Working Group on Space Biology and Medicine. San Francisco, CA, 16–20 Sept 1990.

    Google Scholar 

  78. Homick JL, Reschke MF. Postural equilibrium following weightless space flight. Acta Otolaryngol. 1977;83:455–64.

    CAS  Google Scholar 

  79. Kerwin JP. Skylab 2 crew observations and summary. In: Johnston RS, Dietlein LF, editors. The Proceedings of the Skylab Life Sciences Symposium, vol. 1. Washington, DC: National Aeronautics and Space Administration; 1974. p. 55–9.

    Google Scholar 

  80. Bryanov II, Yemel’yanov MD, Matveyev AD, et al. Characteristics of statokinetic reactions. In: Gazenko OG, Kakurin LI, Kuznetsov AG, editors. Space flights in the Soyuz spacecraft: biomedical research. Redwood City: Leo Kanner Associates; 1976. p. 1–416. Translation of Kosmicheskiye Polety na Korablyakh ‘Soyuz’ Biomeditsinskiye Issledovaniya. Nauka Press, Moscow.

    Google Scholar 

  81. Kenyon RV, Young LR. MIT/Canadian vestibular experiments on Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res. 1986;64:335–46.

    CAS  PubMed  Google Scholar 

  82. Kozlovskaya IB, Kreidich YV, Oganov VS, Koserenko OP. Pathophysiology of motor functions in prolonged manned space flights. Acta Astronaut. 1981;8:1059–72.

    CAS  PubMed  Google Scholar 

  83. Paloski WH. Vestibulospinal adaptation to microgravity. Otolaryngol Head Neck Surg. 1998;118:S39–44.

    CAS  PubMed  Google Scholar 

  84. Wood SJ, Paloski WH, Clark JB. Assessing sensorimotor function following ISS with computerized dynamic posturography. Aerosp Med Hum Perform. 2015;86(12 Suppl):A45–53.

    PubMed  Google Scholar 

  85. Jennings RT, Bagian JP. Musculoskeletal injury review in the US space program. Aviat Space Environ Med. 1996;67(8):762–6.

    CAS  PubMed  Google Scholar 

  86. Scheuring RA, Mathers CH, Jones JA, Wear ML. Musculoskeletal injuries and minor trauma in space: incidence and injury mechanisms in US astronauts. Aviat Space Environ Med. 2009;80(2):117–24.

    PubMed  Google Scholar 

  87. Black FO, Paloski WH, Reschke MF, Igarashi M, Guedry FE, et al. Disruption of postural readaptation by inertial stimuli following spaceflight. J Vestib Res. 1999;9:369–78.

    CAS  PubMed  Google Scholar 

  88. Peters BT, Brady RA, Batson CD, Guined JR, Ploutz-Snyder RJ, Mulavara AP, Bloomberg JJ. Changes in locomotor stability, cognition, and metabolism during adaptation to walking in discordant sensory conditions. Aviat Space Environ Med. 2013;84:567–72.

    PubMed  Google Scholar 

  89. Carr CE, Newman DJ. Space suit bioenergetics: cost of transport during walking and running. Aviat Space Environ Med. 2007a;78(12):1093–102.

    PubMed  Google Scholar 

  90. Carr CE, Newman DJ. Space suit bioenergetics: framework and analysis of unsuited and suited activity. Aviat Space Environ Med. 2007b;78(11):1013–22.

    PubMed  Google Scholar 

  91. Parnes LS, Sindwani R. Impact of vestibular disorders on fitness to drive: a consensus of the American Neurotology Society. Am J Otol. 1997;18:79–85.

    CAS  PubMed  Google Scholar 

  92. Sindwani R, Parnes LS. Reporting of vestibular patients who are unfit to drive: survey of Canadian otolaryngologists. J Otolaryngol. 1997;26:104–11.

    CAS  PubMed  Google Scholar 

  93. Cohen HS. Use of the vestibular disorders activities of daily living scale to describe functional limitations in patients with vestibular disorders. J Vestib Res. 2014;24(1):33–8.

    PubMed  Google Scholar 

  94. Moser M. An objective testing method to determine driving ability. Acta Otolaryngol. 1985;99:326–9.

    CAS  PubMed  Google Scholar 

  95. Cohen HS, Kimball KT, Mulavara AP, Bloomberg JJ, Paloski WH. Posturography and locomotor tests of dynamic balance after long-duration spaceflight. J Vestib Res. 2012;22(4):191–6.

    PubMed  PubMed Central  Google Scholar 

  96. Bloomberg JJ, Reschke MF, Huebner WP, Peters BT, Smith SL. Locomotor head-trunk coordination strategies following space flight. J Vestib Res. 1997;7:161–77.

    CAS  PubMed  Google Scholar 

  97. Johnston SL, Campbell MR, Scheuring R, Feiveson AH. Risk of herniated nucleus pulposus among US astronauts. Aviat Space Environ Med. 2010;81(6):566–74.

    PubMed  Google Scholar 

  98. Peters BT, Miller CA, Richards JT, Brady RA, Mulavara AP, Bloomberg JJ. Dynamic visual acuity during walking after long-duration spaceflight. Aviat Space Environ Med. 2011;82(4):463–6.

    PubMed  Google Scholar 

  99. Boyle R, Popova Y, Varelas J, Kondrachuk A, Balaban P. Influence of magnitude and time course of altered gravity on the vestibular system in vertebrates. 2013 NASA Human Research Program Investigators’ Workshop, Galveston, 12–14 Feb 2013.

    Google Scholar 

  100. Karni A, et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995;377:155–8.

    CAS  PubMed  Google Scholar 

  101. Cramer SC, Nelles G, Benson R, Kaplan JD, Kwong KK, Parker R, Kennedy DN, Finklestein SP, Rosen BR. A functional MRI study of subjects with motor recovery after stroke. Stroke. 1997;28:2518–27.

    CAS  PubMed  Google Scholar 

  102. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci. 2004;7(1):75–9.

    CAS  PubMed  Google Scholar 

  103. Roberts DR, Ramsey D, Johnson K, Kola J, Ricci R, Hicks C, Borckardt JJ, Bloomberg JJ, Epstein C, George MS. Cerebral cortex plasticity after 90 days of bed rest: data from TMS and fMRI. Aviat Space Environ Med. 2010;81(1):30–40.

    PubMed  PubMed Central  Google Scholar 

  104. Krasnov I. Gravitational morphology. Adv Space Biol Med. 1994;4:85–110.

    CAS  PubMed  Google Scholar 

  105. D’Amelio F, Fox R, Wu LC, Daunton NG, Corcoran ML. Effects of microgravity on muscle and cerebral cortex: a suggested interaction. Adv Space Res. 1998;22:235–44.

    PubMed  Google Scholar 

  106. Newberg A. Changes in the central nervous system and their clinical correlates during long-term spaceflight. Aviat Space Environ Med. 1994;65:562–72.

    CAS  PubMed  Google Scholar 

  107. Holstein GR, Kukielka E, Martinelli GP. Anatomical observations of the rat cerebellar nodulus after 24 hr of spaceflight. J Gravit Physiol. 1999;6:47–50.

    Google Scholar 

  108. Ross MD. Morphologic changes in rat vestibular system following weightlessness. J Vestib Res. 1993;3:241–51.

    CAS  PubMed  Google Scholar 

  109. Ross M. A spaceflight study of synaptic plasticity in adult rat vestibular maculas. Acta Otolaryngol Suppl. 1994;516:1–14.

    CAS  PubMed  Google Scholar 

  110. Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD. Brain structural plasticity with spaceflight. npj Microgravity. 2016;2:2.

    PubMed  PubMed Central  Google Scholar 

  111. DeFelipe J, Arellano JI, Merchan-Perez A, González-Albo MC, Walton K, Llinás R. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex. Cereb Cortex. 2002;12(8):883–91.

    CAS  PubMed  Google Scholar 

  112. Bizzarri M, Monici M, van Loon JJ. How microgravity affects the biology of living systems. BioMed Res Int. 2015;2015:863075.

    PubMed  PubMed Central  Google Scholar 

  113. Jamon M. The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci. 2014;8(11):1–13.

    Google Scholar 

  114. Fujii MD, Patten BM. Neurology of microgravity and space travel. Neurol Clin. 1992;10:999–1013.

    CAS  PubMed  Google Scholar 

  115. Minor LB. Physiological principles of vestibular function on earth and in space. Otolaryngol Head Neck Surg. 1998;118:S5–15.

    CAS  PubMed  Google Scholar 

  116. Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T. The interrelations of migraine, vertigo, and migrainous vertigo. Neurology. 2001;56:436–41.

    CAS  PubMed  Google Scholar 

  117. Bikhazi P, Jackson C, Ruckenstein MJ. Efficacy of antimigrainous therapy in the treatment of migraine associated dizziness. Am J Otol. 1997;18:350–4.

    CAS  PubMed  Google Scholar 

  118. Baloh RW. Neurotology of migraine. Headache. 1997;37:615–21.

    CAS  PubMed  Google Scholar 

  119. Benson AJ, Guedry FE, Parker DE, Reschke MF. Microgravity vestibular investigations: perception of self-orientation and self-motion. J Vestib Res. 1997;7:453–7.

    CAS  PubMed  Google Scholar 

  120. Clarke AH, Kornilova L. Ocular torsion response to active head-roll movement under one-g and zero-g conditions. J Vestib Res. 2007;17(2, 3):99–111.

    PubMed  Google Scholar 

  121. Hallgren E, Kornilova L, Fransen E, Glukhikh D, et al. Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight. J Neurophysiol. 2016;115(6):3045–51.

    PubMed  PubMed Central  Google Scholar 

  122. Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR. Modeling human perception of orientation in altered gravity. Front Syst Neurosci. 2015;9:68.

    PubMed  PubMed Central  Google Scholar 

  123. Biaggoni I, Costa F, Kaufmann H. Vestibular influences on autonomic cardiovascular control in humans. J Vestib Res. 1988;1:35–41.

    Google Scholar 

  124. Convertino VA. Interaction of semicircular canal stimulation with carotid baroreceptor reflex control of heart rate. J Vestib Res. 1998;8:43–9.

    CAS  PubMed  Google Scholar 

  125. Yates BJ, Miller AD. Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res. 1998;8:17–25.

    CAS  PubMed  Google Scholar 

  126. Furman JM, Jacob RG, Redfern MS. Clinical evidence that the vestibular system participates in autonomic control. J Vestib Res. 1998;8:27–34.

    CAS  PubMed  Google Scholar 

  127. Yates BJ, Kerman IA. Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev. 1998;28:73–82.

    CAS  PubMed  Google Scholar 

  128. Reschke MF, Kornilova LN, Harm DL, Bloomberg JJ, Paloski WH. Chapter 7: Neurosensory and sensory-motor function. In: Space biology and medicine: III, Book 1: Humans in spaceflight. Reston: AIAA Press; 1998.

    Google Scholar 

  129. Shallo-Hoffman J, Petersen J, Muhlendyck H. How normal are “normal” square wave jerks. Invest Ophthalmol Vis Sci. 1989;30:1009–11.

    Google Scholar 

  130. Hain TC, Hanna PA, Rheinberger MA. Mal de Debarquement. Arch Otolaryngol Head Neck Surg. 1999;125:615–20.

    CAS  PubMed  Google Scholar 

  131. Kerstman EL, Scheuring RA, Barnes MG, DeKorse TB, Saile LG. Space adaptation back pain: a retrospective study. Aviat Space Environ Med. 2012;83(1):2–7.

    PubMed  Google Scholar 

  132. Young LR, Oman CM, Watt DGD, Money KE, Lictenberg BK. Spatial orientation and weightlessness and readaptation to earth’s gravity. Science. 1984;225:205–8.

    CAS  PubMed  Google Scholar 

  133. Lee SMC, Feiveson AH, Stein S, Stenger MB, Platts SH. Orthostatic intolerance after ISS and Space Shuttle missions. Aerosp Med Hum Perform. 2015;86(12 Suppl):A54–67.

    PubMed  Google Scholar 

  134. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27(9):1896–906.

    CAS  PubMed  Google Scholar 

  135. Wood SJ, Loehr JA, Guilliams ME. Sensorimotor reconditioning during and after spaceflight. NeuroRehabilitation. 2011;29:185–95.

    CAS  PubMed  Google Scholar 

  136. Rupert AH. Tactile situation awareness system: proprioceptive prostheses for sensory deficiencies. Aviat Space Environ Med. 2000;71(Suppl):A92–9.

    CAS  PubMed  Google Scholar 

  137. Rochilis JL, Newman DJ. A tactile display for international space station (ISS) extravehicular activity (EVA). Aviat Space Environ Med. 2000;71:571–8.

    Google Scholar 

  138. Wall C 3rd, Wrisley DM, Statler KD. Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults. Gait Posture. 2009;30(1):16–21.

    PubMed  PubMed Central  Google Scholar 

  139. van Erp JB, van Veen HA. Touch down: the effect of artificial touch cues on orientation in microgravity. Neurosci Lett. 2006;404(1–2):78–82.

    PubMed  Google Scholar 

  140. Rupert AH. An instrumentation solution for reducing spatial disorientation mishaps. IEEE Eng Med Biol Mag. 2000a;19:71–80.

    CAS  PubMed  Google Scholar 

  141. Harm DL, Parker DE. Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res. 1993;3:297–305.

    CAS  PubMed  Google Scholar 

  142. Harm DL, Parker DE. Preflight adaptation trianing for spatial orientation and space motion sickness. J Clin Parmacol. 1994;34:618–29.

    CAS  Google Scholar 

  143. Harm DL, et al. Visual-vestibular integration: Motion perception reporting. In: Sawin CF, Taylor GR, Smith WL, editors. Extended Duration Orbiter Medical Project. Houston: NASA Johnson Space Center; 1999. p. 5.2-1–5.2-12.

    Google Scholar 

  144. Seidler RD. Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc Sport Sci Rev. 2010;38(1):3–9.

    PubMed  PubMed Central  Google Scholar 

  145. Batson CD, Brady RA, Peters BT, Ploutz-Snyder RJ, Mulavara AP, Bloomberg JJ. Gait training improves performance in healthy adults exposed to novel sensory discordant conditions. Exp Brain Res. 2011;209(4):515–24.

    PubMed  Google Scholar 

  146. Collins JJ, Priplata AA, Gravelle DC, Niemi J, Harry J, Lipsitz LA. Noise enhanced human sensorimotor function. IEEE Eng Med Biol Mag. 2003;22(2):76–83.

    PubMed  Google Scholar 

  147. Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267–81.

    PubMed  Google Scholar 

  148. Mulavara AP, Fiedler MJ, Kofman IS, Wood SJ, Serrador JM, Peters B, Cohen HS, Reschke MF, Bloomberg JJ. Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res. 2011;210(2):303–12.

    PubMed  Google Scholar 

  149. Mulavara AP, Kofman IS, De Dios YE, Miller C, Peters BT, Goel R, Galvan-Garza R, Bloomberg JJ. Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci. 2015;9:117.

    PubMed  PubMed Central  Google Scholar 

  150. Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP. Using low levels of stochastic vestibular stimulation to improve balance function. PLoS One. 2015;10(8):1–24

    Google Scholar 

  151. Moore ST, MacDougall HG, Peters BT, Bloomberg JJ, Curthoys IS, Cohen HS. Modeling locomotor dysfunction following spaceflight with galvanic vestibular stimulation. Exp Brain Res. 2006 Oct;174(4):647–59.

    PubMed  Google Scholar 

  152. MacDougall HG, Moore ST, Curthoys IS, Black FO. Modeling postural instability with galvanic vestibular stimulation. Exp Brain Res. 2006;172(2):208–20.

    PubMed  Google Scholar 

  153. Moore ST, Dilda V, MacDougall HG. Galvanic vestibular stimulation as an analogue of spatial disorientation after spaceflight. Aviat Space Environ Med. 2011;82(5):535–42.

    PubMed  Google Scholar 

  154. Dilda V, MacDougall HG, Moore ST. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training. Aviat Space Environ Med. 2011;82(8):770–4.

    PubMed  Google Scholar 

  155. Dilda V, Morris TR, Yungher DA, MacDougall HG, Moore ST. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training. PLoS One. 2014;9(11):e112131.

    PubMed  PubMed Central  Google Scholar 

  156. Moore ST, Dilda V, Morris T, Yungher D, MacDougall H. Pre-adaptation to noisy galvanic vestibular stimulation is associated with enhanced sensorimotor performance in novel vestibular environments. Front Syst Neurosci. 2015;8:9. https://doi.org/10.3389/fnsys.2015.00088.

    Article  Google Scholar 

  157. Kozlovskaya IB, Sayenko IV, Sayenko DG, Miller TF, Khusnutdinova DR, Melnik KA. Role of support afferentation in control of the tonic muscle activity. Acta Astronaut. 2007;60:285–94.

    Google Scholar 

  158. Kozlovskaya IB, Sayenko IV, Vinogradova OL, Miller TF, Khusnutdinova DR, Melnik KA, Yarmanova EN. New approaches to countermeasures of the negative effects of microgravity in long-term space flights. Acta Astronaut. 2006;59:13–9.

    Google Scholar 

  159. Layne CS, Forth KE. Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviat Space Environ Med. 2008;79(8):787–94.

    PubMed  Google Scholar 

  160. Layne CS, Mulavara AP, Pruett CJ, McDonald PV, Kozlovskaya IB, Bloomberg JJ. The use of in-flight foot pressure as a countermeasure to neuromuscular degradation. Acta Astronaut. 1998;42(1–8):231–46.

    CAS  PubMed  Google Scholar 

  161. Layne CS, Mulavara AP, Pruett CJ, McDonald PV, Kozlovskaya IB, Bloomberg JJ. Using foot pressure to maintain neuromuscular function during long duration spaceflight. In: El-Genk MS, editor. Space technology and applications international forum. College Park: American Institute of Physics; 2000. p. 226–31.

    Google Scholar 

  162. Kyparos A, Feeback DL, Layne CS, Martinez DA, Clarke MS. Mechanical stimulation of the plantar foot surface attenuates soleus muscle atrophy induced by hindlimb unloading in rats. J Appl Physiol. 2005;99:739–46.

    PubMed  Google Scholar 

  163. Sandler H. Artificial gravity. Acta Astronaut. 1995;35:363–72.

    CAS  PubMed  Google Scholar 

  164. Shelhamer M. Trends in sensorimotor research and countermeasures for exploration-class space flights. Front Syst Neurosci. 2015;9:115.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clark, J.B., Bloomberg, J.J., Bacal, K. (2019). Neurologic Concerns. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics