Skip to main content

Radiation and Radiation Disorders

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

With current technologies, radiation doses associated with exploration and habitation missions to the Moon and Mars may well exceed the limits currently defined for LEO operations. Assessment of the radiation protection needed during interplanetary and remote planetary missions should include consideration of several key technologies, such as integrating structural radiation shielding into vehicle design. Mission planning should, of course, account for solar cycles in considering vehicular trajectories. Vehicle designs could maximize shielding of crew compartments by considering fuel and water storage tanks as components of shielding. Development of advanced propulsion systems is expected to shorten the required transit time. Advanced warning systems for SPEs might be possible through the use of solar orbiting satellites. Shielding strategies for surface habitats should include consideration of materials (e.g., regolith) that would reduce exposure to primary radiation and not evoke significant doses from secondary radiation. Geographic variations in the natural terrain can be exploited to enhance habitat shielding. Development and use of personalized active dosimeters deserves particular attention, as does selection of EVA suit materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BEIR-VII. Health risks from exposure to low levels of ionizing radiation. Washington: The National Academies Press; 2006.

    Google Scholar 

  2. Rask J, Elland C, Vercoutere W. Radiation biology educator guide. Washington: National Aeronautics and Space Administration (NASA); 2006.

    Google Scholar 

  3. Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer. 2008;8(6):465–72.

    Article  CAS  PubMed  Google Scholar 

  4. National Council on Radiation Protection and Measurements. Limitation of exposure to ionizing radiation. NCRP Report No. 116. Bethesda, MD: National Council on Radiation Protection and Measurements; 1993.

    Google Scholar 

  5. Prasad KN. Handbook of radiobiology. 2nd ed. Boca Raton: CRC Press; 1995.

    Google Scholar 

  6. Andrews GA, Cloutier RJ. Accidental acute radiation injury: the need for recognition. Arch Environ Health. 1965;10:498–507.

    Article  CAS  PubMed  Google Scholar 

  7. ICRP Publication 103. The 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  8. Maalouf M, Durante M. Biological effects of space radiation on human cells: history, advances and outcomes. J Radiat Res. 2011;52(2):126–46.

    Article  PubMed  Google Scholar 

  9. Report on carcinogens, 10th ed. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Dec 2002.

    Google Scholar 

  10. NCRP 116. Limitation of exposure to ionizing radiation. National Council on Radiation Protection and Measurements, Report No. 116, Bethesda, MD. 1993.

    Google Scholar 

  11. Profolio AE. Radiation shielding and dosimetry. New York: Wiley; 1979.

    Google Scholar 

  12. Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 2006;7(5):431–5.

    Article  CAS  PubMed  Google Scholar 

  13. Cucinotta FA, Nikjoo H, Goodhead DT. Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles. Radiat Res. 2000;153(4):459–68.

    Article  CAS  PubMed  Google Scholar 

  14. Kramer M, Kraft G. Calculations of heavy-ion track structure. Radiat Environ Biophys. 1994;33(2):91–109.

    Article  CAS  PubMed  Google Scholar 

  15. Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 1994;65(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  16. UNSCEAR Report. Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation, vol. 1. New York: United Nations Publications; 2000.

    Google Scholar 

  17. Last JM. Public health and human ecology. 2nd ed. Stamford: Appleton and Lange; 1998. p. 181–2.

    Google Scholar 

  18. International Commission on Radiation Units and Measurements. Basic aspects of high energy particle interaction and radiation dosimetry. ICRU Report 28. 1978.

    Google Scholar 

  19. Baker, et al. A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science. 2013;340(6129):186–90.

    Article  CAS  PubMed  Google Scholar 

  20. Reeves, et al. Electron acceleration in the heart of the Van Allen radiation belts. Science. 2013;341(6149):991–4.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao, et al. Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat Commun. 2015;6:8590.

    Article  CAS  PubMed  Google Scholar 

  22. Shprits, et al. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts. Nat Commun. 2016;7:12883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reeves, et al. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions. J Geophys Res Space Phys. 2016;121(1):397–412. Epub 2016 Jan 28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barth J. Applying computer simulation tools to radiation effects problems. Presented at the 1997 IEEE nuclear and space radiation effects conference, Snowmass Village, CO, 21–25 July 1997.

    Google Scholar 

  25. Gusev AA, Pugacheva GI, Jayanthi UB, Schuch N. Modeling of low-altitude quasi-trapped proton fluxes at the equatorial inner magnetosphere. Braz J Phys. 2003;33:775–81.

    Article  CAS  Google Scholar 

  26. Tascione TF. Introduction to the space environment. 2nd ed. Malabar: Kreiger Publishing Co.; 1994. ISBN: 0-89464-044-5.

    Google Scholar 

  27. Horne RB, Thorne RM, et al. Wave acceleration of electrons in the Van Allen radiation belts. Nature. 2005;437(7056):227–30.

    Article  CAS  PubMed  Google Scholar 

  28. LDEF particle flux difference: McDonnell JAM, Sullivan K, Stevenson TJ, et al. Particulate detection in the near-Earth space environment aboard the Long Duration Exposure Facility (LDEF): Cosmic or Terrestrial? In: Levasseur-Regourd AC, Hasegawa H, editors. Origin and evolution of interplanetary dust. Proceedings of IAU Colloquium No. 126. Kyoto, Japan: Kluwer Academic; 1991.

    Google Scholar 

  29. DeHart R. Fundamentals of aerospace medicine. 2nd ed. Baltimore: Williams &Wilkins; 1996.

    Google Scholar 

  30. Badhwar GD, Atwell W, Reitz G, Beaujean R, Heinrich W. Radiation measurements on the Mir Orbital Station. Radiat Meas. 2002;35:393–422. (statement about drift appears in abstract).

    Article  CAS  PubMed  Google Scholar 

  31. Reitz G, Facius R, Sandler H. Radiation protection in space. Acta Astronaut. 1995;35:313–38.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson S, Badhwar G, Golightly M, Hardy A, Konradi A, Yang T. Spaceflight radiation health program at the Lyndon B. Johnson Space Center. NASA Technical Memorandum 104782, Dec 1993.

    Google Scholar 

  33. Jokipii JR. The heliosphere and cosmic rays. In: Schrijver CJ, Siscoe GL, editors. Heliophysics—evolving solar activity and the climates of space and Earth. New York: Cambridge University Press; 2010. [Chapter 9].

    Google Scholar 

  34. Obe G, Johannes I, Johannes C, et al. Chromosomal aberrations in blood lymphocytes of astronauts after long-term space flights. Int J Radiat Biol. 1997;72:727–34.

    Article  CAS  PubMed  Google Scholar 

  35. Reames DV. Solar energetic particles: a paradigm shift. Rev Geophys. 1995;33(Suppl):585.

    Article  Google Scholar 

  36. Shea MA, Smart DF. History of solar proton event observations. Nucl Phys B. 39A. 1995:16–25.

    Google Scholar 

  37. Feynman J, Gabriel S, editors. Interplanetary particle environment: proceedings of conference. NASA-CR-185461. Pasadena: JPL Publication 88-28, Jet Propulsion Laboratory; 1988.

    Google Scholar 

  38. Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, et al. Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J Geophys Res. 2005;110:A09S18.

    Google Scholar 

  39. Foelsche T. Current estimates of radiation doses. NASA TN D-1267. 1962.

    Google Scholar 

  40. Townsend LW, Shinn JL, Wilson JW. Interplanetary crew exposure estimates for the August 1972 and October 1989 solar particle events. Radiat Res. 1991;126:108–10.

    Article  CAS  PubMed  Google Scholar 

  41. Shavers MR, et al. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv Space Res. 2004;34(6):1333–7.

    Article  CAS  PubMed  Google Scholar 

  42. Badhwar GD. Radiation measurements in low Earth orbit: US and Russian results. Health Phys. 2000;79:507–14.

    Article  CAS  PubMed  Google Scholar 

  43. Badhwar GD, Keith JE, Cleghorn TF. Neutron measurements onboard the space shuttle. Radiat Meas. 2001;33:235–41.

    Article  CAS  PubMed  Google Scholar 

  44. Singleterry RC Jr, Badavi FF, Shinn JL, et al. Estimation of neutron and other radiation exposure components in low earth orbit. Radiat Meas. 2001;33:355–60.

    Article  PubMed  Google Scholar 

  45. Luszik-Bhadra M, Matzke M, Otto T, Reitz G, Schuhmacher H. Personal neutron dosimetry in the space station MIR and the Space Shuttle. Radiat Meas. 1999;31:425–30.

    Article  CAS  PubMed  Google Scholar 

  46. Reitz G. European dosimetry activities for the ISS. Phys Med. 2001;17(Suppl 1):283–6.

    PubMed  Google Scholar 

  47. Reitz G, Beaujean R, Heilmann C, et al. Results of dosimetric measurements in space missions. Adv Space Res. 1998;22:495–500.

    Article  CAS  PubMed  Google Scholar 

  48. Reitz G. Neutron dosimetric measurements in shuttle and MIR. Radiat Meas. 2001;33:341–6.

    Article  CAS  PubMed  Google Scholar 

  49. Benton ER, Benton EV. Space radiation dosimetry in low-Earth orbit and beyond. Nucl Instrum Methods Phys Res B. 2001;184(1–2):255–94.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou D, O’Sullivan D, Semones E, Heinrich W. Radiation field of cosmic rays measured in low Earth orbit by CR-39 detectors. Adv Space Res. 2006;37(9):1764–9.

    Article  CAS  Google Scholar 

  51. Zhou D, O’Sullivan D, et al. Radiation of cosmic rays in low Earth orbit with active and passive detectors. In: Proceedings of the 31st ICRC, July 2009, Lodz, Poland.

    Google Scholar 

  52. Ballarini F, et al. GCR and SPE organ doses in deep space with different shielding: Monte Carlo simulations based on the FLUKA code coupled to anthropomorphic phantoms. Adv Space Res. 2006;37(9):1791–7.

    Article  Google Scholar 

  53. Northum JD, Guetersloh SB, Braby LA. FLUKA capabilities for microdosimetric analysis. Radiat Res. 2012;177(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  54. Walker SA, Townsend LW, Norbury JW. Heavy ion contributions to organ dose equivalent for the 1977 galactic cosmic ray spectrum. Adv Space Res. 2013;51(9):1792–9.

    Article  CAS  Google Scholar 

  55. Rettberg P, Horneck G, Zittermann A, Heer M. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis. Adv Space Res. 1998;22:1643–52.

    Article  CAS  PubMed  Google Scholar 

  56. Turner JE. Chemical and biological effects of radiation. In: Atoms, radiation, and radiation protection. 2nd ed. New York: Pergamon Press; 1995. [Chapter 11].

    Google Scholar 

  57. Weiss HA, Darby SC, Fearn T, et al. Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res. 1995;142:1–11.

    Article  CAS  PubMed  Google Scholar 

  58. UNSCEAR. Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations; 2008.

    Google Scholar 

  59. Williams D. Chernobyl, eight years on. Nature. 1994;371:556.

    Article  CAS  PubMed  Google Scholar 

  60. Zablotska LB. 30 years after the Chernobyl nuclear accident: time for reflection and re-evaluation of current disaster preparedness plans. J Urban Health. 2016;93(3):407–13.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Farahati J, Demidchik EP, Biko J, Reiners C. Inverse association between age at the time of radiation exposure and extent of disease in cases of radiation-induced childhood thyroid carcinoma in Belarus. Cancer. 2000;88(6):1470–6.

    Article  CAS  PubMed  Google Scholar 

  62. Jacob P, et al. Thyroid cancer risk in Belarus after the Chernobyl accident: comparison with external exposures. Radiat Environ Biophys. 2000;39(7):25–31.

    Article  CAS  PubMed  Google Scholar 

  63. Rybakov SJ, et al. Thyroid cancer in children of Ukraine after the Chernobyl accident. World J Surg. 2000;24(11):1446–9.

    Article  CAS  PubMed  Google Scholar 

  64. Heidenrech WF, et al. Time trends of thyroid cancer incidence in Belarus after the Chernobyl accident. Radiat Res. 1999;151(5):617–25.

    Article  Google Scholar 

  65. Romanenko A, et al. Pathology and proliferative activity of renal-cell carcinomas (RCCS) and renal oncocytomas in patients with different radiation exposure after the Chernobyl accident in Ukraine. Int J Cancer. 2000;87(6):880–3.

    Article  CAS  PubMed  Google Scholar 

  66. Romanenko AM, et al. Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. J Urol. 2006;175(2):739–43.

    Article  CAS  PubMed  Google Scholar 

  67. Masse CR. Ionizing radiation. Acad Sci III. 2000;323(7):633–40.

    CAS  Google Scholar 

  68. Dubrova YE, et al. Human minisatellite mutation rate after the Chernobyl accident. Nature. 1996;380(6576):683–6.

    Article  CAS  PubMed  Google Scholar 

  69. Weinberg HS, Korol AB, Kirzhner VM, Avivi A, Fahima T, Nevo E, et al. Very high mutation rate in offspring of Chernobyl accident liquidators. Proc Biol Sci. 2001;268(1471):1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baker R, Chesser R, Phillips C, Rodgers B. Chernobyl, 25 years later: biological legacy of a nuclear meltdown. Lubbock: Texas Technical University; 2011. Available from: http://www.nsrl.ttu.edu/about/Outreach/Chernobyl%20Exhibit.pdf.

    Google Scholar 

  71. Akleyev AV, et al. Health effects of radiation incidents in the southern Urals. Stem Cells. 1995;13(Suppl 1):58–68.

    PubMed  Google Scholar 

  72. Akleyev AV, Kossenko MM, Startsev NV, et al. Chronic irradiation: tolerance and failure in complex biological systems. London: British Institute of Radiology; 2002.

    Google Scholar 

  73. Akleyev, et al. Chronic irradiation: tolerance and failure in complex biological systems. In: Fliedner TM, Feinendegen LE, Hopewell JW, editors. The British Journal of Radiology supplement, vol. 26. London: British Institute of Radiology; 2002. p. 6–14.

    Google Scholar 

  74. Richardson DB, Cardis E, Daniels RD, et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ. 2015;351:h5359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol. 2008;81(965):362–78.

    Article  CAS  PubMed  Google Scholar 

  76. Ozasa, et al. Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177:229–43.

    Article  CAS  PubMed  Google Scholar 

  77. Mouthon MA, Van der Meeren A, Gaugler MH, Visser TP, Squiban C, Gourmelon P, et al. Thrombopoietin promotes hematopoietic recovery and survival after high-dose whole body irradiation. Int J Radiat Oncol Biol Phys. 1999;43(4):867–75.

    Article  CAS  PubMed  Google Scholar 

  78. Otake M, Schull WJ. Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol. 1998;74:159–71.

    Article  CAS  PubMed  Google Scholar 

  79. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Annals of the ICRP 21. New York: Elsevier Science; 1991.

    Google Scholar 

  80. Peterson LE, Abrahamson S, editors. Effects of ionizing radiation: atomic bomb survivors and their children. Washington: Joseph Henry (National Academy) Press; 1998.

    Google Scholar 

  81. Douple EB, et al. Long-term radiation-related health effects in a unique human population: lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki. Disaster med public heath prep. 2011. 2011;5(0 1):S122–33.

    Google Scholar 

  82. Darby SC, Inskip PD. Ionizing radiation: future etiologic research and prevention strategies. Environ Health Perspect. 1995;103:245–9.

    PubMed  PubMed Central  Google Scholar 

  83. Durante M. New challenges in high-energy particle radiobiology. Br J Radiol. 2014;87(1035):20130626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Combs SE, Ganswindt U, Foote RL, Kondziolka D, Tonn JC. State-of-the-art treatment alternatives for base of skull meningiomas: complementing and controversial indications for neurosurgery, stereotactic and robotic based radiosurgery or modern fractionated radiation techniques. Radiat Oncol. 2012;7:226.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer. 2011;11(6):438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–72.

    Article  PubMed  Google Scholar 

  87. Chung CS, et al. Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol Biol Phys. 2013;87(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  88. Dalrymple GV, Lindsay IR, Mitchell JC, et al. A review of USAF/NASA proton bioeffects project: rationale and acute effects. Radiat Res. 1991;126:117–9.

    Article  CAS  PubMed  Google Scholar 

  89. Merriam GR Jr, Worgul BV, Medvedovsky C, et al. Accelerated heavy particles and the lens. I. Cataractogenic potential. Radiat Res. 1984;98:129–40.

    Article  CAS  PubMed  Google Scholar 

  90. Brenner DJ, Medvedovsky C, Huang Y, et al. Accelerated heavy particles and the lens. VI. RBE studies at low doses. Radiat Res. 1991;128:73–81.

    Article  CAS  PubMed  Google Scholar 

  91. Worgul BV, Medvedovsky C, Huang Y, et al. Quantitative assessment of the cataractogenic potential of very low doses of neutrons. Radiat Res. 1996;145:343–9.

    Article  CAS  PubMed  Google Scholar 

  92. Bielefeldt-Ohmann, et al. Animal studies of charged particle-induced carcinogenesis. Health Phys. 2012;103(5):568–76.

    Article  CAS  PubMed  Google Scholar 

  93. Durante M. Eighth Warren K. Sinclair keynote address: heavy ions in therapy and space: benefits and risks. Health Phys. 2012;103(5):532–9.

    Article  CAS  PubMed  Google Scholar 

  94. Burns FJ, Tang MS, Frenkel K, Nadas A, et al. Induction and prevention of carcinogenesis in rat skin exposed to space radiation. Radiat Environ Biophys. 2007;46(2):195–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ando K, Koike S, Oohira C, Ogiu T, Yatagai F. Tumor induction in mice locally irradiated with carbon ions: a retrospective analysis. J Radiat Res. 2005;46(2):185–90.

    Article  PubMed  Google Scholar 

  96. Alpen EL, Powers-Risius P, Curtis SB, DeGuzman R. Tumorigenic potential of high-Z, high-LET charged particle radiations. Radiat Res. 1993;136(3):382–91.

    Article  CAS  PubMed  Google Scholar 

  97. Dicello JF, Christian A, Cucinotta FA, et al. In vivo mammary tumourigenesis in the Sprague-Dawley rat and microdosimetric correlates. Phys Med Biol. 2004;49(16):3817–30.

    Article  CAS  PubMed  Google Scholar 

  98. Weil MM, Bedford JS, Bielefeldt-Ohmann H, et al. Incidence of acute myeloid leukemia and hepatocellular carcinoma in mice irradiated with 1 GeV/nucleon 56Fe ions. Radiat Res. 2009;172(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  99. Datta K, Sauman S, Kallkury BV, Fornace AJ Jr. Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater β-catenin activation than γ radiation in APC(Min/+) mice. PLoS One. 2013;8(3):e59295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One. 2014;9(7):e104819.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang X, Farris AB, Wang P, Zhang X, Wang H, Wang Y. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis. Radiat Res. 2015;183(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  102. Cengel KA, Diffenderfer ES, Avery S, Kennedy AR, McDonough J. Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure. Radiat Environ Res. 2010;49(4):715–21.

    Google Scholar 

  103. Prasad KN. Handbook of radiobiology. 2nd ed. Boca Raton: CRC Press; 1995.

    Google Scholar 

  104. Hall EJ, Piao C-Q, Hei TK. High-energy ions and genomic instability. Presented at the bioastronautics investigators workshop, Galveston, TX, 17–19 Jan 2001. p. 314, 324–5.

    Google Scholar 

  105. Blakely E, Lauriston S. Taylor lecture on radiation protection and measurements: what makes particle radiation so effective? Health Phys. 2012;103(5):508–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ji Z, Long H, Hu Y, Qiu X, Chen X, Li Z, Fan D, Ma B, Fan Q. Expression of MDR1, HIF-1alpha and MRP1 in sacral chordoma and chordoma cell line CM-319. J Exp Clin Cancer Res. 2010;29:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Varnum SM, Sowa MB, Kim GJ, Morgan WF. Radiation-induced genomic instability and radiation sensitivity. In: Brady LW, Yaeger TE, editors. Encyclopedia of radiation oncology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 719–26.

    Google Scholar 

  108. Fry RJ, Powers-Risius P, Alpen EL, et al. High-LET radiation carcinogenesis. Adv Space Res. 1983;3:241–8.

    Article  CAS  PubMed  Google Scholar 

  109. Hei TK, Piao CQ, Wu LJ, et al. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions. Adv Space Res. 1998;22:1699–707.

    Article  CAS  PubMed  Google Scholar 

  110. Limoli CL, Ponnaiya B, Corcoran JJ, Giedzinski E, Kaplan MI, Hartmann A, et al. Genomic instability induced by high and low LET ionizing radiation. Adv Space Res. 2000;25(10):2107–17.

    Article  CAS  PubMed  Google Scholar 

  111. Pang D, Winters TA, Jung M, Purkayastha S, Cavalli LR, Chasovkikh S, et al. Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce genomic instability. J Radiat Res. 2011;52(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  112. Huefner ND, Yoshiyama K, Friesner JD, Conklin PA, Britt AB. Genomic stability in response to high versus low linear energy transfer radiation in Arabidopsis thaliana. Front Plant Sci. 2014;5:206.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Conklin JJ, Walker RI. Military radiobiology. Orlando: Academic Press; 1987.

    Google Scholar 

  114. Xue LY, Friedman LR, Oleinick NL, et al. Induction of DNA damage in gamma-irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation. Int J Radiat Biol. 1994;66:11–21.

    Article  CAS  PubMed  Google Scholar 

  115. Bump EA, Malaker K, editors. Radioprotectors: chemical, biological and clinical perspectives. Boca Raton: CRC Press; 1998.

    Google Scholar 

  116. Bartsch H, Barbin A, Marion MJ, et al. Formation, detection and role in carcinogenesis of ethenobases in DNA. Drug Metab Rev. 1994;26:349–71.

    Article  CAS  PubMed  Google Scholar 

  117. Little JB. Radiation carcinogenesis. Carcinogenesis. 2000;21(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  118. Brooks AL. Paradigm shifts in radiation biology: their impact on intervention for radiation-induced disease. Radiat Res. 2005;164(4 Pt 2):454–61.

    Article  CAS  PubMed  Google Scholar 

  119. Hamada N, Matsumoto H, Hara T, Kobayashi Y. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res. 2007;48(2):87–95.

    Article  CAS  PubMed  Google Scholar 

  120. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A. 2000;97(5):2099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hall EJ, Hei TK. Genomic instability and bystander effects induced by high-LET radiation. Oncogene. 2003;22(45):7034–42.

    Article  CAS  PubMed  Google Scholar 

  122. Mothersill C, Seymour CB. Radiation-induced bystander effects—implications for cancer. Nat Rev Cancer. 2004;4(2):158–64.

    Article  CAS  PubMed  Google Scholar 

  123. Ng J, Dai T. Radiation therapy and the abscopal effect: a concept comes of age. Ann Transl Med. 2016;4(6):118.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hu ZI, McArthur HL, Ho AY. The abscopal effect of radiation therapy: what is it and how can we use it in breast cancer? Curr Breast Cancer Rep. 2017;9(1):45–51.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16:795–803.

    Article  CAS  PubMed  Google Scholar 

  126. Johnson CB, Jagsi R. The promise of the abscopal effect and the future of trials combining immunotherapy and radiation therapy. Int J Radiat Oncol. 2016;95(4):1254–6.

    Article  Google Scholar 

  127. Lloyd RS, Van Hooten B. DNA damage recognition. In: Vos JMH, editor. DNA repair mechanisms: impact on human diseases and cancer. Austin: R.G. Landes Co.; 1995. p. 25–66.

    Google Scholar 

  128. Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res. 2009;16(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jones ML, Ganopolsky JG, Martoni CJ, Labbe A, Prakash S. Emerging science of the human microbiome. Gut Microbes. 2014;5(4):446–57.

    Article  PubMed  Google Scholar 

  130. Saei AA, Barzegari A. The microbiome: the forgotten organ of the astronaut’s body—probiotics beyond terrestrial limits. Future Microbiol. 2012;7(9):1037–46.

    Article  CAS  PubMed  Google Scholar 

  131. Maier I, Berry DM, Schiestl RH. Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons. Radiat Res. 2014;181(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  132. Jones et al. Intestinal microbiome: considerations of radiation exposure and health effects for exploration class spaceflight. In: 61st Annual Radiation Research Society meeting, Weston, FL, Sept 2015.

    Google Scholar 

  133. Cervantes JL, Hong BY. Dysbiosis and immune dysregulation in outer space. Int Rev Immunol. 2016;35(1):67–82.

    CAS  PubMed  Google Scholar 

  134. Nordback I, Kulmala R, Jarvinen M. Effect of ultraviolet therapy on rat skin wound healing. J Surg Res. 1990;48:68–71.

    Article  CAS  PubMed  Google Scholar 

  135. ICRP. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context, ICRP Publ. 118. Ann ICRP. 2012;41(1–2):1–322.

    Google Scholar 

  136. Fuglesang C, Narici L, Picozza P, Sannita WG. Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat Space Environ Med. 2006;77(4):449–52.

    PubMed  Google Scholar 

  137. Avdeev S, Bidoli V, Casolino M, De Grandis E, Furano G, et al. Eye light flashes on the Mir space station. Acta Astronaut. 2002;50(8):511–25.

    Article  CAS  PubMed  Google Scholar 

  138. Hoffman RA, Pinsky LS, Osborne WZ, et al. Visual light flash observations on Skylab 4. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: US Government Printing Office; 1977. p. 127–30. NASA SP-377.

    Google Scholar 

  139. Meistrich ML. Hormone intervention therapy to prevent treatment-induced sterility. OncoLog. 2000;45:6–7.

    Google Scholar 

  140. Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101(Suppl 2):109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Rabin BM, Hunt WA, Joseph JA. An assessment of behavioral toxicity of high energy particles compared to other qualities of radiation. Radiat Res. 1989;119:113–22.

    Article  CAS  PubMed  Google Scholar 

  142. Joseph JA, Hunt WA, Philpott DE, et al. Correlative motor behavioral and striatal dopaminergic alterations induced by 56Fe radiation. In: McCormack PD, Swenberg CE, Bücker H, editors. Terrestrial space radiation and its biological effects, NATO ASI series, series A: life sciences, vol. 154. New York: Plenum Press; 1988.

    Google Scholar 

  143. Mele PC, Franz CG, Harrison JR. Effects of ionizing radiation on fixed-ratio escape performance in rats. Neurotoxicol Teratol. 1990;12:367–73.

    Article  CAS  PubMed  Google Scholar 

  144. Shukitt-Hale B, Casadesus G, McEwen JJ, et al. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation. Radiat Res. 2000;154:28–33.

    Article  CAS  PubMed  Google Scholar 

  145. Vazquez ME. Neurobiological problems in long-term deep space flights. Adv Space Res. 1998;22:171–3.

    Article  CAS  PubMed  Google Scholar 

  146. Blakely EA, Chang PY. A review of ground-based heavy ion radiobiology relevant to space radiation risk assessment: cataracts and CNS effects. Adv Space Res. 2007;40:1307–19.

    Article  Google Scholar 

  147. Hellweg CE, Baumstark-Kahn C. Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation. Naturwissenschaften. 2007;94(7):517–9.

    Article  CAS  PubMed  Google Scholar 

  148. Badwhar GD, Nachtwey DS, Yang TC-H. Radiation issues for piloted Mars mission. Adv Space Res. 1992;12:195–200.

    Article  Google Scholar 

  149. Cucinotta FA, Nikjoo H, Goodhead DT. The effects of delta rays on the number of particle-track traversals per cell in laboratory and space exposures. Radiat Res. 1988;150:115–9.

    Article  Google Scholar 

  150. Curtis SB, Vazquez ME, Wilson JW, Atwell W, Kim M, Capala J. Cosmic ray hit frequencies in critical sites in the central nervous system. Adv Space Res. 1988;22:197–207.

    Article  Google Scholar 

  151. Cherry, et al. Galactic cosmic radiation leads to cognitive impairment and increased AB plaque accumulation in a mouse model of Alzheimer’s disease. PLoS One. 2012;7(12):e53275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. National Council on Radiation Protection and Measurements. Uncertainties in fatal cancer risk estimates used in radiation protection, NCRP Rep. No. 126. Bethesda: National Council on Radiation Protection and Measurements; 1997.

    Google Scholar 

  153. National Council on Radiation Protection and Measurements. Uncertainties in Fatal Cancer Risk Estimates Used in Radiation Protection, NCRP Report No. 126, National Council on Radiation Protection and Measurements, Bethesda, MD, 1997.

    Google Scholar 

  154. Rosen EM, Fan S, Goldberg ID, et al. Biological basis of radiation sensitivity. Part 2: Cellular and molecular determinants of radiosensitivity. Oncology. 2000;14:741–57.

    CAS  PubMed  Google Scholar 

  155. UNSCEAR. Annexes A and B: epidemiological studies of radiation and cancer; epidemiological evaluation of cardiovascular disease and other non-cancer diseases following radiation exposure. New York: United Nations; 2006.

    Google Scholar 

  156. Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect. 2012;120(11):1503–11.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 2003;160(4):381–407.

    Article  CAS  PubMed  Google Scholar 

  158. Huff J, Cucinotta F. Risk of degenerative tissue or other health effects of radiation exposure. In: Human health and performance risks of space exploration missions: Evidence reviewed by the NASA Human Research Program. NASA. 2009 [Chapter 7].

    Google Scholar 

  159. Yu T, Parks BW, Yu S, Srivastava R, Gupta K, Wu X, et al. Iron-ion radiation accelerates atherosclerosis in apolipoprotein E-deficient mice. Radiat Res. 2011;175(6):766–73.

    Article  CAS  PubMed  Google Scholar 

  160. Soucy KG, Lim HK, Kim JH, Oh Y, Attarzadeh DO, Sevinc B, et al. HZE (5)(6)Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase. Radiat Res. 2011;176(4):474–85.

    Article  CAS  PubMed  Google Scholar 

  161. Fajardo LF, Berthrong M, Anderson RE, editors. Radiation pathology. New York: Oxford Press; 2001.

    Google Scholar 

  162. Tasman W, Jaeger EA, editors. Duane’s clinical ophthalmology. Philadelphia: Lippincott-Raven; 1996. [Chapter 73].

    Google Scholar 

  163. Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, et al. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutat Res. 2016;770(Pt B):238–61.

    Article  CAS  Google Scholar 

  164. Lett JT, Cox AB, Lee AC. Selected examples of degenerative late effects caused by particulate radiations in normal tissues. In: McCormack PD, Swenberg CE, Bücker H, editors. Terrestrial space radiation and its biological effects, NATO ASI series, series A: life sciences, vol. 154. New York: Plenum Press; 1988. p. 393–413.

    Chapter  Google Scholar 

  165. Hamada N, Sato T. Cataractogenesis following high-LET radiation exposure. Mutat Res. 2016;770(Pt B):262–91.

    Article  CAS  Google Scholar 

  166. Otake M, Schull WJ. Radiation-related posterior lenticular opacities in Hiroshima and Nagasaki atomic bomb survivors based on DS86 dosimetry system. Radiat Res. 1990;121:3–13.

    Article  CAS  PubMed  Google Scholar 

  167. Datiles MB, Magno BV, Freidlin V. Study of nuclear cataract progression using the National Eye Institute Scheimpflug system. Br J Ophthalmol. 1995;70:527–34.

    Article  Google Scholar 

  168. Chylack LT Jr, Wolfe JK, Friend J, et al. Validation of methods for the assessment of cataract progression in the Roche European-American Anticataract Trial (REACT). Ophthalmic Epidemiol. 1995;2:59–74.

    Article  PubMed  Google Scholar 

  169. Lopez ML, Freidlin V, Datiles MB 3rd. Longitudinal study of posterior subcapsular opacities using the National Eye Institute compute planimetry system. Br J Ophthalmol. 1995;79:535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cucinotta FA, Manuel FK, Jones JA, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.

    Article  CAS  PubMed  Google Scholar 

  171. Jones JA, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, Wear M. Cataract formation mechanisms and risks in aviation and space crews. Aviat Space Environ Med. 2007;78(4 Suppl):A56–66.

    PubMed  Google Scholar 

  172. Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, et al. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2009;172(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  173. Chylack LT Jr, Feiveson AH, Peterson LE, Tung WH, Wear ML, Marak LJ, et al. NASCA report 2: longitudinal study of relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2012;178(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  174. Curtis SB, Nealy JE, Wilson JW. Risk cross sections and their application to risk estimation in the galactic cosmic ray environment. Radiat Res. 1995;141:57–65.

    Article  CAS  PubMed  Google Scholar 

  175. Todd P, Pecaut M, Fleshner M. Combined effects of spaceflight factors and radiation on humans. Mutat Res. 1999;430:211–9.

    Article  CAS  PubMed  Google Scholar 

  176. Hammond TG, Lewis FC, Goodwin TJ, et al. Gene expression in space. Nat Med. 1999;5:359.

    Article  CAS  PubMed  Google Scholar 

  177. Horneck G. Impact of spaceflight environment on radiation response. In: PD MC, Swenberg CE, Bücker H, editors. Terrestrial space radiation and its biological effects, NATO ASI series, series A: life sciences, vol. 154. New York: Plenum Press; 1988.

    Google Scholar 

  178. Montgomery PO Jr, Cook JE, Reynolds RC, et al. The response of single human cells to zero-gravity. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: US Government Printing Office; 1977. p. 221–34. NASA SP-377.

    Google Scholar 

  179. Morrison DR. Cellular changes in microgravity and the design of space radiation experiments. Adv Space Res. 1994;14:1005–19.

    Article  CAS  PubMed  Google Scholar 

  180. Kiefer J, Pross HD. Space radiation effects and microgravity. Mutat Res. 1999;430:299–305.

    Article  CAS  PubMed  Google Scholar 

  181. Horneck G. Impact of microgravity on radiobiological processes and efficiency of DNA repair. Mutat Res. 1999;430:221–8.

    Article  CAS  PubMed  Google Scholar 

  182. Bucker H, Facius R, Horneck G, et al. Embryogenesis and organogenesis of Carausis morosus under spaceflight conditions. Adv Space Res. 1986;6:115–24.

    Article  CAS  PubMed  Google Scholar 

  183. Grigoriev YG, Miller AT, Nevzgodina LV, et al. Effect of weightlessness and of artificial gravity on irradiated lettuce seeds. Life Sci Space Res. 1977;15:285–9.

    CAS  PubMed  Google Scholar 

  184. Grigoriev YG, Planel H, Delpoux M, et al. Radiobiological investigations in Cosmos 782 space flight (Biobloc SF1 experiment). Life Sci Space Res. 1978;16:137–42.

    Article  CAS  PubMed  Google Scholar 

  185. Buckhold B. Biosatellite II—physiological and somatic effects on insects. Life Sci Space Res. 1969;7:77–83.

    CAS  PubMed  Google Scholar 

  186. Hagen U. Radiation biology in space: a critical review. Adv Space Res. 1989;9:3–8.

    Article  CAS  PubMed  Google Scholar 

  187. Horneck G. Radiobiological experiments in space: a review. Nucl Tracks Radiat Meas. 1992;20:185–205.

    Article  CAS  Google Scholar 

  188. Benner SA, Derihe KG, Matreeva LN, Powell OH. The missing organic molecules on Mars. Proc Natl Acad Sci U S A. 2000;97(6):2425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wilson JW. Overview of radiation environments and human exposures. Health Phys. 2000;79:470–94.

    Article  CAS  PubMed  Google Scholar 

  190. Lopez M, Martin M. Medical management of the acute radiation syndrome. Rep Pract Oncol Radiother. 2011;16(4):138–46.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Sharma S, Stutzman JD, Kelloff GJ, et al. Screening of potential chemoprevention agents using biological markers of carcinogenesis. Cancer Res. 1994;54:5848–55.

    CAS  PubMed  Google Scholar 

  192. Kelloff G, Hawk E, Crowell JA, et al. Strategies for identification and clinical evaluation of promising chemopreventive agents. Oncology. 1996;10:1471–88.

    CAS  PubMed  Google Scholar 

  193. Kelloff GJ, Boone CW, Steele VE, et al. Mechanistic considerations in chemopreventive drug development. J Cell Biochem Suppl. 1994;20:1–24.

    Article  CAS  PubMed  Google Scholar 

  194. Giuliano A. Review of cancer chemoprevention. Oncology. 1998;12:1659–60.

    Google Scholar 

  195. Capizzi RL. Clinical status and optimal use of amifostine. Oncology. 1999;13:47–59.

    CAS  PubMed  Google Scholar 

  196. Liu T, Liu Y, He S, et al. Use of radiation with or without WR-2721 in advanced rectal cancer. Cancer. 1992;69:2820–5.

    Article  CAS  PubMed  Google Scholar 

  197. Brizel DM. Future directions in toxicity prevention. Semin Radiat Oncol. 1998;8:17–20.

    Article  CAS  PubMed  Google Scholar 

  198. Brizel DM. Radiotherapy and concurrent chemotherapy for the treatment of locally advanced head and neck squamous cell carcinoma. Semin Radiat Oncol. 1998;8:237–46.

    Article  CAS  PubMed  Google Scholar 

  199. Senzer NN. Clinical results of a phase III study of ethyol (amifostine). Manag Care Cancer. 1990;2(1)

    Google Scholar 

  200. Hanson WR, Marks JE, Reddy SP, et al. Protection from radiation-induced oral mucositis by a mouth rinse containing the prostaglandin E1 analog, misoprostol: a placebo controlled double blind clinical trial. Adv Exp Med Biol. 1997;400B:811–8.

    CAS  PubMed  Google Scholar 

  201. Robertson JM, Donner AP, Trivithick JR. Vitamin E intake and the risk of cataracts in humans. Ann N Y Acad Sci. 1989;570:372–82.

    Article  CAS  PubMed  Google Scholar 

  202. Waldren CA, Ueno A, Zhang Y, et al. Using non-toxic chemicals to reduce the mutagenicity of the kinds of radiation encountered in space travel. Presented at the Bioastronautics Investigators Workshop, Galveston, TX, 17–19 Jan 2001.

    Google Scholar 

  203. Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. Springerplus. 2014;3:414.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Epperly MW, Wang H, Jones JA, et al. Antioxidant chemoprevention diet ameliorates late effects of total body irradiation and supplements radiation protection by Mn-SOD liposome administration. Radiat Res. 2011;175(6):759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kennedy AR. Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res (Amst). 2014;1(1):10–43.

    Article  Google Scholar 

  206. Jones JA, Riggs PK, Yang TC, et al. Ionizing radiation-induced bioeffects in space and strategies to reduce cellular injury and carcinogenesis. Aviat Space Environ Med. 2007;78:A67–78.

    Article  CAS  PubMed  Google Scholar 

  207. Singh VK, Romaine PL, Seed TM. Medical countermeasures for radiation exposure and related injuries: characterization of medicines, FDA-approval, status and inclusion into the Strategic National Stockpile. Health Phys. 2015;108:607–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. McLaughlin MF, Donoviel DB, Jones JA. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp Med Hum Perform. 2017;88(7):665–76.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Maliev V, Popov D, Casey R, Jones JA. Mechanisms of action for an anti-radiation vaccine in reducing the biological impact of high dose and dose-rate, low-linear energy transfer radiation exposure. Radiat Biol Radioecol. 2007;47(3):286–91.

    CAS  Google Scholar 

  210. Maliev VP, Popov D, Jones JA, Casey RC. Mechanisms of action of anti-radiation vaccine in reducing the biological impact of high-dose gamma-irradiation. J Adv Space Res. 2007;40(4):586–90.

    Article  CAS  Google Scholar 

  211. Jones J, Epperly M, Law J, Scheuring R, Montesinos C, Popov D, Maliev V, Prasad K, Greenberg J. Space radiation hazards and strategies for astronaut/cosmonaut protection. Med Radiol Radiat Saf. 2013;58(3):5–23.

    Google Scholar 

  212. Frank AL, Slesin L. Nonionizing radiation. In: Last JM, Wallace RB, editors. Public health and preventive medicine. New York: Appleton and Lange; 1992. p. 513–22.

    Google Scholar 

  213. Oleinick N, Chiu S, Friedman LR, et al. DNA-protein cross-links: new insights into their formation and repair in irradiated mammalian cells. In: Simic MG, Grossman L, Uptn AC, editors. Mechanisms of DNA damage and repair. New York: Plenum Press; 1986. p. 181–92.

    Chapter  Google Scholar 

  214. Taylor A. Role of nutrients in delaying cataracts. Ann N Y Acad Sci. 1992;669:111–23.

    Article  CAS  PubMed  Google Scholar 

  215. Taylor HR, West SK, Rosenthal FS, et al. Effect of ultraviolet radiation on cataract formation. N Engl J Med. 1988;319:1429–33.

    Article  CAS  PubMed  Google Scholar 

  216. Taylor HR, West SK, Rosenthal FS, et al. The long-term effects of visible light on the eye. Arch Ophthalmol. 1992;110:99–104.

    Article  CAS  PubMed  Google Scholar 

  217. Bochow TW, West SK, Azar A, et al. Ultraviolet exposure and risk of posterior subcapsular cataracts. Arch Ophthalmol. 1989;107:369–72.

    Article  CAS  PubMed  Google Scholar 

  218. Zapp N. Hazard report: IVA crewmember non-ionizing radiation exposure through the USL window. The Boeing Company Information, Space, and Defense Systems International Space Station, ISS-C&T-95-5A, 15 Dec 2000.

    Google Scholar 

  219. Weichselbaum RK, Hines HH. Review of Rosen, E.M. biological basis of radiation sensitivity. Part 2: Cellular and molecular determinants of radiosensitivity. Oncology. 2000;14(5):758.

    Google Scholar 

  220. International Agency for Research on Cancer (IARC). Non-ionizing radiation. Part 2: Radiofrequency electromagnetic fields. IARC monographs on the evaluation of carcinogenic risk to humans, vol 102, Lyon, France. 2013.

    Google Scholar 

  221. Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology. 2000;11(6):624–34.

    Article  CAS  PubMed  Google Scholar 

  222. Kheifets L, Ahlbom A, Crespi CM, Draper G, Hagihara J, Lowenthal RM, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 2010;103(7):1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. International Agency for Research on Cancer (IARC). Non-ionizing radiation. Part 1: Static and Extremely Low Frequency (ELF) electric and magnetic fields. IARC monographs on the evauation of carcinogenic risk to humans, vol 80, Lyon, France. 2002.

    Google Scholar 

  224. Cucinotta FA, Wilson JW, Shavers MR, Katz R. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells. Int J Radiat Biol. 1995;69:593–600.

    Article  Google Scholar 

  225. Stoffle N, Keller J, Semones E. Initial report on international space station radiation environment monitor performance. NASA/TM-2016-219278.

    Google Scholar 

  226. Kroupa M, Bahadori A, Campbell-Ricketts T, et al. A semiconductor radiation imaging pixel detector for space radiation dosimetry. Life Sci Space Res (Amst). 2015;6:69–78.

    Article  Google Scholar 

  227. Kase PG. Computerized anatomical model man. Report AFWL-TR-69-161, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, Jan 1970.

    Google Scholar 

  228. Cucinotta FA, Kim MY, Willingham V, George KA. Physical and biological organ dosimetry analysis for international space station astronauts. Radiat Res. 2008;170(1):127–38.

    Article  CAS  PubMed  Google Scholar 

  229. Durante M, Kawata T, Nakano T, et al. Biodosimetry of heavy ions by interphase chromosome painting. Adv Space Res. 1998;22:1653–62.

    Article  CAS  PubMed  Google Scholar 

  230. Edwards AA, Finnon P, Moguet JE, et al. The effectiveness of high energy neon ions in producing chromosomal aberrations in human lymphocytes. Radiat Prot Dosim. 1994;52:299–303.

    Article  CAS  Google Scholar 

  231. Nicogossian AE, Robbins DE. Characteristics of the space environment. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1994. p. 50–62.

    Google Scholar 

  232. McCormack PD. Radiation dose and shielding for the Space Station. Acta Astronaut. 1988;17(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  233. Semkova J, Koleva R, Bankov N, Malchev S, Petrov VM, Shurshakov VA, et al. Study of radiation conditions onboard the International Space Station by means of the Liulin-5 dosimeter. Cosm Res. 2013;51(2):124–32.

    Article  Google Scholar 

  234. Badhwar GD. Radiation measurements on the International Space Station. Phys Med. 2001;17:1–5.

    Google Scholar 

  235. National Council on Radiation Protection. Guidance on radiation received in space activities. NCRP Report No. 98. Bethesda: National Council on Radiation Protection and Measurements; 1989.

    Google Scholar 

  236. National Council on Radiation Protection. Radiation protection guidance for activities in low-Earth orbit. NCRP Report No. 132. Bethesda: National Council on Radiation Protection and Measurements; 2000.

    Google Scholar 

  237. Nealy JE, Simonsen LC, Townsend LW, et al. Deep space radiation exposure analysis for solar cycle XXI (1975–1986). Paper presented at the 20th intersociety conference on environmental systems; 9–12 July 1990, Williamsburg, VA. SAE Technical Paper Series No. 901347.

    Google Scholar 

  238. Locke J. Space environment. In: Roy Dehart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  239. Petrov VM, Benghin VV. Radiation monitoring during manned Mars mission. In: 15th human in space symposium. Book of Abstracts, Graz, Austria, 22–26 May 2005. p. 175.

    Google Scholar 

  240. Grigoriev AI, Kozlovskaya IB, Potapov AN. Prospective areas for development of biomedical technologies for a piloted Martian mission. Acta Astronaut. 2006;59:119–23.

    Article  Google Scholar 

  241. Stanford M, Jones JA. Space radiation concerns for a manned mission to Mars. Acta Astronaut. 1999;45(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  242. Jones JA, Barratt M, Effenhauser R, Cockell C, Lee P. Medical issues for a human mission to Mars and Martian surface expeditions. J Br Interplanet Soc. 2004;57(3/4):144–60.

    Google Scholar 

  243. Grigoriev AI, Potapov AN, Jones JA, et al. Medical support for interplanetary human space flights. In: Space biology and medicine. Reston: AIAA Press; 2009. [Chapter 7].

    Google Scholar 

  244. Nealy JE, Simonsen LC, Qualls GD. Radiation shielding design issues. In: Wilson JW, Miller J, Konradi A, Cucinotta FA, editors. Shielding strategies for human space exploration. NASA CP-3360. Hampton: NASA Langley Research Center; 1997. p. 29–42.

    Google Scholar 

  245. Rycroft M. Shielding requirements and concepts. In: Eckart P, editor. The lunar base handbook. 2nd ed. Boston: McGraw-Hill; 2006. [Chapter 16].

    Google Scholar 

  246. Wilson JW, Cucinotta FA, Thai H, et al., editors. Galactic and solar cosmic ray shielding in deep space. NASA TP-3682. Hampton: NASA Langley Research Center; 1997.

    Google Scholar 

  247. Wilson JW, Cucinotta FA, Thibeault SA, et al. Radiation shielding design issues. In: Wilson JW, Miller J, Konradi A, Cucinotta FA, editors. Shielding strategies for human space exploration. NASA CP-3360. Hampton: NASA Langley Research Center; 1997. p. 109–49.

    Google Scholar 

  248. Simonsen LC, Nealy JE. Mars surface exposure for solar maximum conditions and 1989 solar proton events. NASA TP-3300. NASA TP-3668. Hampton: NASA Langley Research Center; 1993.

    Google Scholar 

  249. Simonsen LC. Analysis of lunar and Mars habitation modules for the space exploration initiative. In: Wilson JW, Miller J, Konradi A, Cucinotta FA, editors. Shielding strategies for human space exploration. NASA CP-3360. Hampton: NASA Langley Research Center; 1997. p. 43–77.

    Google Scholar 

  250. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, et al. The radiation environment of the Martian surface and during MSL’s cruise to Mars. Geophys Res Abstr. 15 EGU2013-12596. 2013.

    Google Scholar 

  251. Zeitlin C, Hassler DM, Cucinotta FA, et al. Measurement of energetic particle radiation in transit to Mars on the Mars Science Laboratory mission. Science. 2013;340:1080–4.

    Article  CAS  PubMed  Google Scholar 

  252. Badhwar GD, O’Neill PM. An improved model of GCR for space exploration missions. Int J Radiat Appl Instrum Nucl Tracks Radiat Meas. 1992;20:403–10.

    Article  CAS  Google Scholar 

  253. Simonsen LC, Nealy JE. Radiation protection for human mission to the Moon and Mars. NASA TP-3079. Hampton: NASA Scientific and Technical Information Division; 1991.

    Google Scholar 

  254. Simonsen LC, Nealy JE, Townsend LW, Wilson JW. Radiation exposure for manned Mars Surface Missions. NASA TP 2979. Hampton: NASA Scientific and Technical Information Division; 1990.

    Google Scholar 

  255. Nealy JE, Wilson JW, Townsend LW. Preliminary analysis of space radiation protection for lunar base surface systems. Paper presented at the 19th intersociety conference on environmental systems, San Diego, CA, July 1989. SAE Technical Paper Series No. 891487.

    Google Scholar 

  256. Nealy JE, Wilson JW, Townsend LW. Solar flare shielding with regolith at a lunar-base site. NASA TP-2869. Hampton: NASA Scientific and Technical Information Division; 1988.

    Google Scholar 

  257. Simonsen LC, Nealy JE, Townsend LW, et al. Space radiation shielding for a space habitat. Paper presented at the 20th intersociety conference on environmental systems; 9–12 July 1990, Williamsburg, VA. SAE Technical Paper Series No. 901346.

    Google Scholar 

  258. Williams J, Zhang Y, Zhou H, et al. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers. Mutat Res. 1999;430:255–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to note the following individuals for contributions to the field of space radiation and to this chapter: Michael Stanford, Ph.D.; Frank Cucinotta, Ph.D., University of Nevada, Las Vegas; Lief Peterson, Ph.D., Baylor College of Medicine; and [the late] Gautam Badhwar, Ph.D., NASA/JSC.

Acknowledgments are also to Steve Johnson, Ph.D.; Ed Semones, M.S.; Neal Zapp, Ph.D.; Prem Seganti, Ph.D.; CDR Mario Runco, M.S.; Carlos Montesinos, Ph.D.; Joel Greenberger, Ph.D.; Michael Epperly, Ph.D.; Dmitri Popov, M.D.; Alexander Akleyev, Ph.D.; and Stephen Guetersloh, Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, J.A., Karouia, F., Pinsky, L., Cristea, O. (2019). Radiation and Radiation Disorders. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics