Skip to main content

Introduction to Protein Nanotechnology

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

Protein nanotechnology research is at the intersection of protein biology and nanotechnology. Protein molecules are repurposed as nanostructures and nanoscaffolds, and nanoscale tools are used to investigate protein assembly and function. In this chapter, a select review is given of some of the recent examples of protein nanostructures, covering both those directly borrowed from biology and those designed for use in nanotechnology. It updates the introductory chapter to Edition 2 of this volume to reflect significant progress in this field. Some strategies to incorporate protein structures into devices are also covered, with the successes and challenges of this interdisciplinary field identified. This provides an overarching framework for the rest of the volume, which details the case studies of some of the protein building blocks that have been designed and produced, along with tips and tools for their incorporation into devices and making functional measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nash MA, Shoseyov O (2016) Editorial overview: nanobiotechnology at a crossroads: moving beyond proof of concept. Curr Opin Biotechnol 39:VII–VIX

    Article  CAS  PubMed  Google Scholar 

  2. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Article  CAS  PubMed  Google Scholar 

  3. Graveland-Bikker JF, Schaap IA, Schmidt CF et al (2006) Structural and mechanical study of a self-assembling protein nanotube. Nano Lett 6:616–621

    Article  CAS  PubMed  Google Scholar 

  4. Ballister ER, Lai AH, Zuckermann RN et al (2008) In vitro self-assembly from a simple protein of tailorable nanotubes building block. Proc Natl Acad Sci U S A 105:3733–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Needleman DJ, Ojeda-Lopez MA, Raviv U et al (2004) Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc Natl Acad Sci U S A 101:16099–16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knowles TPJ, Mezzenga R (2016) Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater 28:6546–6561

    Article  CAS  PubMed  Google Scholar 

  7. Liu F, Tang C-H (2013) Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions. J Agric Food Chem 61:8888–8898

    Article  CAS  PubMed  Google Scholar 

  8. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  9. Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Douglas T, Strable E, Willits D et al (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14:415

    Article  CAS  Google Scholar 

  11. Ashmead HM, Negron L, Webster K et al (2015) Proteins as supramolecular building blocks: Nterm-Lsr2 as a new protein tecton. Biopolymers 103:260–270

    Article  CAS  PubMed  Google Scholar 

  12. Ardini M, Golia G, Passaretti P et al (2016) Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale 8:6739–6753

    Article  CAS  PubMed  Google Scholar 

  13. Ardini M, Giansanti F, Di Leandro L et al (2014) Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. Nanoscale 6:8052–8061

    Article  CAS  PubMed  Google Scholar 

  14. Domigan LJ, Ashmead H, Dimartino S et al (2017) Formation of supramolecular protein structures on gold surfaces. Biointerphases 12:04E405

    Article  PubMed  CAS  Google Scholar 

  15. Manuguri S, Webster K, Yewdall NA et al (2018) Assembly of protein stacks with in situ synthesized nanoparticle cargo. Nano Lett 18:5138–5145

    Article  CAS  PubMed  Google Scholar 

  16. Kumara MT, Srividya N, Muralidharan S et al (2006) Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap. Nano Lett 6:2121–2129

    Article  CAS  PubMed  Google Scholar 

  17. Aumiller MW, Uchida M, Douglas T (2018) Protein cage assembly across multiple length scales. Chem Soc Rev 47:3433–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Howorka S (2011) Rationally engineering natural protein assemblies in nanobiotechnology. Curr Opin Biotechnol 22:485–491

    Article  CAS  PubMed  Google Scholar 

  20. Hu H, Zhang Y, Shukla S et al (2017) Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. ACS Nano 11:9249–9258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parodi A, Molinaro R, Sushnitha M et al (2017) Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 147:155–168

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Wang X, Zhou K et al (2018) Self-assembly of protein crystals with different crystal structures using tobacco mosaic virus coat protein as a building block. ACS Nano 12:1673–1679

    Article  CAS  PubMed  Google Scholar 

  23. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  24. Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed Engl 47:4062–4069

    Article  CAS  PubMed  Google Scholar 

  25. del Mercato LL, Pompa PP, Maruccio G et al (2007) Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc Natl Acad Sci 104:18019–18024

    Article  PubMed  Google Scholar 

  26. Domigan LJ, Healy J, Meade SJ et al (2011) Controlling the dimensions of amyloid fibrils: towards homogenous components for bionanotechnology. Biopolymers 97(2):123–133

    Article  PubMed  CAS  Google Scholar 

  27. Hamedi M, Herland A, Karlsson R et al (2008) Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT. Nano Lett 8:1736–1740

    Article  CAS  PubMed  Google Scholar 

  28. Nystrom G, Fong W-K, Mezzenga R (2017) Ice-templated and cross-linked amyloid fibril aerogel scaffolds for cell growth. Biomacromolecules 18:2858–2865

    Article  CAS  PubMed  Google Scholar 

  29. Nystrom G, Roder L, Fernandez-Ronco MP et al (2018) Amyloid templated organic-inorganic hybrid aerogels. Adv Funct Mater 28:1703609

    Article  CAS  Google Scholar 

  30. Das S, Kumawat MK, Ranganathan S et al (2018) Cell alignment on graphene-amyloid composites. Adv Mater Interfaces 5:1800621

    Article  CAS  Google Scholar 

  31. Shen Y, Posavec L, Bolisetty S et al (2017) Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nat Nanotechnol 12:642–647

    Article  CAS  PubMed  Google Scholar 

  32. Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  33. Breslauer DN, Kaplan DL (2012) Silks: properties and uses of natural and designed variants. Biopolymers 97:319–321

    Article  CAS  PubMed  Google Scholar 

  34. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang W, Ling S, Li C et al (2018) Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 47:6486–6504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Z, Zhang S, Cao Y et al (2018) Engineering the future of silk materials through advanced manufacturing. Adv Mater 30:1706983

    Article  CAS  Google Scholar 

  37. Marelli B, Patel N, Duggan T et al (2017) Programming function into mechanical forms by directed assembly of silk bulk materials. Proc Natl Acad Sci 114:451–456

    Article  CAS  PubMed  Google Scholar 

  38. Aaron B, Gosline J (1981) Elastin as a random-network elastomer–a mechanical and optical analysis of single elastin fibers. Biopolymers 20:1247–1260

    Article  CAS  Google Scholar 

  39. Bennetclark H, Lucey E (1967) Jump of flea–a study of energetics and a model of mechanism. J Exp Biol 47:59

    CAS  Google Scholar 

  40. Carlos Rodriguez-Cabello J, Gonzalez de Torre I, Ibanez-Fonseca A et al (2018) Bioactive scaffolds based on elastin-like materials for wound healing. Adv Drug Deliv Rev 129:118–133

    Article  PubMed  CAS  Google Scholar 

  41. Girotti A, Orbanic D, Ibanez-Fonseca A et al (2015) Recombinant technology in the development of materials and systems for soft-tissue repair. Adv Healthc Mater 4:2423–2455

    Article  CAS  PubMed  Google Scholar 

  42. Sanami M, Shtein Z, Sweeney I et al (2015) Biophysical and biological characterisation of collagen/resilin-like protein composite fibres. Biomed Mater 10:065005

    Article  CAS  PubMed  Google Scholar 

  43. Qin G, Lapidot S, Numata K et al (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10:3227–3234

    Article  CAS  PubMed  Google Scholar 

  44. Charati MB, Ifkovits JL, Burdick JA et al (2009) Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5:3412–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    Article  CAS  PubMed  Google Scholar 

  46. van den Heuvel MG, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336

    Article  PubMed  CAS  Google Scholar 

  47. Furuta A, Amino M, Yoshio M et al (2017) Creating biomolecular motors based on dynein and actin-binding proteins. Nat Nanotechnol 12:233–237

    Article  CAS  PubMed  Google Scholar 

  48. Kuan SL, Bergamini FRG, Weil T (2018) Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 47:9069–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lazarovits J, Chen YY, Song F et al (2019) Synthesis of patient-specific nanomaterials. Nano Lett 19:116–123

    Article  CAS  PubMed  Google Scholar 

  50. Malmstroem J, Wason A, Roache F et al (2015) Protein nanorings organized by poly(styrene-block-ethylene oxide) self-assembled thin films. Nanoscale 7:19940–19948

    Article  CAS  Google Scholar 

  51. Bat E, Lee J, Lau UY et al (2015) Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography. Nat Commun 6:6654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaur M, Roberts S, Healy J et al (2015) Crystallin nanofibrils: a functionalizable nanoscaffold with broad applications manufactured from waste. ChemPlusChem 80:810–819

    Article  CAS  PubMed  Google Scholar 

  53. Dgany O, Gonzalez A, Sofer O et al (2004) The structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J Biol Chem 279:51516–51523

    Article  CAS  PubMed  Google Scholar 

  54. Medalsy I, Dgany O, Sowwan M et al (2008) SP1 protein-based nanostructures and arrays. Nano Lett 8:473–477

    Article  CAS  PubMed  Google Scholar 

  55. Yewdall NA, Allison TM, Pearce FG et al (2018) Self-assembly of toroidal proteins explored using native mass spectrometry. Chem Sci 9:6099–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Domigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Domigan, L.J., Gerrard, J.A. (2020). Introduction to Protein Nanotechnology. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics