Skip to main content

Restriction-Free Construction of a Phage-Presented Very Short Macrocyclic Peptide Library

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2070))

Abstract

Phage display is a commonly used technology for the screening of large clonal libraries of proteins and peptides. The construction of peptide libraries containing very short sequences, however, poses certain problems for conventional restriction-based cloning procedures, which are rooted in the necessity to purify restricted library oligos. Herein, we present an alternative cloning method especially suitable for such very short sequences of about only 21 base pairs resulting in a 60 bp insert. The employed restriction-free hot fusion cloning strategy allows for facile library construction bypassing the need for purification of the small oligo. The library includes one well-defined disulfide bridge rendering the displayed macrocyclic peptide sequences as attractive scaffolds for novel active principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craik DJ, Lee M-H, Rehm FBH et al (2018) Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 26(10):2727–2737. https://doi.org/10.1016/j.bmc.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  2. Bogdanowich-Knipp SJ, Chakrabarti S, Siahaan TJ et al (1999) Solution stability of linear vs. cyclic RGD peptides. J Pept Res 53(5):530–541. https://doi.org/10.1034/j.1399-3011.1999.00052.x

    Article  CAS  PubMed  Google Scholar 

  3. Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52(10):855–868. https://doi.org/10.1007/s40262-013-0079-0

    Article  CAS  PubMed  Google Scholar 

  4. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  5. Brown T, Brown N, Stollar EJ (2018) Most yeast SH3 domains bind peptide targets with high intrinsic specificity. PLoS One 13(2):e0193128. https://doi.org/10.1371/journal.pone.0193128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sidhu SS, Lowman HB, Cunningham BC et al (2000) [21] Phage display for selection of novel binding peptides. In: Applications of chimeric genes and hybrid proteins—part C: protein-protein interactions and genomics, vol 328. Elsevier, Amsterdam, pp 333–IN5

    Chapter  Google Scholar 

  7. Sakamoto K, Sogabe S, Kamada Y et al (2017) Discovery of high-affinity BCL6-binding peptide and its structure-activity relationship. Biochem Biophys Res Commun 482(2):310–316. https://doi.org/10.1016/j.bbrc.2016.11.060

    Article  CAS  PubMed  Google Scholar 

  8. Rentero Rebollo I, Heinis C (2013) Phage selection of bicyclic peptides. Methods 60(1):46–54. https://doi.org/10.1016/j.ymeth.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  9. Diderich P, Heinis C (2014) Phage selection of bicyclic peptides binding Her2. Tetrahedron 70(42):7733–7739. https://doi.org/10.1016/j.tet.2014.05.106

    Article  CAS  Google Scholar 

  10. Ryvkin A, Ashkenazy H, Weiss-Ottolenghi Y et al (2018) Phage display peptide libraries: deviations from randomness and correctives. Nucleic Acids Res 46(9):e52. https://doi.org/10.1093/nar/gky077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watters JM, Telleman P, Junghans RP (1997) An optimized method for cell-based phage display panning. Immunotechnology 3(1):21–29. https://doi.org/10.1016/S1380-2933(96)00056-5

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen X-H, Trinh T-L, Vu T-B-H et al (2018) Isolation of phage-display library-derived scFv antibody specific to Listeria monocytogenes by a novel immobilized method. J Appl Microbiol 124(2):591–597. https://doi.org/10.1111/jam.13648

    Article  CAS  PubMed  Google Scholar 

  13. Hust M, Meyer T, Voedisch B et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152(4):159–170. https://doi.org/10.1016/j.jbiotec.2010.09.945

    Article  CAS  PubMed  Google Scholar 

  14. Dretzen G, Bellard M, Sassone-Corsi P et al (1981) A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem 112(2):295–298. https://doi.org/10.1016/0003-2697(81)90296-7

    Article  CAS  PubMed  Google Scholar 

  15. Fu C, Donovan WP, Shikapwashya-Hasser O et al (2014) Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One 9(12):e115318. https://doi.org/10.1371/journal.pone.0115318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zantow J, Moreira GMSG, Dübel S et al (2018) ORFeome phage display. Methods Mol Biol 1701:477–495. https://doi.org/10.1007/978-1-4939-7447-4_27

    Article  CAS  PubMed  Google Scholar 

  17. Russo G, Meier D, Helmsing S et al (2018) Parallelized antibody selection in microtiter plates. Methods Mol Biol 1701:273–284. https://doi.org/10.1007/978-1-4939-7447-4_14

    Article  CAS  PubMed  Google Scholar 

  18. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194. https://doi.org/10.1080/19420862.2016.1212149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maurer CK, Fruth M, Empting M et al (2016) Discovery of the first small-molecule CsrA-RNA interaction inhibitors using biophysical screening technologies. Future Med Chem 8(9):931–947. https://doi.org/10.4155/fmc-2016-0033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review contains updated and revised parts of former protocols by Zantow et al. [16] and Russo et al. [17]. We thank Rolf W. Hartmann for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Empting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jakob, V., Helmsing, S., Hust, M., Empting, M. (2020). Restriction-Free Construction of a Phage-Presented Very Short Macrocyclic Peptide Library. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics