Skip to main content

Forward and Reverse Genetic Analysis of Chlamydia

  • Protocol
  • First Online:
Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

Chlamydia is a major etiological agent of human disease that affects millions of individuals worldwide. Historically, our understanding of the mechanisms that contribute to its pathogenesis has been limited. However, the recent development of powerful genetic tools for manipulating Chlamydia has resulted in significant gains in our ability to dissect its virulence mechanisms. These tools have overcome several barriers for manipulating intracellular pathogens and are amenable for the routine genetic engineering of Chlamydia. Here, we provide several detailed protocols for performing genetic analysis in Chlamydia trachomatis allowing investigators to elucidate how this obligate intracellular pathogen causes disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peipert JF (2003) Clinical practice. Genital chlamydial infections. N Engl J Med 349:2424–2430. https://doi.org/10.1056/NEJMcp030542

    Article  CAS  PubMed  Google Scholar 

  2. Burton MJ (2007) Trachoma: an overview. Br Med Bull 84:99–116. https://doi.org/10.1093/bmb/ldm034

    Article  PubMed  Google Scholar 

  3. Mabey D, Peeling RW (2002) Lymphogranuloma venereum. Sex Transm Infect 78:90–92. https://doi.org/10.1136/sti.78.2.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moulder JW (1991) Interaction of Chlamydiae and host cells in vitro. Microbiol Rev 55:143–190

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kari L, Goheen MM, Randall LB et al (2011) Generation of targeted Chlamydia trachomatis null mutants. Proc Natl Acad Sci U S A 108:7189–7193. https://doi.org/10.1073/pnas.1102229108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nguyen BD, Valdivia RH (2012) Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci U S A 109:1263–1268. https://doi.org/10.1073/pnas.1117884109

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kokes M, Dunn JD, Granek JA et al (2015) Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17:716–725. https://doi.org/10.1016/j.chom.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brothwell JA, Muramatsu MK, Toh E et al (2016) Interrogating genes that mediate Chlamydia trachomatis survival in cell culture using conditional mutants and recombination. J Bacteriol 198:2131–2139. https://doi.org/10.1128/JB.00161-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajaram K, Giebel AM, Toh E et al (2015) Mutational analysis of the Chlamydia muridarum plasticity zone. Infect Immun 83:2870–2881. https://doi.org/10.1128/IAI.00106-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colbert T, Till BJ, Tompa R et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484. https://doi.org/10.1104/pp.126.2.480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kari L, Southern TR, Downey CJ et al (2014) Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions. Infect Immun 82:2756–2762. https://doi.org/10.1128/IAI.01686-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang C, Kari L, Sturdevant GL et al (2017) Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions. Pathog Dis 75. https://doi.org/10.1093/femspd/ftx035

  13. Sixt BS, Bastidas RJ, Finethy R et al (2017) The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs. Cell Host Microbe 21:113–121. https://doi.org/10.1016/j.chom.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Snavely EA, Kokes M, Dunn JD et al (2014) Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 71:336–351. https://doi.org/10.1111/2049-632X.12179

    Article  CAS  PubMed  Google Scholar 

  15. Muramatsu MK, Brothwell JA, Stein BD et al (2016) Beyond tryptophan synthase: identification of genes that contribute to Chlamydia trachomatis survival during gamma interferon-induced persistence and reactivation. Infect Immun 84:2791–2801. https://doi.org/10.1128/IAI.00356-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson CM, Fisher DJ (2013) Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron. PLoS One 8:e83989. https://doi.org/10.1371/journal.pone.0083989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lowden NM, Yeruva L, Johnson CM et al (2015) Use of aminoglycoside 3′ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 8:570. https://doi.org/10.1186/s13104-015-1542-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mueller KE, Wolf K, Fields KA (2016) Gene deletion by fluorescence-reported allelic exchange mutagenesis in Chlamydia trachomatis. MBio 7:e01817–e01815. https://doi.org/10.1128/mBio.01817-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keb G, Hayman R, Fields KA (2018) Floxed-cassette allelic exchange mutagenesis enables markerless gene deletion in Chlamydia trachomatis and can reverse cassette-induced polar effects. J Bacteriol 200. https://doi.org/10.1128/JB.00479-18

  20. Demars R, Weinfurter J, Guex E et al (2007) Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J Bacteriol 189:991–1003. https://doi.org/10.1128/JB.00845-06

    Article  CAS  PubMed  Google Scholar 

  21. DeMars R, Weinfurter J (2008) Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J Bacteriol 190:1605–1614. https://doi.org/10.1128/JB.01592-07

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen BD, Valdivia RH (2013) Forward genetic approaches in Chlamydia trachomatis. J Vis Exp (80):e50636. https://doi.org/10.3791/50636

  23. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858. https://doi.org/10.1101/gr.078212.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mueller KE, Wolf K, Fields KA (2017) Chlamydia trachomatis transformation and allelic exchange mutagenesis. Curr Protoc Microbiol 45:11A.3.1–11A.3.15. https://doi.org/10.1002/cpmc.31

    Article  Google Scholar 

  26. Bastidas RJ, Valdivia RH (2016) Emancipating Chlamydia: advances in the genetic manipulation of a recalcitrant intracellular pathogen. Microbiol Mol Biol Rev 80:411–427. https://doi.org/10.1128/MMBR.00071-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 1R21AI140019-01 to R.J.B. We thank Raphael H. Valdivia and members of the Valdivia laboratory for their contributions to the development of this work. We also thank Lee Dolat, Victor J. Ocasio, and Samantha E. Bowen for critical feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Bastidas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kędzior, M., Bastidas, R.J. (2019). Forward and Reverse Genetic Analysis of Chlamydia. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics