Skip to main content

Probes

  • Chapter
  • First Online:
Eddy-Current Nondestructive Evaluation

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

  • 769 Accesses

Abstract

In this chapter, various probe configurations are discussed in the context of particular applications for which they are well suited. Common and more exotic configurations are included. Practically speaking, probes are often composed of more than one coil either for differential operation that is particularly effective in defect detection or so that each coil may be individually optimized for its role as drive or pick up coil. Some probes are of hybrid design, in which a drive coil induces eddy currents in the test-piece yet the signal is measured by another type of sensor, e.g., a Hall device or a giant magnetoresistive (GMR) sensor. Thin, flexible coils designed for in situ structural health monitoring, and array probes designed for rapid wide-area inspection, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, Y.: Potential drop and eddy current nondestructive evaluation problems. Ph.D. thesis, Iowa State University (2012)

    Google Scholar 

  2. Diaz, A.A., Mathews, R.A., Hixon, J., Doctor, S.R., Jackson, D.A., Norris, W.E.: Assessment of eddy current testing for the detection of cracks in cast stainless steel reactor piping components. U.S. Nuclear Regulatory Commission, NUREG/CR-6929 (2007)

    Google Scholar 

  3. Lamtenzan, D., Washer, G., Lozev, M.: Detection and sizing of cracks in structural steel using the eddy current method. U.S. Department of Transportation Federal Highway Administration, FHWA-RD-00-018 (2000)

    Google Scholar 

  4. Ditchburn, R.J., Burke, S.K., Posada, M.: Eddy-current nondestructive inspection with thin spiral coils: long cracks in steel. J. Nondestruct. Eval. 22, 63–77 (2003)

    Article  Google Scholar 

  5. Burke, S.K., Ditchburn, R.J.: Mutual impedance of planar eddy-current driver-pickup spiral coils. Res. Nondestruct. Eval. 19, 1–19 (2008)

    Article  Google Scholar 

  6. Ditchburn, R.J., Burke, S.K.: Planar rectangular spiral coils in eddy-current non-destructive inspection. NDT&E Int. 38, 690–700 (2005)

    Article  CAS  Google Scholar 

  7. Burke, S.K., Ditchburn, R.J., Theodoulidis, T.P.: Impedance of curved rectangular spiral coils around a conductive cylinder. J. Appl. Phys. 104, 014912 (2008)

    Article  Google Scholar 

  8. Burke, S.K., Ditchburn, R.J., Theodoulidis, T.P.: Impedance of a curved spiral coil around a conductive cylinder. NDT&E Int. 64, 1–6 (2014)

    Article  CAS  Google Scholar 

  9. Harrison, D.J.: The detection of corrosion in layered structures using transient eddy currents. In: Collins, R., Dover, W.D., Bowler, J.R., Miya, K. (eds.) Nondestructive Testing of Materials, 1st International Workshop on Electromagnetic Nondestructive Evaluation, London, September 1995. Studies in Applied Electromagnetics and Mechanics, vol. 8, pp. 115–124. IOS Press, Amsterdam (1995)

    Google Scholar 

  10. Smith, R.A., Harrison, D.J.: Hall sensor arrays for rapid large-area transient eddy current inspection. Insight 46, 142–146 (2004)

    Article  Google Scholar 

  11. Park, D.-G., Angani, C.S., Rao, B.C.P., Vértesy, G., Lee, D.-H., Kim, K.-H.: Detection of the subsurface cracks in a stainless steel plate using pulsed eddy current. J. Nondestruct. Eval. 32, 350–353 (2013)

    Article  Google Scholar 

  12. Angani, C.S., Ramos, H.G., Ribeiro, A.L., Rocha, T.J., Prashanth, B.: Transient eddy current oscillations method for the inspection of thickness change in stainless steel. Sens. Actuators A 233, 217–223 (2015)

    Article  CAS  Google Scholar 

  13. Sun, H.: Electromagnetic methods for measuring material properties of cylindrical rods and array probes for rapid flaw inspection Ph.D. thesis, Iowa State University (2005)

    Google Scholar 

  14. Jun, J., Hwang, J., Lee, J.: Quantitative nondestructive evaluation of the crack on the austenite stainless steel using the induced eddy current and the Hall sensor array. In: Paper Presented at the Instrumentation and Measurement Technology Conference - IMTC 2007, Warsaw, Poland, 1–3 May 2007

    Google Scholar 

  15. Jun, J., Lee, J., Kim, J., Le, M., Lee, S.: Eddy current imager based on bobbin-type Hall sensor arrays for nondestructive evaluation in small-bore piping system. In: Thompson, D.O., Chimenti, D.E. (eds.) 39th Annual Review of Progress in Quantitative Nondestructive Evaluation, Denver, CO, USA, July 2012. AIP Conference Proceedings, vol. 1511, pp. 502–509. American Institute of Physics, Melville (2013)

    Google Scholar 

  16. Wang, Z., Shaygan, M., Otto, M., Schall, D., Neumaier, D.: Flexible Hall sensors based on graphene. Nanoscale 8, 7683–7687 (2016)

    Article  CAS  Google Scholar 

  17. Public domain image. https://commons.wikimedia.org/wiki/File:Edwin_Herbert_Hall_(1855-1938).jpg. Accessed 30 Jan 2019

  18. Lebrun, B., Jayet, Y., Baboux, J.-C.: Pulsed eddy current signal analysis: application to the experimental detection and characterization of deep flaws in highly conductive materials. NDT&E Int. 30, 163–170 (1997)

    Article  Google Scholar 

  19. Huang, S., Wang, S.: New Technologies in Electromagnetic Non-destructive Testing. Springer, Singapore (2016)

    Book  Google Scholar 

  20. Tumanski, S.: Induction coil sensors-a review. Meas. Sci. Technol. 18, R31–R46 (2007)

    Article  CAS  Google Scholar 

  21. Prance, R.J., Clark, T.D., Prance, H.: Room temperature induction magnetometers. In: Grimes, C.A., Dickey, E.C., Pishko, M.V. (eds.) Encyclopedia of Sensors, vol. 10, pp. 1–12. American Scientific Publishers, Valencia (2006)

    Google Scholar 

  22. Garcia-Martin, J., Gomez-Gil, J.: Comparative evaluation of coil and Hall probes in hole detection and thickness measurement on aluminum plates using eddy current testing. Russ. J. Nondestruct. Test. 49, 482–491 (2013)

    Article  Google Scholar 

  23. Jiles, D.C.: Introduction to the Principles of Materials Evaluation. CRC Press/Taylor & Francis Group, Boca Raton (2008)

    Google Scholar 

  24. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. IEEE Press, Hoboken (2009)

    Google Scholar 

  25. O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000)

    Google Scholar 

  26. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, f., Petroff, F., Etienne, P., Creuzet, G., Friedrich, A., Chazelas, J.: Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  CAS  Google Scholar 

  27. Parkin, S.S.P., More, N., Roche, K.P.: Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures - Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990)

    Article  CAS  Google Scholar 

  28. Parkin, S.S.P.: Dramatic enhancement of interlayer exchange coupling and giant magnetoresistance in Ni\(_{81}\)Fe\(_{19}\)/Cu multilayers by addition of thin Co interface layers. Appl. Phys. Lett. 61, 1358–1360 (1992)

    Article  CAS  Google Scholar 

  29. Wincheski, B., Namkung, M.: Development of very low frequency self-nulling probe for inspection of thick layered aluminum structures. In: Thompson, D.O., Chimenti, D.E. (eds.) 25th Annual Review of Progress in Quantitative Nondestructive Evaluation, Snowbird, UT, USA, July 1998, vol. 18A, pp. 1177–1184. Springer, USA (1999)

    Chapter  Google Scholar 

  30. Wincheski, B., Namkung, M.: Deep flaw detection with giant magnetoresistive (GMR) based self-nulling probe. In: Thompson, D.O., Chimenti, D.E. (eds.) 26th Annual Review of Progress in Quantitative Nondestructive Evaluation, Montreal, Canada, July 1999. AIP Conference Proceedings, vol. 509, pp. 465–472. American Institute of Physics, Melville (2000)

    Google Scholar 

  31. Dogaru, T., Smith, S.T.: Giant magnetoresistance-based eddy-current sensor. IEEE T. Magn. 37, 3831–3838 (2001)

    Article  Google Scholar 

  32. Nair, N.V., Melapudi, V.R., Jimenez, H.R., Liu, X., Deng, Y., Zeng, Z., Udpa, L., Moran, T.J., Udpa, S.S.: A GMR-based eddy current system for NDE of aircraft structures. IEEE T. Magn. 42, 3312–3314 (2006)

    Article  Google Scholar 

  33. Avrin, W.F.: Eddy current measurements with magneto-resistive sensors: third-layer flaw detection in a wing-splice structure 25 mm thick. In: Mal, A.K. (ed.) Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware IV. Proceedings of SPIE, vol. 3994, pp. 29-36. SPIE (2000)

    Google Scholar 

  34. Dogaru, T., Smith, C.H., Schneider, R.W., Smith, S.T.: Deep crack detection around fastener holes in airplane multi-layered structures using GMR-based eddy current probes. In: Thompson, D.O., Chimenti, D.E., (eds.) 30th Annual Review of Progress in Quantitative Nondestructive Evaluation, Green Bay, WI, USA, July 2003, vols. 23A and 23B, pp. 398–405. American Institute of Physics, Melville (2004)

    Google Scholar 

  35. Kim, J., Yang, G., Udpa, L., Udpa, S.: Classification of pulsed eddy current GMR data on aircraft structures. NDT&E Int. 43, 141–144 (2010)

    Article  CAS  Google Scholar 

  36. Ricken, W., Liu, J., Becker, W.-J.: GMR and eddy current sensor in use of stress measurement. Sens. Actuators A 91, 42–45 (2001)

    Article  CAS  Google Scholar 

  37. Yamada, S., Chomsuwan, K., Fukuda, Y., Iwahara, M., Wakiwaka, H., Shoji, S.: Eddy-current testing probe with spin-valve type GMR sensor for printed circuit board inspection. IEEE T. Magn. 40, 2676–2678 (2004)

    Article  Google Scholar 

  38. Yamada, S., Chomsuwan, K., Hagino, T., Tian, H., Minamide, K., Iwahara, M.: Conductive microbead array detection by high-frequency eddy-current testing technique with SV-GMR sensor. IEEE T. Magn. 41, 3622–3624 (2005)

    Article  Google Scholar 

  39. Sakthivel, M., George, B., Sivaprakasam, M.: A novel GMR-based eddy current sensing probe with extended sensing range. IEEE T. Magn. 52, 4000512 (2016)

    Article  Google Scholar 

  40. Postolache, O., Ribeiro, A.L., Ramos, H.G.: GMR array uniform eddy current probe for defect detection in conductive specimens. Measurement 46, 4369–4378 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Bowler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bowler, N. (2019). Probes. In: Eddy-Current Nondestructive Evaluation. Springer Series in Measurement Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9629-2_8

Download citation

Publish with us

Policies and ethics