Skip to main content

Stem Compression: A Means to Reversibly Reduce Phloem Transport in Tree Stems

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Stem compression reduces or terminates the phloem-mediated transport of carbohydrates and other solutes in tree stems, without causing permanent damage to phloem functioning (Henriksson et al. Tree Physiol. 35:1075–1085, 2015). This has been tested on two species of pine trees, with diameters ranging from 3 to 26 cm in a forest in northern Sweden (Henriksson et al. Tree Physiol. 35:1075–1085, 2015) and in Harvard Forest, USA. Halting the phloem transport of trees in a forest is useful for studying tree physiological processes related to, or dependent on, phloem-transported compounds as well as downstream processes, in particular interactions with soil microbes. Phloem compression can be deployed in the lab and field on single trees, subsets, or over larger areas, depending on what is relevant for a particular research question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noel ARA (1970) The girdled tree. Bot Rev 36:162–195

    Article  Google Scholar 

  2. Aubrey DP, Teskey RO (2018) Stored root carbohydrates can maintain root respiration for extended periods. New Phytol 218:142–152

    Article  CAS  Google Scholar 

  3. Van de Wal BAE, Windt CW, Leroux O, Steppe K (2017) Heat girdling does not affect xylem integrity: an in vivo magnetic resonance imaging study in the tomato peduncle. New Phytol 215:558–568

    Article  Google Scholar 

  4. Swanson CA, Geiger DR (1967) Time course of low temperature inhibition of sucrose translocation in sugar beets. Plant Physiol 42:751–756

    Article  CAS  Google Scholar 

  5. Johnsen K, Maier C, Sanchez F, Anderson P, Butnor J, Waring R, Linder S (2007) Physiological girdling of pine trees via phloem chilling: proof of concept. Plant Cell Environ 30:128–134

    Article  CAS  Google Scholar 

  6. De Schepper V, Vanhaecke L, Steppe K (2011) Localized stem chilling alters carbon processes in the adjacent stem and in source leaves. Tree Physiol 31:1194–1203

    Article  Google Scholar 

  7. Henriksson N, Tarvainen L, Lim H, Tor-Ngern P, Palmroth S, Oren R, Marshall J, Näsholm T (2015) Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. Tree Physiol 35:1075–1085

    Article  Google Scholar 

  8. Devaux M, Ghashghaie J, Bert D, Lambrot C, Gessler A, Bathellier C, Ogee J, Loustau D (2009) Carbon stable isotope ratio of phloem sugars in mature pine trees throughout the growing season: comparison of two extraction methods. Rapid Commun Mass Spectrom 23:2511–2518

    Article  CAS  Google Scholar 

  9. Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Näsholm T (2007) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  10. Nikinmaa E, Sievanen R, Höltta T (2014) Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Ann Bot 114:653–666

    Article  CAS  Google Scholar 

  11. Sovonick-Dunford S, Lee DR, Zimmermann MH (1981) Direct and indirect measurements of phloem turgor pressure in white ash. Plant Physiol 68:121–126

    Article  CAS  Google Scholar 

  12. Wright JP, Fisher DB (1980) Direct measurement of sieve tube turgor pressure using severed aphid stylets. Plant Physiol 65:1133–1135

    Article  CAS  Google Scholar 

  13. Xu Q, Chen S, Yunjuan R, Chen S, Liesche J (2018) Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol 176:930–945

    Article  CAS  Google Scholar 

  14. Liu DD, Chao WM, Turgeon R (2012) Transport of sucrose, not hexose, in the phloem. J Exp Bot 63:4315–4320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Henriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henriksson, N., Rademacher, T.T. (2019). Stem Compression: A Means to Reversibly Reduce Phloem Transport in Tree Stems. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics