Skip to main content

ChIPmentation for Low-Input Profiling of In Vivo Protein–DNA Interactions

  • Protocol
  • First Online:
Single Cell Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1979))

Abstract

Many of the key cellular processes including establishing the cell’s identity are governed by chromatin proteins. Mapping their binding on the level of a single cell would give us important insights into a new dimension of cellular heterogeneity. However, ChIP-seq, the main method to study protein–DNA interaction in the chromatin context, has proven very challenging to scale down. ChIPmentation is a modification of ChIP-seq, in which the Tn5 transposase is used to introduce sequencing adapters in one step. This allows to significantly reduce the required input material. ChIPmentation is a robust and versatile approach and even though it has not yet achieved single-cell resolution, we believe that it is a very promising starting point for further downscaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  2. Helin K, Minucci S (2017) The role of chromatin-associated proteins in cancer. Annu Rev Cancer Biol 1:355–377

    Google Scholar 

  3. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172:650–665

    CAS  PubMed  Google Scholar 

  4. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  5. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    CAS  PubMed  Google Scholar 

  6. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    CAS  PubMed  Google Scholar 

  8. Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48:240–248

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605–616

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC (2015) An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 6:6033. https://doi.org/10.1038/ncomms7033

    Article  CAS  PubMed  Google Scholar 

  11. Dahl JA, Jung I, Aanes H et al (2016) Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537:548–552

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345:943–949

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7:615–618

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shankaranarayanan P, Mendoza-Parra M-A, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat Methods 8:565–567

    CAS  PubMed  Google Scholar 

  15. O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38:835–841

    PubMed  Google Scholar 

  16. Zwart W, Koornstra R, Wesseling J, Rutgers E, Linn S, Carroll JS (2013) A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples. BMC Genomics 14:232

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33:1165–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6:e21856

    PubMed  PubMed Central  Google Scholar 

  19. Hainer SJ, Boskovic A, Rando OJ, Fazzio TG (2018) Profiling of pluripotency factors in individual stem cells and early embryos. bioRxiv 286351

    Google Scholar 

  20. Schmid M, Durussel T, Laemmli UK (2004) ChIC and ChEC; genomic mapping of chromatin proteins. Mol Cell 16:147–157

    CAS  PubMed  Google Scholar 

  21. Schmidl C, Rendeiro AF, Sheffield NC, Bock C (2015) ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods 12:963–965

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stadhouders R, Vidal E, Serra F et al (2018) Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet 50:238–249

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodríguez-Carballo E, Lopez-Delisle L, Zhan Y, Fabre PJ, Beccari L, El-Idrissi I, THN H, Ozadam H, Dekker J, Duboule D (2017) The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev 31:2264–2281

    PubMed  PubMed Central  Google Scholar 

  24. Akay A, Di Domenico T, Suen KM et al (2017) The helicase Aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription. Dev Cell 42:241–255.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bolte C, Flood HM, Ren X, Jagannathan S, Barski A, Kalin TV, Kalinichenko VV (2017) FOXF1 transcription factor promotes lung regeneration after partial pneumonectomy. Sci Rep 7:10690

    PubMed  PubMed Central  Google Scholar 

  26. Akhtar J, More P, Kulkarni A, Marini F, Kaiser W (2018) TAF-ChIP: An ultra-low input approach for genome wide chromatin immunoprecipitation assay. bioRxiv

    Google Scholar 

  27. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalia Kunowska or Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kunowska, N., Chen, X. (2019). ChIPmentation for Low-Input Profiling of In Vivo Protein–DNA Interactions. In: Proserpio, V. (eds) Single Cell Methods. Methods in Molecular Biology, vol 1979. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9240-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9240-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9239-3

  • Online ISBN: 978-1-4939-9240-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics