Skip to main content

Introduction to Topological Order

  • Chapter
  • First Online:
Quantum Information Meets Quantum Matter

Part of the book series: Quantum Science and Technology ((QST))

  • 4879 Accesses

Abstract

In primary school, we were told that there are four states of matter: solid, liquid, gas, and plasma. In college, we learned that there are much more than four states of matter. For example, there are ferromagnetic states as revealed by the phenomenon of magnetization and superfluid states as defined by the phenomenon of zero-viscosity. The various phases in our colorful world are extremely rich. So it is amazing that they can be understood systematically by the symmetry-breaking theory of Landau. However, in the past 20–30 years, we discovered that there are even more interesting phases that are beyond Landau symmetry-breaking theory. In this chapter, we discuss new “topological” phenomena, such as topological degeneracy, that reveal the existence of those new phases—topologically ordered phases. Just like zero-viscosity defines the superfluid order, the new “topological” phenomena define the topological order at macroscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that real-life superconductivity can be described by the Ginzburg–Landau theory with a dynamical U(1) gauge field. The condensation of charge 2e electron pair breaks the U(1) gauge theory into a \(\mathbb {Z}_2\) gauge theory at low energies. A \(\mathbb {Z}_2\) gauge theory is an effective theory of \(\mathbb {Z}_2\) topological order. Thus, a real-life superconductor has a \(\mathbb {Z}_2\) topological order. In many textbooks, superconductivity is described by the Ginzburg–Landau theory without the dynamical U(1) gauge field, which fails to describe the real-life superconductors with dynamical electromagnetic interaction. Such a textbook superconductivity is described by a U(1) symmetry breaking.

References

  1. Ardonne, E., Bergholtz, E. J., Kailasvuori, J., & Wikberg, E. (2008). Degeneracy of non-abelian quantum hall states on the torus: Domain walls and conformal field theory. Journal of Statistical Mechanics: Theory and Experiment, 2008(04), P04016.

    MathSciNet  Google Scholar 

  2. Arovas, D., Schrieffer, J. R., & Wilczek, F. (1984). Fractional statistics and the quantum hall effect. Physical Review Letters, 53, 722–723.

    Article  ADS  Google Scholar 

  3. Barkeshli, M., & Wen, X.-G. (2009). Structure of quasiparticles and their fusion algebra in fractional quantum hall states. Physical Review B, 79, 195132.

    Article  ADS  Google Scholar 

  4. Barkeshli, M., & Wen, X.-G. (2010). Classification of abelian and non-abelian multilayer fractional quantum hall states through the pattern of zeros. Physical Review B, 82, 245301.

    Article  ADS  Google Scholar 

  5. Barkeshli, M., & Wen, X.-G. (2010). Non-abelian two-component fractional quantum hall states. Physical Review B, 82, 233301.

    Article  ADS  Google Scholar 

  6. Belov, D., & Moore, G. W. (2005). Classification of abelian spin Chern-Simons theories.

    Google Scholar 

  7. Bergholtz, E. J., Kailasvuori, J., Wikberg, E., Hansson, T. H., & Karlhede, A. (2006). The pfaffian quantum hall state made simple-multiple vacua and domain walls on a thin torus. Physical Review B, 74, 081308.

    Article  ADS  Google Scholar 

  8. Bernevig, B. A., & Haldane, F. D. M. (2008). Fractional quantum hall states and jack polynomials. Physical Review Letters, 100, 246802.

    Google Scholar 

  9. Blok, B., & Wen, X.-G. (1990). Effective theories of fractional quantum hall effect: Hierarchical construction. Physical Review B, 42, 8145.

    Article  ADS  Google Scholar 

  10. Castelnovo, C., Moessner, R., & Sondhi, S. L. (2012). Spin Ice, fractionalization and topological order. Annual Review of Condensed Matter Physics, 3, 35.

    Article  Google Scholar 

  11. Chen, X., Zheng-Cheng, G., & Wen, X.-G. (2010). Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Physical Review B, 82, 155138.

    Article  ADS  Google Scholar 

  12. Cincio, L., & Vidal, G. (2013). Characterizing topological order by studying the ground states of an infinite cylinder. Physical Review Letters, 110, 067208.

    Article  ADS  Google Scholar 

  13. Dennis, E., Kitaev, A., Landahl, A., & Preskill, J. (2002). Topological quantum memory. Journal of Mathematical Physics, 43, 4452–4505.

    Article  ADS  MathSciNet  Google Scholar 

  14. Ezawa, Z. F., & Iwazaki, A. (1991). Physical Review B, 43, 2637.

    Article  ADS  Google Scholar 

  15. Fidkowski, L., Freedman, M., Nayak, C., Walker, K., & Wang, Z. (2006). From string nets to nonabelions.

    Google Scholar 

  16. Fröhlich, J., & Kerler, T. (1991). Nuclear Physics B, 354, 369.

    Article  ADS  MathSciNet  Google Scholar 

  17. Fröhlich, J., & Studer, U. M. (1993). Reviews of Modern Physics, 65, 733.

    Article  ADS  MathSciNet  Google Scholar 

  18. Fröhlich, J., & Zee, A. (1991). Nuclear Physics B, 364, 517.

    Article  ADS  MathSciNet  Google Scholar 

  19. Ginzburg, V. L., & Landau, L. D. (1950). On the theory of superconductivity. Zh. Eksp. Teor. Fiz., 20, 1064–1082.

    Google Scholar 

  20. Girvin, S. M., & MacDonald, A. H. (1987). Off-diagonal long-range order, oblique confinement, and the fractional quantum hall effect. Physical Review Letters, 58, 1252.

    Article  ADS  Google Scholar 

  21. Haldane, F. D. M., & Rezayi, E. H. (1985). Periodic laughlin-jastrow wave functions for the fractional quantized hall effect. Physical Review B, 31, 2529–2531.

    Article  ADS  Google Scholar 

  22. Halperin, B. I. (1982). Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Physical Review B, 25, 2185–2190.

    Article  ADS  Google Scholar 

  23. Halperin, B. I. (1984). Statistics of quasiparticles and the hierarchy of fractional quantized hall states. Physical Review Letters, 52, 1583.

    Article  ADS  Google Scholar 

  24. Hansson, T. H., Oganesyan, V., & Sondhi, S. L. (2004). Superconductors are topologically ordered. Annals of Physics, 313, 497.

    Article  ADS  MathSciNet  Google Scholar 

  25. Hastings, M. B., & Wen, X.-G. (2005). Quasi-adiabatic continuation of quantum states: The stability of topological ground state degeneracy and emergent gauge invariance. Physical Review B, 72, 045141.

    Article  ADS  Google Scholar 

  26. Hermele, M., Fisher, M. P. A., & Balents, L. (2004). Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet. Physical Review B, 69, 064404.

    Article  ADS  Google Scholar 

  27. Hong, S.-M. (2009). On symmetrization of 6j-symbols and Levin-Wen Hamiltonian.

    Google Scholar 

  28. Hu, Y., Stirling, S. D., & Wu, Y.-S. (2011). Ground state degeneracy in the Levin-Wen model for topological phases.

    Google Scholar 

  29. Hu, Y., Wan, Y., & Wu, Y.-S. (2013). Twisted quantum double model of topological phases in two-dimension. Physical Review B, 87, 125114.

    Article  ADS  Google Scholar 

  30. Hung, L.-Y., & Wan, Y. (2012). String-net models with \(Z_N\) fusion algebra. Physical Review, 86, 235132.

    Article  Google Scholar 

  31. Jackiw, R., & Rebbi, C. (1976). Solitons with fermion number 1/2. Physical Review, 13, 3398–3409.

    ADS  MathSciNet  Google Scholar 

  32. Kalmeyer, V., & Laughlin, R. B. (1987). Equivalence of the resonating-valence-bond and fractional quantum hall states. Physical Review Letters, 59, 2095–2098.

    Article  ADS  Google Scholar 

  33. Keski-Vakkuri, E., & Wen, X.-G. (1993). Ground state structure of hierarchical QH states on torus and modular transformation. International Journal of Modern Physics B, 7, 4227.

    Article  ADS  Google Scholar 

  34. Kitaev, A. Yu. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics (N.Y.), 303, 2–30.

    Google Scholar 

  35. Kitaev, A., & Kong, L. (2012). Models for gapped boundaries and domain walls. Communications in Mathematical Physics, 313, 351–373.

    Article  ADS  MathSciNet  Google Scholar 

  36. Kitaev, A., & Preskill, J. (2006). Topological entanglement entropy. Physical Review Letters, 96, 110404.

    Article  ADS  MathSciNet  Google Scholar 

  37. Landau, L. D. (1937). Theory of phase transformations i. Physikalische Zeitschrift der Sowjetunion, 11, 26.

    MATH  Google Scholar 

  38. Landau, L. D., & Lifschitz, E. M. (1958). Statistical physics - course of theoretical physics (Vol. 5). London: Pergamon.

    Google Scholar 

  39. Laughlin, R. B. (1983). Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Physical Review Letters, 50, 1395–1398.

    Article  ADS  Google Scholar 

  40. Levin, M., & Wen, X.-G. String-net condensation: A physical mechanism for topological phases. In Physical Review B, [42], p. 045110.

    Google Scholar 

  41. Levin, M., & Wen, X.-G. (2003). Fermions, strings, and gauge fields in lattice spin models. Physical Review B, 67, 245316.

    Article  ADS  Google Scholar 

  42. Levin, M., & Wen, X.-G. (2005). String-net condensation: A physical mechanism for topological phases. Physical Review B, 71, 045110.

    Article  ADS  Google Scholar 

  43. Levin, M. A., & Wen, X.-G. (2005). Photons and electrons as emergent phenomena. Reviews of Modern Physics, 77, 871.

    Article  ADS  Google Scholar 

  44. Levin, M., & Wen, X.-G. (2006). Detecting topological order in a ground state wave function. Physical Review Letters, 96, 110405.

    Article  ADS  Google Scholar 

  45. Levin, M., & Wen, X.-G. (2006). Quantum ether: Photons and electrons from a rotor model. Physical Review B, 73, 035122.

    Article  ADS  Google Scholar 

  46. MacDonald, A. H. (1990). Physical Review Letters, 64, 220.

    Article  ADS  Google Scholar 

  47. Misguich, G., Lhuillier, C., Bernu, B., & Waldtmann, C. (1999). Spin-liquid phase of the multiple-spin exchange hamiltonian on the triangular lattice. Physical Review B, 60, 1064.

    Article  ADS  Google Scholar 

  48. Moessner, R., & Sondhi, S. L. (2001). Resonating valence bond phase in the triangular lattice quantum dimer model. Physical Review Letters, 86, 1881.

    Article  ADS  Google Scholar 

  49. Moessner, R., & Sondhi, S. L. (2003). Three-dimensional resonating-valence-bond liquids and their excitations. Physical Review B, 68, 184512.

    Article  ADS  Google Scholar 

  50. Moore, G., & Read, N. (1991). Nuclear Physics B, 360, 362.

    Article  ADS  MathSciNet  Google Scholar 

  51. Read, N. (1989). Physical Review Letters, 62, 86.

    Article  ADS  Google Scholar 

  52. Read, N., & Sachdev, S. (1991). Large-N expansion for frustrated quantum antiferromagnets. Physical Review Letters, 66, 1773.

    Article  ADS  Google Scholar 

  53. Seidel, A. (2008). Pfaffian statistics through adiabatic transport in the 1D coherent state. Physical Review Letters, 101, 196802.

    Article  ADS  Google Scholar 

  54. Seidel, A. (2010). S-duality constraints on 1D patterns associated with fractional quantum Hall states. Physical Review Letters, 105, 026802.

    Article  ADS  Google Scholar 

  55. Seidel, A., & Lee, D.-H. (2006). Abelian and non-abelian hall liquids and charge density wave: Quantum number fractionalization in one and two dimensions. Physical Review Letters, 97, 056804.

    Article  ADS  Google Scholar 

  56. Seidel, A., & Lee, D.-H. (2007). Domain wall type defects as anyons in phase space. Physical Review B, 76, 155101.

    Article  ADS  Google Scholar 

  57. Seidel, A., & Yang, K. (2008). Halperin (m, m’, n) bilayer quantum hall states on thin cylinders.

    Google Scholar 

  58. Senthil, T., & Motrunich, O. (2002). Microscopic models for fractionalized phases in strongly correlated systems. Physical Review B, 66, 205104–205113.

    Article  ADS  Google Scholar 

  59. Tsui, D. C., Stormer, H. L., & Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters, 48, 1559–1562.

    Article  ADS  Google Scholar 

  60. Tu, H.-H., Zhang, Y. & Qi, X.-L. (2012). Momentum polarization: An entanglement measure of topological spin and chiral central charge. arXiv:1212.6951.

  61. von Klitzing, K., Dorda, G., & Pepper, M. (1980). New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45, 494–497.

    Article  ADS  Google Scholar 

  62. Walker, K., & Wang, Z. (2011). (3+1)-TQFTs and topological insulators.

    Google Scholar 

  63. Wang, Z. (2010). Topological quantum computation. CBMS regional conference series in mathematics.

    Google Scholar 

  64. Wen, X.-G. (1989). Vacuum degeneracy of chiral spin state in compactified spaces. Physical Review B, 40, 7387.

    Article  ADS  Google Scholar 

  65. Wen, X.-G. (1990). Topological orders in rigid states. International Journal of Modern Physics B, 4, 239.

    Article  ADS  MathSciNet  Google Scholar 

  66. Wen, X.-G. (1991). Gapless boundary excitations in the FQH states and in the chiral spin states. Physical Review B, 43, 11025.

    Article  ADS  Google Scholar 

  67. Wen, X.-G. Mean field theory of spin liquid states with finite energy gaps. Physical Review B [68], 2664.

    Google Scholar 

  68. Wen, X.-G. (1991). Mean field theory of spin liquid states with finite energy gaps. Physical Review B, 44, 2664.

    Article  ADS  Google Scholar 

  69. Wen, X.-G. (1991). Non-abelian statistics in the FQH states. Physical Review Letters, 66, 802.

    Article  ADS  MathSciNet  Google Scholar 

  70. Wen, X.-G. (1991). Topological orders and chern-simons theory in strongly correlated quantum liquid. International Journal of Modern Physics B, 5, 1641.

    Article  ADS  MathSciNet  Google Scholar 

  71. Wen, X.-G. (2002). Origin of gauge bosons from strong quantum correlations (origin of light). Physical Review Letters, 88, 11602.

    Article  ADS  Google Scholar 

  72. Wen, X.-G. (2002). Quantum order: A quantum entanglement of many particles. Physics Letters A, 300, 175.

    Article  ADS  MathSciNet  Google Scholar 

  73. Wen, X.-G. (2003). Artificial light and quantum order in systems of screened dipoles. Physical Review B, 68, 115413.

    Article  ADS  Google Scholar 

  74. Wen, X.-G. (2003). Quantum order from string-net condensations and origin of light and massless fermions. Physical Review D, 68, 065003.

    Article  ADS  Google Scholar 

  75. Wen, X.-G., & Niu, Q. (1990). Ground state degeneracy of the FQH states in presence of random potentials and on high genus riemann surfaces. Physical Review B, 41, 9377.

    Article  ADS  Google Scholar 

  76. Wen, X.-G., & Wang, Z. (2008). Classification of symmetric polynomials of infinite variables: Construction of abelian and non-abelian quantum hall states. Physical Review B, 77, 235108.

    Article  ADS  MathSciNet  Google Scholar 

  77. Wen, X.-G., & Wang, Z. (2008). Topological properties of abelian and non-abelian quantum hall states from the pattern of zeros. Physical Review B, 78, 155109.

    Article  ADS  Google Scholar 

  78. Wen, X.-G., & Zee, A. (1998). Topological degeneracy of quantum hall fluids. Physical Review B, 58, 15717.

    Article  ADS  Google Scholar 

  79. Wen, X.-G., & Zee, A. (1992). A classification and matrix formulation of the abelian FQH states. Physical Review B, 46, 2290.

    Article  ADS  Google Scholar 

  80. Wen, X.-G., Wilczek, F., & Zee, A. (1989). Chiral spin states and superconductivity. Physical Review B, 39, 11413.

    Article  ADS  Google Scholar 

  81. Wilczek, F., & Zee, A. (1984). Appearance of gauge structure in simple dynamical systems. Physical Review Letters, 52, 2111.

    Article  ADS  MathSciNet  Google Scholar 

  82. Witten, E. (1989). Quantum field theory and the jones polynomial. Communications in Mathematical Physics, 121, 351–399.

    Article  ADS  MathSciNet  Google Scholar 

  83. Yang, C. N. (1962). Concept of off-diagonal long-range order and the quantum phases of liquid he and of superconductors. Reviews of Modern Physics, 34, 694–704.

    Article  ADS  MathSciNet  Google Scholar 

  84. Yang, C. N., & Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191.

    Article  ADS  MathSciNet  Google Scholar 

  85. Zaletel, M. P., Mong, R. S. K. & Pollmann, F. (2012). Topological characterization of fractional quantum Hall ground states from microscopic Hamiltonians.

    Google Scholar 

  86. Zhang, Y., & Vishwanath, A. (2012). Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via Entanglement Entropy and Modular S-matrix.

    Google Scholar 

  87. Zhang, S. C., Hansson, T. H., & Kivelson, S. (1989). Effective-field-theory model for the fractional quantum hall effect. Physical Review Letters, 62, 82.

    Article  ADS  Google Scholar 

  88. Zhang, Y., Grover, T., Turner, A., Oshikawa, M., & Vishwanath, A. (2012). Quasi-particle statistics and braiding from ground state entanglement. Physical Review B, 85, 235151.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, B., Chen, X., Zhou, DL., Wen, XG. (2019). Introduction to Topological Order. In: Quantum Information Meets Quantum Matter. Quantum Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9084-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9084-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9082-5

  • Online ISBN: 978-1-4939-9084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics