Skip to main content

Myelin: Methods for Purification and Proteome Analysis

  • Protocol
  • First Online:
Oligodendrocytes

Abstract

Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive “omics”-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifications, RNA, or myelin from peripheral nerves. Notably, technical advancements in solubilizing myelin are beneficial for gel-based and gel-free myelin proteome analyses. We conclude this article by exemplifying the exceptional power of label-free proteomics in the mass-spectrometric quantification of myelin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folch J, Ascoli I, Lees M, Meath JA, Le BN (1951) Preparation of lipide extracts from brain tissue. J Biol Chem 191(2):833–841

    CAS  PubMed  Google Scholar 

  2. Folch J, Lees M (1951) Proteolipides, a new type of tissue lipoproteins; their isolation from brain. J Biol Chem 191(2):807–817

    CAS  PubMed  Google Scholar 

  3. Lees MB (1998) A history of proteolipids: a personal memoir. Neurochem Res 23(3):261–271

    Article  CAS  PubMed  Google Scholar 

  4. Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40(1):55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mobius W, Patzig J, Nave KA, Werner HB (2008) Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol 4(2):111–127. https://doi.org/10.1017/S1740925X0900009X

    Article  PubMed  Google Scholar 

  6. de Monasterio-Schrader P, Patzig J, Mobius W, Barrette B, Wagner TL, Kusch K, Edgar JM, Brophy PJ, Werner HB (2013) Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. Glia 61(11):1832–1847. https://doi.org/10.1002/glia.22561

    Article  PubMed  Google Scholar 

  7. Brophy PJ, Horvath LI, Marsh D (1984) Stoichiometry and specificity of lipid-protein interaction with myelin proteolipid protein studied by spin-label electron spin resonance. Biochemistry 23(5):860–865

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi Y, Ikenaka K, Niinobe M, Yamada H, Mikoshiba K (1996) Myelin proteolipid protein (PLP), but not DM-20, is an inositol hexakisphosphate-binding protein. J Biol Chem 271(44):27838–27846

    Article  CAS  PubMed  Google Scholar 

  9. Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151(1):143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kramer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA (2006) Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia. J Neurosci 26(45):11743–11752. https://doi.org/10.1523/JNEUROSCI.3581-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozgen H, Schrimpf W, Hendrix J, de Jonge JC, Lamb DC, Hoekstra D, Kahya N, Baron W (2014) The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix. PLoS One 9(7):e101834. https://doi.org/10.1371/journal.pone.0101834

    Article  PubMed Central  PubMed  Google Scholar 

  12. Werner HB, Kramer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Mobius W, Moser T, Griffiths IR, Nave KA (2013) A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 61(4):567–586. https://doi.org/10.1002/glia.22456

    Article  PubMed  Google Scholar 

  13. Mandel P, Borkowski T, Harth S, Mardell R (1961) Incorporation of 32P in ribonucleic acid of subcellular fractions of various regions of the rat central nervous system. J Neurochem 8:126–138

    Article  CAS  PubMed  Google Scholar 

  14. Eichberg J, Whittaker VP, Dawson RM (1964) Distribution of lipids in subcellular particles of Guinea-pig brain. Biochem J 92(1):91–100

    Article  CAS  PubMed  Google Scholar 

  15. Korey SR, Orchen M, Brotz M (1958) Studies of white matter. I. Chemical constitution and respiration of neuroglial and myelin enriched fractions of white matter. J Neuropathol Exp Neurol 17(3):430–438

    Article  CAS  PubMed  Google Scholar 

  16. August C, Davison AN, Maurice-Williams F (1961) Phospholipid metabolism in nervous tissue. 4. Incorporation of P32 into the lipids of subcellular fractions of the brain. Biochem J 81:8–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Autilio LA, Norton WT, Terry RD (1964) The preparation and some properties of purified myelin from the central nervous system. J Neurochem 11:17–27

    Article  CAS  PubMed  Google Scholar 

  18. Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21(4):749–757

    Article  CAS  PubMed  Google Scholar 

  19. Haley JE, Samuels FG, Ledeen RW (1981) Study of myelin purity in relation to axonal contaminants. Cell Mol Neurobiol 1(2):175–187

    Article  CAS  PubMed  Google Scholar 

  20. Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Mobius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27(29):7717–7730. https://doi.org/10.1523/JNEUROSCI.1254-07.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wiggins RC, Fuller GN (1981) Analysis of distribution of rat sciatic nerve protein among soluble, insoluble, and myelin subfraction. Neurochem Res 6(6):719–727

    Article  CAS  PubMed  Google Scholar 

  22. Gent WL, Gregson NA, Gammack DB, Raper JH (1964) The lipid-protein unit in myelin. Nature 204:553–555

    Article  CAS  PubMed  Google Scholar 

  23. Wolfgram F, Kotorii K (1968) The composition of the myelin proteins of the central nervous system. J Neurochem 15(11):1281–1290

    Article  CAS  PubMed  Google Scholar 

  24. Morell P, Greenfield S, Costantino-Ceccarini E, Wisniewski H (1972) Changes in the protein composition of mouse brain myelin during development. J Neurochem 19(11):2545–2554

    Article  CAS  PubMed  Google Scholar 

  25. Ewald A, Kühne W (1874-1877) Ueber einen neuen Bestandtheil des Nervensystems. Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg 1:457–464

    Google Scholar 

  26. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21(4):759–773

    Article  CAS  PubMed  Google Scholar 

  27. Finean JB (1953) Phospholipid-cholesterol complex in the structure of myelin. Experientia 9(1):17–19

    Article  CAS  PubMed  Google Scholar 

  28. Cuzner ML, Davison AN, Gregson NA (1965) The chemical composition of vertebrate myelin and microsomes. J Neurochem 12(6):469–481

    Article  CAS  PubMed  Google Scholar 

  29. Gopalakrishnan G, Awasthi A, Belkaid W, De Faria O Jr, Liazoghli D, Colman DR, Dhaunchak AS (2013) Lipidome and proteome map of myelin membranes. J Neurosci Res 91(3):321–334. https://doi.org/10.1002/jnr.23157

    Article  CAS  PubMed  Google Scholar 

  30. Thakurela S, Garding A, Jung RB, Muller C, Goebbels S, White R, Werner HB, Tiwari VK (2016) The transcriptome of mouse central nervous system myelin. Sci Rep 6:25828. https://doi.org/10.1038/srep25828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB (2012) Systematic approaches to central nervous system myelin. Cell Mol Life Sci 69(17):2879–2894. https://doi.org/10.1007/s00018-012-0958-9

    Article  CAS  PubMed  Google Scholar 

  32. Manrique-Hoyos N, Jurgens T, Gronborg M, Kreutzfeldt M, Schedensack M, Kuhlmann T, Schrick C, Bruck W, Urlaub H, Simons M, Merkler D (2012) Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann Neurol 71(2):227–244. https://doi.org/10.1002/ana.22681

    Article  PubMed  Google Scholar 

  33. Dagley LF, White CA, Liao Y, Shi W, Smyth GK, Orian JM, Emili A, Purcell AW (2014) Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain. Proteomics 14(2–3):241–261. https://doi.org/10.1002/pmic.201300196

    Article  CAS  PubMed  Google Scholar 

  34. Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Mobius W, Goebbels S, Schaeren-Wiemers N, Nave KA, Werner HB (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. Elife 5. https://doi.org/10.7554/eLife.17119

  35. Dumont D, Noben JP, Moreels M, Vanderlocht J, Hellings N, Vandenabeele F, Lambrichts I, Stinissen P, Robben J (2007) Characterization of mature rat oligodendrocytes: a proteomic approach. J Neurochem 102(2):562–576. https://doi.org/10.1111/j.1471-4159.2007.04575.x

    Article  CAS  PubMed  Google Scholar 

  36. Iwata K, Cafe-Mendes CC, Schmitt A, Steiner J, Manabe T, Matsuzaki H, Falkai P, Turck CW, Martins-de-Souza D (2013) The human oligodendrocyte proteome. Proteomics 13(23–24):3548–3553. https://doi.org/10.1002/pmic.201300201

    Article  CAS  PubMed  Google Scholar 

  37. Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM, Martins-de-Souza D (2016) Effect of MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell Neurosci 10:52. https://doi.org/10.3389/fncel.2016.00052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18(12):1819–1831. https://doi.org/10.1038/nn.4160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Werner HB, Jahn O (2010) Myelin matters: proteomic insights into white matter disorders. Expert Rev Proteomics 7(2):159–164

    Article  CAS  PubMed  Google Scholar 

  40. Farias AS, Pradella F, Schmitt A, Santos LM, Martins-de-Souza D (2014) Ten years of proteomics in multiple sclerosis. Proteomics 14(4–5):467–480. https://doi.org/10.1002/pmic.201300268

    Article  CAS  PubMed  Google Scholar 

  41. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690

    Article  CAS  PubMed  Google Scholar 

  42. Simons M, Lyons DA (2013) Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 25(4):512–519. https://doi.org/10.1016/j.ceb.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  43. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101

    Article  CAS  PubMed  Google Scholar 

  44. Mobius W, Nave KA, Werner HB (2016) Electron microscopy of myelin: structure preservation by high-pressure freezing. Brain Res 1641(Pt A):92–100. https://doi.org/10.1016/j.brainres.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  45. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM (1966) Hydrogen ion buffers for biological research. Biochemistry 5(2):467–477

    Article  CAS  PubMed  Google Scholar 

  46. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9(6):255–262. https://doi.org/10.1002/elps.1150090603

    Article  CAS  PubMed  Google Scholar 

  47. Patzig J, Jahn O, Tenzer S, Wichert SP, de Monasterio-Schrader P, Rosfa S, Kuharev J, Yan K, Bormuth I, Bremer J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Mobius W, Nave KA, Werner HB (2011) Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 31(45):16369–16386. https://doi.org/10.1523/JNEUROSCI.4016-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  CAS  PubMed  Google Scholar 

  49. Taylor CM, Pfeiffer SE (2003) Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by two-dimensional gel electrophoresis. Proteomics 3(7):1303–1312. https://doi.org/10.1002/pmic.200300451

    Article  CAS  PubMed  Google Scholar 

  50. Jahn O, Tenzer S, Bartsch N, Patzig J, Werner HB (2013) Myelin proteome analysis: methods and implications for the myelin cytoskeleton. NeuroMethods 79:335–353

    Article  CAS  Google Scholar 

  51. Moche M, Albrecht D, Maass S, Hecker M, Westermeier R, Buttner K (2013) The new horizon in 2D electrophoresis: new technology to increase resolution and sensitivity. Electrophoresis 34(11):1510–1518. https://doi.org/10.1002/elps.201200618

    Article  CAS  PubMed  Google Scholar 

  52. Distler U, Kuharev J, Navarro P, Tenzer S (2016) Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc 11(4):795–812. https://doi.org/10.1038/nprot.2016.042

    Article  CAS  PubMed  Google Scholar 

  53. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  PubMed  Google Scholar 

  54. Distler U, Kuharev J, Tenzer S (2014) Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Expert Rev Proteomics 11(6):675–684. https://doi.org/10.1586/14789450.2014.971114

    Article  CAS  PubMed  Google Scholar 

  55. Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11(2):167–170. https://doi.org/10.1038/nmeth.2767

    Article  CAS  PubMed  Google Scholar 

  56. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156. https://doi.org/10.1074/mcp.M500230-MCP200

    Article  CAS  PubMed  Google Scholar 

  57. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374. https://doi.org/10.1038/ng1095

    Article  CAS  PubMed  Google Scholar 

  58. Edgar JM, McLaughlin M, Werner HB, McCulloch MC, Barrie JA, Brown A, Faichney AB, Snaidero N, Nave KA, Griffiths IR (2009) Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 57(16):1815–1824. https://doi.org/10.1002/glia.20893

    Article  PubMed  Google Scholar 

  59. Hagemeyer N, Goebbels S, Papiol S, Kastner A, Hofer S, Begemann M, Gerwig UC, Boretius S, Wieser GL, Ronnenberg A, Gurvich A, Heckers SH, Frahm J, Nave KA, Ehrenreich H (2012) A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 4(6):528–539. https://doi.org/10.1002/emmm.201200230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sherman DL, Wu LM, Grove M, Gillespie CS, Brophy PJ (2012) Drp2 and periaxin form Cajal bands with dystroglycan but have distinct roles in Schwann cell growth. J Neurosci 32(27):9419–9428. https://doi.org/10.1523/JNEUROSCI.1220-12.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Domenech-Estevez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36(16):4506–4521. https://doi.org/10.1523/JNEUROSCI.3521-15.2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Yannakakis MP, Tzoupis H, Michailidou E, Mantzourani E, Simal C, Tselios T (2016) Molecular dynamics at the receptor level of immunodominant myelin oligodendrocyte glycoprotein 35-55 epitope implicated in multiple sclerosis. J Mol Graph Model 68:78–86. https://doi.org/10.1016/j.jmgm.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  63. Derfuss T, Parikh K, Velhin S, Braun M, Mathey E, Krumbholz M, Kumpfel T, Moldenhauer A, Rader C, Sonderegger P, Pollmann W, Tiefenthaller C, Bauer J, Lassmann H, Wekerle H, Karagogeos D, Hohlfeld R, Linington C, Meinl E (2009) Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci U S A 106(20):8302–8307. https://doi.org/10.1073/pnas.0901496106

    Article  PubMed Central  PubMed  Google Scholar 

  64. Fewou SN, Fernandes A, Stockdale K, Francone VP, Dupree JL, Rosenbluth J, Pfeiffer SE, Bansal R (2010) Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J Neurochem 112(3):599–610. https://doi.org/10.1111/j.1471-4159.2009.06464.x

    Article  CAS  PubMed  Google Scholar 

  65. Martins-de-Souza D (2011) Proteomics as a tool for understanding schizophrenia. Clin Psychopharmacol Neurosci 9(3):95–101. https://doi.org/10.9758/cpn.2011.9.3.95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC, Lu YC, Chien HJ, Liu TT, Chang MH, Lin KP, Tu PH, Kao LS, Lee YC (2013) Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet 92(3):422–430. https://doi.org/10.1016/j.ajhg.2013.01.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Larocca JN, Norton WT (2007) Isolation of myelin. Curr Protoc Cell Biol Chapter 3:Unit3.25

    Google Scholar 

  68. Menon K, Rasband MN, Taylor CM, Brophy P, Bansal R, Pfeiffer SE (2003) The myelin-axolemmal complex: biochemical dissection and the role of galactosphingolipids. J Neurochem 87(4):995–1009

    Article  CAS  PubMed  Google Scholar 

  69. Cammer W, Bieler L, Fredman T, Norton WT (1977) Quantitation of myelin carbonic anhydrase-development and subfractionation of rat brain myelin and comparison with myelin from other species. Brain Res 138(1):17–28

    Article  CAS  PubMed  Google Scholar 

  70. Danks DM, Matthieu JM (1979) Hypotheses regarding myelination derived from comparisons of myelin subfractions. Life Sci 24(16):1425–1440

    Article  CAS  PubMed  Google Scholar 

  71. Sheads LD, Eby MJ, Sampugna J (1977) Myelin subfractions isolated from mouse brain. Studies of normal mice during development, quaking mutants, and three brain regions. J Neurobiol 8(1):67–89. https://doi.org/10.1002/neu.480080106

    Article  CAS  PubMed  Google Scholar 

  72. Kirschner DA, Inouye H, Ganser AL, Mann V (1989) Myelin membrane structure and composition correlated: a phylogenetic study. J Neurochem 53(5):1599–1609

    Article  CAS  PubMed  Google Scholar 

  73. Waehneldt TV (1990) Phylogeny of myelin proteins. Ann N Y Acad Sci 605:15–28

    Article  CAS  PubMed  Google Scholar 

  74. Roth AD, Ivanova A, Colman DR (2006) New observations on the compact myelin proteome. Neuron Glia Biol 2(1):15–21. https://doi.org/10.1017/S1740925X06000068

    Article  PubMed  Google Scholar 

  75. Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132(Pt 2):465–481. https://doi.org/10.1093/brain/awn334

    Article  PubMed Central  PubMed  Google Scholar 

  76. Ishii A, Dutta R, Wark GM, Hwang SI, Han DK, Trapp BD, Pfeiffer SE, Bansal R (2009) Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci U S A 106(34):14605–14610. https://doi.org/10.1073/pnas.0905936106

    Article  PubMed Central  PubMed  Google Scholar 

  77. Nawaz S, Schweitzer J, Jahn O, Werner HB (2013) Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia 61(8):1364–1377

    Article  PubMed  Google Scholar 

  78. Morris JK, Willard BB, Yin X, Jeserich G, Kinter M, Trapp BD (2004) The 36K protein of zebrafish CNS myelin is a short-chain dehydrogenase. Glia 45(4):378–391. https://doi.org/10.1002/glia.10338

    Article  PubMed  Google Scholar 

  79. Schaefer K, Brosamle C (2009) Zwilling-A and -B, two related myelin proteins of teleosts, which originate from a single bicistronic transcript. Mol Biol Evol 26(3):495–499. https://doi.org/10.1093/molbev/msn298

    Article  CAS  PubMed  Google Scholar 

  80. Luo S, Wehr NB, Levine RL (2006) Quantitation of protein on gels and blots by infrared fluorescence of Coomassie blue and Fast Green. Anal Biochem 350(2):233–238. https://doi.org/10.1016/j.ab.2005.10.048

    Article  CAS  PubMed  Google Scholar 

  81. Harris LR, Churchward MA, Butt RH, Coorssen JR (2007) Assessing detection methods for gel-based proteomic analyses. J Proteome Res 6(4):1418–1425. https://doi.org/10.1021/pr0700246

    Article  CAS  PubMed  Google Scholar 

  82. Schmidt C, Hesse D, Raabe M, Urlaub H, Jahn O (2013) An automated in-gel digestion/iTRAQ-labeling workflow for robust quantification of gel-separated proteins. Proteomics 13(9):1417–1422. https://doi.org/10.1002/pmic.201200366

    Article  CAS  PubMed  Google Scholar 

  83. Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1(3):1351–1358

    Article  CAS  PubMed  Google Scholar 

  84. Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1(4):1732–1742. https://doi.org/10.1038/nprot.2006.256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Jahn O, Hesse D, Reinelt M, Kratzin HD (2006) Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry. Anal Bioanal Chem 386(1):92–103. https://doi.org/10.1007/s00216-006-0592-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank K.-A. Nave for discussions and financial support made possible by an European Research Council (ERC) Advanced Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olaf Jahn or Hauke B. Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Erwig, M.S. et al. (2019). Myelin: Methods for Purification and Proteome Analysis. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics