Skip to main content

Green Chemistry in Analytical Chemistry

  • Reference work entry
  • First Online:
Green Chemistry and Chemical Engineering
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology,

Glossary

Assisted extraction:

Extraction processes to remove a compound or group of them from a given material that require an external source of energy (e.g., microwave, ultrasound) in order to enhance its yield or efficiency.

Green Analytical Chemistry (GAC):

Derived from the Green Chemistry philosophy, Green Analytical Chemistry (GAC) is the design and development of analytical procedures to determine certain compounds in a given sample that generate less hazardous substances, involving atom economy and energy efficiency. Without impairing efficiency even at low concentrations of analyte in complex matrix compositions, it encompasses preventing or reducing waste, using less toxic or benign renewable chemicals, designing energy-efficient analytical methodologies, eliminating or reducing the use of derivatization reagents and other auxiliary substances, using catalysis rather than stoichiometric reactions, real-time and in-process monitoring analyses than off-line analysis, and using...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Anastas PT (1999) Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175

    Article  CAS  Google Scholar 

  3. Carson R (1962) Silent Spring. Houghton Mifflin, Boston

    Google Scholar 

  4. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. TrAC Trends Anal Chem 27:497–511

    Article  CAS  Google Scholar 

  5. de la Guardia M, Armenta S (2011) Green analytical chemistry: theory and practice. Elsevier, Amsterdam

    Book  Google Scholar 

  6. European Environment Agency (EEA) (2013) Celebrating Europe and its environment. https://www.eea.europa.eu/environmental-time-line. Accessed 17 Jan 2018

  7. United States Environmental Protection Agency (US EPA) EPA History. https://www.epa.gov/history. Accessed 17 Jan 2018

  8. de la Guardia M, Ruzicka J (1995) Guest editorial. Towards environmentally conscientious analytical chemistry through miniaturization, containment and reagent replacement. Analyst 120:17N

    Article  Google Scholar 

  9. Koel M, Kaljurand M (2006) Application of the principles of green chemistry in analytical chemistry. Pure Appl Chem 78:1993–2002

    Article  CAS  Google Scholar 

  10. Anastas PT, Williamson TC (1996) Green chemistry: an overview. In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment. ACS American Chemical Society, Washington, pp 1–17

    Chapter  Google Scholar 

  11. Anastas PT (1994) Benign by design chemistry. In: Benign by design. ACS American Chemical Society, Washington, pp 2–22

    Chapter  Google Scholar 

  12. Keith LH, Gron LU, Young JL (2007) Green analytical methodologies. Chem Rev 107:2695–2708

    Article  CAS  PubMed  Google Scholar 

  13. Majors RE (1991) An overview of sample preparation. LC-GC 9:16

    CAS  Google Scholar 

  14. Zuin VG, Pereira CAM (2014) Green sample preparation focusing on organic analytes in complex matrices. In: Inamuddin D, Mohammad A (eds) Green chromatographic techniques. Springer, Dordrecht, pp 141–166

    Chapter  Google Scholar 

  15. Green DW, Smith LL, Crain JS, Boparai AS, Kiely JT, Yaeger JS, Schilling JB (1995) Waste minimization in analytical methods. United States. Department of Energy, Washington, DC

    Google Scholar 

  16. Turner C (2013) Sustainable analytical chemistry – more than just being green. Pure Appl Chem 85:2217–2229

    Article  CAS  Google Scholar 

  17. Namiesnik J (2001) Green analytical chemistry – some remarks. J Sep Sci 24:151–153

    Article  CAS  Google Scholar 

  18. Wardencki W, Namieśnik J (2002) Some remarks on gas chromatographic challenges in the context of green analytical chemistry. Pol J Environ Stud 11:185–187

    CAS  Google Scholar 

  19. Valcárcel M, Cárdenas S, Gallego M (1999) Sample screening systems in analytical chemistry. TrAC Trends Anal Chem 18:685–694

    Article  Google Scholar 

  20. Gałuszka A, Migaszewski ZM, Namieśnik J (2015) Moving your laboratories to the field – advantages and limitations of the use of field portable instruments in environmental sample analysis. Environ Res 140:593–603

    Article  PubMed  CAS  Google Scholar 

  21. de la Guardia M, Garrigues S (2012) Direct analysis of samples. In: de la Guardia M, Garrigues S (eds) Handbook of green analytical chemistry. Wiley, Chichester, pp 85–102

    Chapter  Google Scholar 

  22. Mokgalaka NS, Gardea-Torresdey JL (2006) Laser ablation inductively coupled plasma mass spectrometry: principles and applications. Appl Spectrosc Rev 41:131–150

    Article  CAS  Google Scholar 

  23. Sarafraz-Yazdi A, Amiri A (2010) Liquid-phase microextraction. TrAC Trends Anal Chem 29:1–14

    Article  CAS  Google Scholar 

  24. Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid–liquid microextraction method. J Chromatogr A 1217:2342–2357

    Article  CAS  PubMed  Google Scholar 

  25. Duan C, Shen Z, Wu D, Guan Y (2011) Recent developments in solid-phase microextraction for on-site sampling and sample preparation. TrAC Trends Anal Chem 30:1568–1574

    Article  CAS  Google Scholar 

  26. Jakubowska N, Polkowska Ż, Namieśnik J, Przyjazny A (2005) Analytical applications of membrane extraction for biomedical and environmental liquid sample preparation. Crit Rev Anal Chem 35:217–235

    Article  CAS  Google Scholar 

  27. Tobiszewski M, Mechlinska A, Namieśnik J (2012) Green analytical chemistry approaches in sample preparation. In: de la Guardia M, Garrigues S (eds) Handbook of green analytical chemistry. Wiley, Chichester, pp 103–124

    Chapter  Google Scholar 

  28. Tobiszewski M, Namieśnik J (2017) Greener organic solvents in analytical chemistry. Curr Opin Green Sustain Chem 5:1–4

    Article  Google Scholar 

  29. Soh L, Eckelman MJ (2016) Green solvents in biomass processing. ACS Sustain Chem Eng 4:5821–5837

    Article  CAS  Google Scholar 

  30. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108

    Article  CAS  PubMed  Google Scholar 

  32. Herrero M, Cifuentes A, Ibañez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae – a review. Food Chem 98:136–148

    Article  CAS  Google Scholar 

  33. Li Y, Fabiano-Tixier AS, Vian MA, Chemat F (2013) Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends Anal Chem 47:1–11

    Article  CAS  Google Scholar 

  34. Chan C-H, Yusoff R, Ngoh G-C, Kung FW-L (2011) Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 1218:6213–6225

    Article  CAS  PubMed  Google Scholar 

  35. Golberg A, Sack M, Teissie J, Pataro G, Pliquett U, Saulis G, Stefan T, Miklavcic D, Vorobiev E, Frey W (2016) Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol Biofuels 9:94

    Article  PubMed  PubMed Central  Google Scholar 

  36. Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z, Zhou L (2010) Greening analytical chromatography. TrAC Trends Anal Chem 29:667–680

    Article  CAS  Google Scholar 

  37. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J (2013) Green chromatography. J Chromatogr A 1307:1–20

    Article  PubMed  CAS  Google Scholar 

  38. Kaljurand M, Koel M (2011) Recent advancements on greening analytical separation. Crit Rev Anal Chem 41:2–20

    Article  CAS  Google Scholar 

  39. de la Guardia M, Garrigues S (2011) Challenges in green analytical chemistry. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  40. Garrigues S, de la Guardia M (2012) Publishing in green analytical chemistry. In: de la Guardia M, Garrigues S (eds) Handbook of green analytical chemistry. Wiley, Chichester, pp 55–66

    Chapter  Google Scholar 

  41. Zuin VG (2009) Considerações sobre o Desenvolvimento de Metodologias Analíticas Verdes: Preparo de Amostras. In: Correa AG, Zuin VG (eds) Química Verde: Fundamentos e Aplicações, 1st edn. EDUFSCar, São Carlos, pp 135–150

    Google Scholar 

  42. Gaber Y, Törnvall U, Kumar MA, Ali Amin M, Hatti-Kaul R (2011) HPLC-EAT (Environmental Assessment Tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem 13:2021

    Article  CAS  Google Scholar 

  43. Hartman R, Helmy R, Al-Sayah M, Welch CJ (2011) Analytical Method Volume Intensity (AMVI): a green chemistry metric for HPLC methodology in the pharmaceutical industry. Green Chem 13:934

    Article  CAS  Google Scholar 

  44. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72

    Article  CAS  Google Scholar 

  45. Tobiszewski M, Marć M, Gałuszka A, Namieśnik J (2015) Green chemistry metrics with special reference to green analytical chemistry. Molecules 20:10928–10946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bigus P, Tsakovski S, Simeonov V, Namieśnik J, Tobiszewski M (2016) Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments. Anal Bioanal Chem 408:3833–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Hazmi H, Namiesnik J, Tobiszewski M (2016) Application of TOPSIS for selection and assessment of analytical procedures for ibuprofen determination in wastewater. Curr Anal Chem 12:261–267

    Article  CAS  Google Scholar 

  48. Tobiszewski M, Namieśnik J, Pena-Pereira F (2017) Derivatisation agents selection guide. Green Chem 19:5911–5922

    Article  CAS  Google Scholar 

  49. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, Robert McElroy C, Sherwood J (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:7

    Article  CAS  Google Scholar 

  50. Rivas-Cantu RC, Jones KD, Mills PL (2013) A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manage Res 31:413–420

    Article  CAS  Google Scholar 

  51. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass – volume II – results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  52. Clark JH (2017) From waste to wealth using green chemistry: the way to long term stability. Curr Opin Green Sustain Chem 8:10–13

    Article  Google Scholar 

  53. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res (India) 67:849–864

    CAS  Google Scholar 

  54. Somenath M (2003) Sample preparation techniques in analytical chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  55. Pawliszyn J (2002) Sampling and sample preparation for field and laboratory. Elsevier, Amsterdam

    Google Scholar 

  56. Tobiszewski M, Mechlińska A, Zygmunt B, Namieśnik J (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal Chem 28:943–951

    Article  CAS  Google Scholar 

  57. Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M (2017) Green analytical chemistry: the role of green extraction techniques. Elsevier, Amsterdam

    Google Scholar 

  58. Lanças FM (2003) The role of the separation sciences in the 21th century. J Braz Chem Soc 14:183–197

    Article  Google Scholar 

  59. Sharma HP, Patel H, Sugandha (2017) Enzymatic added extraction and clarification of fruit juices–a review. Crit Rev Food Sci Nutr 57:1215–1227

    Article  CAS  PubMed  Google Scholar 

  60. Pabby AK, Swain B, Sastre AM (2017) Recent advances in smart integrated membrane assisted liquid extraction technology. Chem Eng Process Process Intensif 120:27–56

    Article  CAS  Google Scholar 

  61. Urbanowicz M, Zabiegała B, Namieśnik J (2011) Solventless sample preparation techniques based on solid- and vapour-phase extraction. Anal Bioanal Chem 399:277–300

    Article  CAS  PubMed  Google Scholar 

  62. Zuin VG, Ramin LZ (2018) Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches. Top Curr Chem 376:3

    Article  CAS  Google Scholar 

  63. Rydberg J (2004) Solvent extraction principles and practice, revised and expanded. CRC Press, Boca Raton

    Book  Google Scholar 

  64. Chan C-H, Yusoff R, Ngoh G-C (2014) Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem Eng Res Des 92:1169–1186

    Article  CAS  Google Scholar 

  65. Mason TJ, Vinatoru M (2017) Ultrasonically assisted extraction in food processing and the challenges of integrating ultrasound into the food industry. In: Villamiel M, Montilla A, García-Pérez JV, Cárce JA, Benedito J (eds) Ultrasound in food processing: recent advances. Wiley, Chichester, pp 329–353

    Chapter  Google Scholar 

  66. Sarker SD, Latif Z, Gray AI (2006) Natural product isolation. In: Sarker SD, Latif Z, Gray AI (eds) Methods in biotechnology, vol 20. Humana Press, Totowa, pp 1–25

    Google Scholar 

  67. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  68. Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800

    Article  CAS  PubMed  Google Scholar 

  69. Welton T (2015) Solvents and sustainable chemistry. Proc R Soc A Math Phys Eng Sci 471:20150502

    Article  Google Scholar 

  70. Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14:1245

    Article  CAS  Google Scholar 

  71. Alder CM, Hayler JD, Henderson RK, Redman AM, Shukla L, Shuster LE, Sneddon HF (2016) Updating and further expanding GSK’s solvent sustainability guide. Green Chem 18:3879–3890

    Article  CAS  Google Scholar 

  72. Osepchuk JM (1984) A history of microwave heating applications. IEEE Trans Microw Theory Tech 32:1200–1224

    Article  Google Scholar 

  73. Zlotorzynski A (1995) The application of microwave radiation to analytical and environmental chemistry. Crit Rev Anal Chem 25:43–76

    Article  CAS  Google Scholar 

  74. Abu-Samra A, Morris JS, Koirtyohann SR (1975) Wet ashing of some biological samples in a microwave oven. Anal Chem 47:1475–1477

    Article  CAS  PubMed  Google Scholar 

  75. Schmink JR, Leadbeater NE (2011) Microwave heating as a tool for sustainable chemistry. An introduction. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. An introduction. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  76. Sparr Eskilsson C, Björklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250

    Article  CAS  Google Scholar 

  77. Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds: theory and practice. Springer, New York, pp 15–52

    Google Scholar 

  78. Mello PA, Barin JS, Guarnieri RA (2014) Microwave heating. In: De Moraes Flores ÉM (ed) Microwave-assisted sample preparation for trace element analysis. Elsevier, Amsterdam, pp 59–75

    Chapter  Google Scholar 

  79. Raynie DE (2000) Extraction. In: Wilson ID (ed) Encyclopedia of separation science. Academic, Oxford, pp 118–128

    Chapter  Google Scholar 

  80. Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction – an innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 1:7–18

    CAS  Google Scholar 

  81. Kratchanova M, Pavlova E, Panchev I (2004) The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr Polym 56:181–185

    Article  CAS  Google Scholar 

  82. Latha C (2007) Microwave-assisted extraction of embelin from Embelia ribes. Biotechnol Lett 29:319–322

    Article  CAS  PubMed  Google Scholar 

  83. Chemat F, Cravotto G (2013) Microwave-assisted extraction for bioactive compounds. Springer, Boston

    Book  Google Scholar 

  84. Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424

    Article  CAS  Google Scholar 

  85. Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  86. Sillanpää M, Shrestha RA, Pham T-D (2011) SpringerBriefs in molecular science – green chemistry for sustainability: ultrasound technology in green chemistry. Springer, Dordrecht

    Book  Google Scholar 

  87. Luque de Castro MD, Priego-Capote F (2007) Techniques and instrumentation in analytical chemistry – analytical applications of ultrasound. Elsevier, Amsterdam

    Google Scholar 

  88. Chemat F, Zill-E-Huma, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  PubMed  Google Scholar 

  89. Bendicho C, Lavilla I, Pena F, Costas M (2011) Green Sample preparation methods. In: de la Guardia M, Garrigues S (eds) Challenges in green analytical chemistry. Royal Society of Chemistry, Cambridge, pp 63–106

    Chapter  Google Scholar 

  90. Preece KE, Hooshyar N, Krijgsman AJ, Fryer PJ, Zuidam NJ (2017) Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J Food Eng 206:1–12

    Article  CAS  Google Scholar 

  91. Dolatowski ZJ, Stadnik J, Stasiak D (2007) Applications of ultrasound in food technology. ACTA Sci Pol 63:89–99

    Google Scholar 

  92. Berche B, Henkel M, Kenna R (2009) Critical phenomena: 150 years since Cagniard de la Tour. J Phys Stud 13:3201–3209

    Google Scholar 

  93. Smith R, Inomata H, Peters C (2013) Introduction to supercritical fluids: a spreadsheet-based approach. In: Supercritical fluid science and technology. Elsevier, Amsterdam, 4:2–729

    Google Scholar 

  94. McHugh M, Krukonis V, Brenner H (1994) Butterworth-heinemann series in chemical engineering. In: Supercritical fluid extraction, 2nd edn. Elsevier, Boston

    Google Scholar 

  95. Phelps CL, Smart NG, Wai CM (1996) Past, present, and possible future applications of supercritical fluid extraction technology. J Chem Educ 73:1163

    Article  CAS  Google Scholar 

  96. Machado BAS, Pereira CG, Nunes SB, Padilha FF, Umsza-Guez MA (2013) Supercritical fluid extraction using CO2: main applications and future perspectives. Sep Sci Technol 48:2741–2760

    Article  CAS  Google Scholar 

  97. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  98. Kang S-W, Rahman MS, Kim A-N, Lee K-Y, Park C-Y, Kerr WL, Choi S-G (2017) Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent. J Food Sci Technol 54:2485–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kang S-W, Kim H-M, Rahman MS, Kim A-N, Yang H-S, Choi S-G (2017) Nutritional quality and physicochemical characteristics of defatted bovine liver treated by supercritical carbon dioxide and organic solvent. Korean J Food Sci Anim Resour 37:29–37

    Article  PubMed  PubMed Central  Google Scholar 

  100. MacHmudah S, Martin A, Sasaki M, Goto M (2012) Mathematical modeling for simultaneous extraction and fractionation process of coffee beans with supercritical CO2 and water. J Supercrit Fluids 66:111–119

    Article  CAS  Google Scholar 

  101. Bermejo DV, Ibáñez E, Reglero G, Fornari T (2016) Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea. J Supercrit Fluids 107:507–512

    Article  CAS  Google Scholar 

  102. Bahar B, Pelvan E, Hasbay I, Alasalvar C (2013) Decaffeinated black tea: process optimization and phenolic profiles. J Supercrit Fluids 82:116–121

    Article  CAS  Google Scholar 

  103. Bruno A, Durante M, Marrese PP, Migoni D, Laus MN, Pace E, Pastore D, Mita G, Piro G, Lenucci MS (2018) Shades of red: comparative study on supercritical CO2 extraction of lycopene-rich oleoresins from gac, tomato and watermelon fruits and effect of the α-cyclodextrin clathrated extracts on cultured lung adenocarcinoma cells’ viability. J Food Compos Anal 65:23–32

    Article  CAS  Google Scholar 

  104. Oba C, Ota M, Nomura K, Fujiwara H, Takito J, Sato Y, Ohizumi Y, Inomata H (2017) Extraction of nobiletin from Citrus Unshiu peels by supercritical fluid and its CRE-mediated transcriptional activity. Phytomedicine 27:33–38

    Article  CAS  PubMed  Google Scholar 

  105. Lamba N, Modak JM, Madras G (2017) Fatty acid methyl esters synthesis from non-edible vegetable oils using supercritical methanol and methyl tert-butyl ether. Energy Convers Manag 138:77–83

    Article  CAS  Google Scholar 

  106. Morales D, Gil-Ramirez A, Smiderle FR, Piris AJ, Ruiz-Rodriguez A, Soler-Rivas C (2017) Vitamin D-enriched extracts obtained from shiitake mushrooms (Lentinula edodes) by supercritical fluid extraction and UV-irradiation. Innov Food Sci Emerg Technol 41:330–336

    Article  CAS  Google Scholar 

  107. Kraujalis P, Venskutonis PR (2013) Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity. J Supercrit Fluids 80:78–85

    Article  CAS  Google Scholar 

  108. Przygoda K, Wejnerowska G (2015) Extraction of tocopherol-enriched oils from Quinoa seeds by supercritical fluid extraction. Ind Crop Prod 63:41–47

    Article  CAS  Google Scholar 

  109. Colibaba LC, Cotea VV, Rotaru L, Nechita B, Niculaua M, Tudose-Sandu-Ville S, Luchian C (2015) Volatiles in Tămâioasă Românească via supercritical fluid extraction (SFE) analysis. Environ Eng Manag J 14:297–302

    Article  CAS  Google Scholar 

  110. Dispas A, Jambo H, André S, Tyteca E, Hubert P (2018) Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques. Bioanalysis 10:107–124

    Article  CAS  PubMed  Google Scholar 

  111. Yang J, Zhu L, Zhao Y, Xu Y, Sun Q, Liu S, Liu C, Ma B (2017) Separation of furostanol saponins by supercritical fluid chromatography. J Pharm Biomed Anal 145:71–78

    Article  CAS  PubMed  Google Scholar 

  112. Zhu L, Zhao Y, Xu Y, Sun Q, Sun X, Kang L, Yan R, Zhang J, Liu C, Ma B (2016) Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins. J Pharm Biomed Anal 120:72–78

    Article  CAS  PubMed  Google Scholar 

  113. Leek H, Thunberg L, Jonson AC, Öhlén K, Klarqvist M (2017) Strategy for large-scale isolation of enantiomers in drug discovery. Drug Discov Today 22:133–139

    Article  CAS  PubMed  Google Scholar 

  114. Fassauer GM, Hofstetter R, Hasan M, Oswald S, Modeß C, Siegmund W, Link A (2017) Ketamine metabolites with antidepressant effects: fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection. J Pharm Biomed Anal 146:410–419

    Article  CAS  PubMed  Google Scholar 

  115. Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511

    Article  CAS  PubMed  Google Scholar 

  116. Benazzi T, Calgaroto S, Dalla Rosa C, Vladimir Oliveira J, Mazutti MA (2013) Hydrolysis of sugarcane bagasse using supercritical carbon dioxide to obtain fermentable sugars. J Chem Technol Biotechnol 88:1766–1768

    Article  CAS  Google Scholar 

  117. Bogolitsyn KG, Krasikova AA, Gusakova MA (2015) Supercritical fluid technologies in the chemistry of wood and its components. Russ J Phys Chem B 9:1065–1073

    Article  CAS  Google Scholar 

  118. Akalın MK, Tekin K, Karagöz S (2017) Supercritical fluid extraction of biofuels from biomass. Environ Chem Lett 15:29–41

    Article  CAS  Google Scholar 

  119. Morais ARC, da Costa Lopes AM, Bogel-Łukasik R (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115:3–27

    Article  CAS  PubMed  Google Scholar 

  120. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6:426

    Article  CAS  Google Scholar 

  121. Amaral GV, Silva EK, Cavalcanti RN, Cappato LP, Guimaraes JT, Alvarenga VO, Esmerino EA, Portela JB, Sant’ Ana AS, Freitas MQ, Silva MC, Raices RSL, Meireles MAA, Cruz AG (2017) Dairy processing using supercritical carbon dioxide technology: theoretical fundamentals, quality and safety aspects. Trends Food Sci Technol 64:94–101

    Article  CAS  Google Scholar 

  122. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372

    Article  CAS  Google Scholar 

  123. Shojaee SA, Rajaei H, Hezave AZ, Lashkarbolooki M, Esmaeilzadeh F (2013) Experimental measurement and correlation for solubility of piroxicam (a non-steroidal anti-inflammatory drugs (NSAIDs)) in supercritical carbon dioxide. J Supercrit Fluids 80:38–43

    Article  CAS  Google Scholar 

  124. Khaw K-Y, Parat M-O, Shaw PN, Falconer JR (2017) Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review. Molecules 22:1186

    Article  PubMed Central  CAS  Google Scholar 

  125. Sommer D, Kleinrahm R, Span R, Wagner W (2011) Measurement and correlation of the (p,ρ,T) relation of liquid cyclohexane, toluene, and ethanol in the temperature range from 233.15K to 473.15K at pressures up to 30MPa for use as density reference liquids. J Chem Thermodyn 43:117–132

    Article  CAS  Google Scholar 

  126. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  127. Herrero M, Castro-Puyana M, Mendiola JA, Ibañez E (2013) Compressed fluids for the extraction of bioactive compounds. TrAC Trends Anal Chem 43:67–83

    Article  CAS  Google Scholar 

  128. Mendiola JA, Herrero M, Cifuentes A, Ibañez E (2007) Use of compressed fluids for sample preparation: food applications. J Chromatogr A 1152:234–246

    Article  CAS  PubMed  Google Scholar 

  129. Zuin VG, Segatto ML, Ramin LZ (2018) Plants as resources for organic molecules: facing the green and sustainable future today. Curr Opin Green Sustain Chem 9:1–7

    Article  Google Scholar 

  130. Zuin VG, Budarin VL, De bruyn M, Shuttleworth PS, Hunt AJ, Pluciennik C, Borisova A, Dodson J, Parker HL, Clark JH (2017) Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discuss 202:451–464

    Article  CAS  PubMed  Google Scholar 

Books and Reviews

  • Armenta S, Garrigues S, de la Guardia M (2015) The role of green extraction techniques in green analytical chemistry. TrAC Trends Anal Chem 71:2–8

    Article  CAS  Google Scholar 

  • Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M (2017) Green Analytical chemistry: the role of green extraction techniques. Elsevier, Amsterdam

    Google Scholar 

  • Chemat F, Strube J (2015) Green extraction of natural products. Wiley-VCH Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  • Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84

    Article  CAS  Google Scholar 

  • Kloskowski A, Chrzanowski W, Pilarczyk M, Namiesnik J (2007) Modern techniques of sample preparation for determination of organic analytes by gas chromatography. Crit Rev Anal Chem 37:15–38

    Article  CAS  Google Scholar 

  • Marques CA, Machado AASC (2014) Environmental Sustainability: implications and limitations to green chemistry. Found Chem 16:125–147

    Article  CAS  Google Scholar 

  • Namieśnik J (2000) Trends in environmental analytics and monitoring. Crit Rev Anal Chem 30:221–269

    Article  Google Scholar 

  • Raynie DE (2006) Modern extraction techniques. Anal Chem 78:3997–4004

    Article  CAS  PubMed  Google Scholar 

  • Smith RM (2003) Before the injection – modern methods of sample preparation for separation techniques. J Chromatogr A 1000:3–27

    Article  CAS  PubMed  Google Scholar 

  • Tobiszewski M, Mechlińska A, Namieśnik J (2010) Green analytical chemistry – theory and practice. Chem Soc Rev 39:2869

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vânia Gomes Zuin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zuin, V.G., Segatto, M.L., Ramin, L.Z. (2019). Green Chemistry in Analytical Chemistry. In: Han, B., Wu, T. (eds) Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9060-3_1017

Download citation

Publish with us

Policies and ethics