Skip to main content

Chemical Reactions in Subcritical Supercritical Fluids

  • Reference work entry
  • First Online:
Green Chemistry and Chemical Engineering
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

Carbonylation:

is a group of reactions that introducecarbon monoxideinto organic and inorganic substrates.

Depolymerization:

is opposite chemical reaction of polymerization where linear or structural polymeris decomposed to monomer molecules.

Enzyme:

is a biological catalyst that can alter the rate and specificity of chemical reactions inside cells, bioreactors –generally in reaction systems.

Hydroformylation:

also known as oxo synthesis or oxo process involves the addition of carbon monoxide and hydrogen to an alkene to form an aldehyde containing one more carbon atom than the original alkene.

Hydrogenation:

is chemical reaction between molecular hydrogen and an element or compound usually in the presence of catalyst.

Oxidation-reduction reaction:

also called redox reaction , is any chemical reaction in which the oxidation number of a participating chemical species changes.

Oxidation:

is defined as the loss of electrons or an increase in the oxidation state of an atom by a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Cagniard de la Tour C (1822) Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’essence de pétrole rectifiée. Ann Chim Phys 21:127–132

    Google Scholar 

  2. Andrews T (1869) The Bakerian lecture – on the continuity of the gaseous and liquid states of matter. Phil Trans R Soc Lond 159:575–590

    Article  Google Scholar 

  3. Savage PE, Gopalan S, Mizan TI, Martino CJ, Brok EE (1995) Reactions at supercritical conditions: applications and fundamentals. AICHE J 41:1723–1778

    Article  CAS  Google Scholar 

  4. Clifford AA (1994) Reactions in supercritical fluids. In: Kiran E, Sengers JMHL (eds) Supercritical fluids. NATO ASI series. (Applied sciences), vol 273. Springer, Dordrecht, pp 449–479

    Google Scholar 

  5. Brunner G (2010) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342

    Article  CAS  PubMed  Google Scholar 

  6. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  7. Knez Z, Markočič E, Leitgeb M, Primožič M, Hrnčič Knez M, Škerget M (2015) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  CAS  Google Scholar 

  8. Knez Ž, Leitgeb M, Primožič M (2016) Biochemical reactions in supercritical fluids. In: Shi J (ed) Functional food ingredients and nutraceuticals: processing and technologies. Functional foods and nutraceuticals series, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 127–158

    Google Scholar 

  9. Knez Ž, Leitgeb M, Primožič M (2015) Enzymatic reactions in supercritical fluids. In: Fornari T, Stateva R (eds) High pressure fluid technology for green food processing. Food engineering series. Springer, Cham, pp 185–215

    Google Scholar 

  10. Olmos A, Asensio G, Pérez PJ (2016) Homogeneous metal-based catalysis in supercritical carbon dioxide as reaction medium. ACS Catal 6:4265–4280

    Article  CAS  Google Scholar 

  11. Jiang H (2005) Transition metal-catalyzed organic reactions in supercritical carbon dioxide. Curr Org Chem 9:289–297

    Article  CAS  Google Scholar 

  12. Bertucco A, Vetter G (2001) High pressure process technology: fundamentals and applications. Industrial Chemistry Library, vol 9. Elsevier, Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  13. Zhang HP, Chen MC (2009) Polymerization in supercritical carbon dioxide. Prog Chem 21:1869–1879

    Google Scholar 

  14. Goodship V, Ogur EO (2004) Polymer processing with supercritical fluids. Rapra Rev Rep 15:8

    Google Scholar 

  15. Du L, Kelly JY, Roberts GW, DeSimone JM (2009) Fluoropolymer synthesis in supercritical carbon dioxide. J Supercrit Fluids 47:447–457

    Article  CAS  Google Scholar 

  16. Wang WX, Irvine DJ, Howdle SM (2005) Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind Eng Chem Res 44:8654–8658

    Article  CAS  Google Scholar 

  17. Oliveira PF, Machado RAF, Barth D, Acosta ED (2016) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide using vinyl terminated poly(dimethylsiloxane). Chem Eng Process 103:46–52

    Article  CAS  Google Scholar 

  18. Haldorai Y, Shim J-J, Lim KT (2012) Synthesis of polymer-inorganic filler nanocomposites in supercritical CO2. J Supercrit Fluids 71:45–63

    Article  CAS  Google Scholar 

  19. Cao LQ, Wang XH, Wang G, Wang JD (2015) A pH-sensitive porous chitosan membrane prepared via surface grafting copolymerization in supercritical carbon dioxide. Polym Int 64:383–388

    Article  CAS  Google Scholar 

  20. Dai WL, Luo SL, Yin SF, Au CT (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A Gen 366:2–12

    Article  CAS  Google Scholar 

  21. Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Poly Sci B Polym Lett 7:287–292

    Article  CAS  Google Scholar 

  22. Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148:361–367

    Article  CAS  Google Scholar 

  23. Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A Gen 219:259–266

    Article  CAS  Google Scholar 

  24. Lang XD, Liu XF, He LN (2015) Sustainable solid catalysts for cyclic carbonate synthesis from CO2 and epoxide. Curr Org Chem 19:681–694

    Article  CAS  Google Scholar 

  25. He LN, Yasuda H, Sakakura T (2003) New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chem 5:92–94

    Article  CAS  Google Scholar 

  26. Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc 124:6335–6342

    Article  CAS  PubMed  Google Scholar 

  27. Song QW, He LN, Wang JQ, Yasuda H, Sakakura T (2013) Catalytic fixation of CO2 to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chem 15:110–115

    Article  CAS  Google Scholar 

  28. Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization – new strategies and cooperative mechanisms. Coord Chem Rev 255:1460–1479

    Article  CAS  Google Scholar 

  29. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kuhn FE (2015) Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. ChemSusChem 8:2436–2454

    Article  CAS  PubMed  Google Scholar 

  30. Marrone PA (2013) Supercritical water oxidation – current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288

    Article  CAS  Google Scholar 

  31. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    Article  CAS  Google Scholar 

  32. Kanetake WT, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30:1113–1122

    Article  CAS  Google Scholar 

  33. Marrone PA, Hong GT, Spritzer MH (2007) Developments in supercritical water as a medium for oxidation, reforming, and synthesis. J Adv Oxid Technol 10:157–168

    CAS  Google Scholar 

  34. Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I (2011) High pressure processes in biorefineries. Chem Ing Tech 83:1016–1025

    Article  CAS  Google Scholar 

  35. Mahmood N, Yuan Z, Schmidt J, Xu C (2013) Production of polyols via direct hydrolysis of Kraft lignin: effect of process parameters. Bioresour Technol 139:13–20

    Article  CAS  PubMed  Google Scholar 

  36. Ma XL, Ma R, Hao WY, Chen MM, Iran F, Cui K, Tian Y, Li YD (2015) Common pathways in ethanolysis of Kraft lignin to platform chemicals over molybdenum-based catalysts. ACS Catal 5:4803–4813

    Article  CAS  Google Scholar 

  37. Hidajat MJ, Riaz A, Park J, Insyani R, Verma D, Kim J (2017) Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem Eng J 317:9–19

    Article  CAS  Google Scholar 

  38. Wang X, Zhou J, Li H, Sun G (2013) Depolymerization of lignin with supercritical fluids: a review. Adv Mater Res 821–822:1126–1134

    Article  CAS  Google Scholar 

  39. Wahyudi O, Sasaki M, Goto M (2009) Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88:1656–1664

    Article  CAS  Google Scholar 

  40. Rajappagowda R, Numan-Al-Mobin AM, Yao B, Cook RD, Smirnova A (2017) Toward selective lignin liquefaction: synergistic effect of hetero and homogeneous catalysis in sub- and supercritical fluids. Energy Fuel 31:578–586

    Article  CAS  Google Scholar 

  41. Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93:279–284

    Article  CAS  PubMed  Google Scholar 

  42. Kamimura A, Ikeda K, Suzuki S, Kato K, Akinari Y, Sugimoto T, Kashiwagi K, Kaiso K, Matsumoto H, Yoshimoto M (2014) Efficient conversion of polyamides to omega-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics. ChemSusChem 7:2473–2477

    Article  CAS  PubMed  Google Scholar 

  43. Goto M (2009) Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids 47:500–507

    Article  CAS  Google Scholar 

  44. Goto M (2016) Subcritical and supercritical fluid technology for recycling waste plastics. J Jpn Pet Inst 59:254–258

    Article  CAS  Google Scholar 

  45. Ibarra RM, Sasaki M, Goto M, Quitain AT, Montes SMG, Aguilar-Garib JA (2015) Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials. J Mater Cycles Waste Manage 17:369–379

    Article  CAS  Google Scholar 

  46. Yanagihara N, Ohgane K (2014) Studies on the oxidative degradation of nylons by nitrogen dioxide in supercritical carbon dioxide. Polym Degrad Stab 98:2735–2741

    Article  CAS  Google Scholar 

  47. Huang J, Qi WJ, Wu YQ, Zhu ZB (2005) Depolymerization of polybutylene terephthalate in supercritical methanol. Acta Polym Sin 2:309–312

    Google Scholar 

  48. Subramaniam B, Chaudhari RV, Chaudhari AS, Akien GR, Xie ZZ (2014) Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic reactions. Chem Eng Sci 115:3–18

    Article  CAS  Google Scholar 

  49. Zhao LC, Hou ZQ, Liu CZ, Wang YY, Dai LY (2014) A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol. Chin Chem Lett 25:1395–1398

    Article  CAS  Google Scholar 

  50. Ikariya T, Kayaki Y, Kishimoto Y, Noguchi Y (2000) Highly efficient carbonylation reactions of organic halides in supercritical carbon dioxide. Prog Nucl Energy 37:429–434

    Article  CAS  Google Scholar 

  51. Sirin OZ, Demirkol O, Akbaslar D, Giray ES (2013) Clean and efficient synthesis of flavanone in sub-critical water. J Supercrit Fluids 81:217–220

    Article  CAS  Google Scholar 

  52. Amandi R, Scovell K, Licence P, Lotz TJ, Poliakoff M (2007) The synthesis of o-cyclohexylphenol in supercritical carbon dioxide: towards a continuous two-step reaction. Green Chem 9:797–801

    Article  CAS  Google Scholar 

  53. Sari A (2014) Investigation of the supercritical conditions for Fischer–Tropsch reaction over an industrial Co–Ru/γ-Al2O3 catalyst. Chem Eng J 244:317–326

    Article  CAS  Google Scholar 

  54. Fan L, Fujimoto K (1999) Fischer–Tropsch synthesis in supercritical fluid: characteristics and application. Appl Catal A 186:343–354

    Article  CAS  Google Scholar 

  55. Elbashir NO, Bukur DB, Durham E, Roberts CB (2010) Advancement of Fischer-Tropsch synthesis via utilization of supercritical fluid reaction media. AICHE J 56:997–1015

    CAS  Google Scholar 

  56. Hao Q-Q, Zhao Y-H, Yang H-H, Liu Z-T, Liu Z-W (2012) Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer–Tropsch synthesis. Energy Fuel 26:6567–6575

    Article  CAS  Google Scholar 

  57. Durham E, Stewart C, Roe D, Xu R, Zhang S, Roberts CB (2014) Supercritical Fischer-Tropsch synthesis: heavy aldehyde production and the role of process conditions. Ind Eng Chem Res 53:9695–9702

    Article  CAS  Google Scholar 

  58. Durham E, Xu R, Zhang SH, Eden MR, Roberts CB (2013) Supercritical adiabatic reactor for Fischer-Tropsch synthesis. Ind Eng Chem Res 52:3133–3136

    Article  CAS  Google Scholar 

  59. Toress Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149

    Article  CAS  Google Scholar 

  60. Fang L (2016) Catalytic wet oxidation of waste drilling fluid. Oxid Commun 39:2728–2732

    CAS  Google Scholar 

  61. Liu HB, Meng YF, Zhang GD, Li G (2016) Supercritical water oxidation of drilling fluid wastewater. Oxid Commun 39:1687–1693

    CAS  Google Scholar 

  62. Chao M (2014) Supercritical water oxidation of wastewater-based drilling fluid with glycol addition. J Adv Oxid Technol 17:385–388

    Google Scholar 

  63. Tagaya H, Katoh K, Kadokawa J, Chiba K (1999) Decomposition of polycarbonate in subcritical and supercritical water. Polym Degrad Stab 64:289–292

    Article  CAS  Google Scholar 

  64. Suzuki Y, Tagaya H, Asou T, Kadokawa J, Chiba K (1999) Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere. Ind Eng Chem Res 38:1391–1395

    Article  CAS  Google Scholar 

  65. Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in supercritical water. Polym Degrad Stab 76:179–184

    Article  CAS  Google Scholar 

  66. Bermejo M, Cocero MJ (2006) Supercritical water oxidation: a technical review. AICHE J 52:3933–3951

    Article  CAS  Google Scholar 

  67. Brunner G (2009) Near and supercritical water. Part II: oxidative processes. J Supercrit Fluids 47:382–390

    Article  CAS  Google Scholar 

  68. Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414

    Article  CAS  Google Scholar 

  69. Sanchez-Oneto J, Portela JR, Nebot E, de la Ossa EM (2007) Hydrothermal oxidation: application to the treatment of different cutting fluid wastes. J Hazard Mater 144:639–644

    Article  CAS  PubMed  Google Scholar 

  70. Wu Y, Chen Y, Wu K (2014) Role of co-solvents in biomass conversion reactions using sub/supercritical water. In: Fang Z, Xu C (eds) Near-critical and supercritical water and their applications for biorefineries. Springer, Dordrecht, pp 69–98

    Chapter  Google Scholar 

  71. Martínez CM, Cantero DA, Bermejo MD, Cocero MJ (2015) Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor. Cellulose 22:2231–2243

    Article  CAS  Google Scholar 

  72. Cantero DA, Bermejo MD, Cocero MJ (2015) Governing chemistry of cellulose hydrolysis in supercritical water. ChemSusChem 8:1026–1033

    Article  CAS  PubMed  Google Scholar 

  73. Cantero DA, Martinez C, Bermejo MD, Cocero MJ (2015) Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chem 17:610–618

    Article  CAS  Google Scholar 

  74. Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025

    Article  PubMed  CAS  Google Scholar 

  75. Kim H, Mitton DB, Latanision RH (2010) Corrosion behavior of Ni-base alloys in aqueous HCl solution of pH 2 at high temperature and pressure. Corros Sci 52:801–809

    Article  CAS  Google Scholar 

  76. Onwudili JA, Williams PT (2006) Flameless supercritical water incineration of polycyclic aromatic hydrocarbons. Int J Renew Energy Res 30:523–533

    Article  CAS  Google Scholar 

  77. Onwudili JA, Williams PT (2007) Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. J Supercrit Fluids 39:399–408

    Article  CAS  Google Scholar 

  78. Li N, Yan B, Xiao XM (2015) A review of laboratory-scale research on upgrading heavy oil in supercritical water. Energies 8:8962–8989

    Article  CAS  Google Scholar 

  79. Caniaz RO, Erkey C (2014) Process intensification for heavy oil upgrading using supercritical water. Chem Eng Res Des 92:1845–1863

    Article  CAS  Google Scholar 

  80. Jiang H, Shen YX, Wan ZY (2008) Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in ScCO2. Tetrahedron 64:508–514

    Article  CAS  Google Scholar 

  81. Jiang HF, Jia LQ, Li JH (2000) Wacker reaction in supercritical carbon dioxide. Green Chem 2:161–164

    Article  CAS  Google Scholar 

  82. Jia LQ, Jiang HF, Li JH (1999) Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun 11:985–986

    Article  Google Scholar 

  83. Wang ZY, Jiang HF, Ouyang XY, Qi CR, Yang SR (2006) Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism. Tetrahedron 62:9846–9854

    Article  CAS  Google Scholar 

  84. Seki T, Grunwaldt JD, Baiker A (2008) Heterogeneous catalytic hydrogenation in supercritical fluids: potential and limitations. Ind Eng Chem Res 47:4561–4585

    Article  CAS  Google Scholar 

  85. Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Continuous asymmetric hydrogenation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Adv Synth Catal 348:1605–1610

    Article  CAS  Google Scholar 

  86. Theuerkauf J, Francio G, Leitner W (2013) Continuous-flow asymmetric hydrogenation of the beta-keto ester methyl propionylacetate in ionic liquid-supercritical carbon dioxide biphasic systems. Adv Synth Catal 355:209–219

    Article  CAS  Google Scholar 

  87. Cole-Hamilton DJ (2006) Asymmetric catalytic synthesis of organic compounds using metal complexes in supercritical fluids. Adv Synth Catal 348:1341–1351

    Article  CAS  Google Scholar 

  88. Altinel H, Avsar G, Yilmaz MK, Guzel B (2009) New perfluorinated rhodium-BINAP catalysts and hydrogenation of styrene in supercritical CO2. J Supercrit Fluids 51:202–208

    Article  CAS  Google Scholar 

  89. Altinel H, Avsar G, Guzel B (2009) Fluorinated rhodium-phosphine complexes as efficient homogeneous catalysts for the hydrogenation of styrene in supercritical carbon dioxide. Transit Met Chem 34:331–335

    Article  CAS  Google Scholar 

  90. Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA (2014) Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem Commun 50:5200–5202

    Article  CAS  Google Scholar 

  91. Bogel-Lukasik E, Bogel-Lukasik R, da Ponte MN (2009) Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatsh Chem 140:1361–1369

    Article  CAS  Google Scholar 

  92. Clark P, Poliakoff M, Wells A (2007) Continuous flow hydrogenation of a pharmaceutical intermediate, [4-(3,4-dichlorophenyl)-3,4-dihydro-2H-naphthalenyidene]-methylamine, in supercritical carbon dioxide. Adv Synth Catal 349:2655–2659

    Article  CAS  Google Scholar 

  93. Bektesevic S, Kleman AM, Marteel-Parrish AE, Abraham MA (2006) Hydroformylation in supercritical carbon dioxide: catalysis and benign solvents. J Supercrit Fluids 38:232–241

    Article  CAS  Google Scholar 

  94. Kani I, Flores R, Fackler JP, Akgerman A (2004) Hydroformylation of styrene in supercritical carbon dioxide with fluoroacrylate polymer supported rhodium catalysts. J Supercrit Fluids 31:287–294

    Article  CAS  Google Scholar 

  95. Koeken ACJ, van den Broeke LJP, Deelman BJ, Keurentjes JTF (2011) Full kinetic description of 1-octene hydroformylation in a supercritical medium. J Mol Catal A Chem 346:1–11

    Article  CAS  Google Scholar 

  96. Estorach CT, Gimenez-Pedros M, Masdeu-Bulto AM, Sayede AD, Monflier E (2008) Hydroformylation of 1-octene in supercritical carbon dioxide with alkyl P-donor ligands on rhodium using a peracetylated beta-cyclodextrin as a solubiliser. Eur J Inorg Chem 17:2659–2663

    Article  CAS  Google Scholar 

  97. Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379

    Article  CAS  Google Scholar 

  98. Kunene TE, Webb PB, Cole-Hamilton DJ (2011) Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chem 13:1476–1481

    Article  CAS  Google Scholar 

  99. Hintermair U, Hofener T, Pullmann T, Francio G, Leitner W (2010) Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem 2:150–154

    Article  CAS  Google Scholar 

  100. Hintermair U, Francio G, Leitner W (2013) A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase. Chem Eur J 19:4538–4547

    Article  CAS  PubMed  Google Scholar 

  101. Taguchi M, Yamamoto N, Hojo D, Takami S, Adschiri T, Funazukuri T, Naka T (2014) Synthesis of monocarboxylic acid-modified CeO2 nanoparticles using supercritical water. RSC Adv 4:49605–49613

    Article  CAS  Google Scholar 

  102. Adschiri T, Takami S, Minami K, Yamagata T, Miyata K, Monshita T, Ueda M, Fukushima K, Ueno M, Okada T, Oshima H, Mitani Y, Asahina S, Unno S (2012) Super hybrid materials. In: Ruck BJ, Kemmitt T (eds) Advanced materials and nanotechnology. Materials science forum, vol 700. Trans Tech Publications, Zurich, pp 145–149

    Google Scholar 

  103. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    Article  CAS  Google Scholar 

  104. Adschiri T, Lee YW, Goto M, Takami S (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390

    Article  CAS  Google Scholar 

  105. Adschiri T, Takami S, Arita T, Hojo D, Minami K, Aoki N, Togashi T (2013) Supercritical hydrothermal synthesis. In: Somiya S (ed) Handbook of advanced ceramics: materials, applications, processing, and properties, 2nd edn. Elsevier, Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  106. Adschiri T, Byrappa K (2009) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. In: Muramatsu A, Miyashita T (eds) Nanohybridization of organic-inorganic materials, advances in materials research, vol 13. Springer, Berlin/Heidelberg

    Google Scholar 

  107. Fujii T, Kawasaki S, Adschiri T (2016) Kinetic study of octanoic acid enhanced crystal growth of boehmite under sub- and supercritical hydrothermal conditions. J Supercrit Fluids 118:148–152

    Article  CAS  Google Scholar 

  108. Fujii T, Kawasaki S, Suzuki A, Adschiri T (2016) High-speed morphology control of boehmite nanoparticles by supercritical hydrothermal treatment with carboxylic acids. Cryst Growth Des 16:1996–2001

    Article  CAS  Google Scholar 

  109. Aoki N, Sato A, Sasaki H, Litwinowicz AA, Seong G, Aida T, Hojo D, Takami S, Adschiri T (2016) Kinetics study to identify reaction-controlled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors. J Supercrit Fluids 110:161–166

    Article  CAS  Google Scholar 

  110. Ghaffari-Moghaddam M, Eslahi H, Aydin YA, Saloglu D (2015) Enzymatic processes in alternative reaction media: a mini review. J Biol Methods 2:e25

    Article  Google Scholar 

  111. Knez Ž (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47:357–372

    Article  CAS  Google Scholar 

  112. Habulin M, Primozic M, Knez Z (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54:667–677

    CAS  Google Scholar 

  113. Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820

    Article  CAS  PubMed  Google Scholar 

  114. Kavcic S, Knez Z, Leitgeb M (2014) Antimicrobial activity of n-butyl lactate obtained via enzymatic esterification of lactic acid with n-butanol in supercritical trifluoromethane. J Supercrit Fluids 85:143–150

    Article  CAS  Google Scholar 

  115. Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280

    Article  CAS  PubMed  Google Scholar 

  116. Knez Z, Leitgeb M, Primozic M (2015) Enzymatic reactions in supercritical fluids. In: Fornari T, Stateva RP (eds) High pressure fluid technology for green food processing. Book series: food engineering series. Springer International Publishing, Cham, pp 185–215

    Google Scholar 

  117. Melgosa R, Sanz MT, Solaesa AG, de Paz E, Beltran S, Lamas DL (2017) Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: kinetic study. J CO2 Util 17:170–179

    Article  CAS  Google Scholar 

  118. Manera AP, Zabot GL, Oliveira JV, de Oliveira D, Mazutt MA, Kalil SJ, Treichel H, Maugeri F (2012) Enzymatic synthesis of galactooligosaccharides using pressurised fluids as reaction medium. Food Chem 133:1408–1413

    Article  CAS  Google Scholar 

  119. Varma MN, Deshpande PA, Madras G (2010) Synthesis of biodiesel in supercritical alcohols and supercritical carbon dioxide. Fuel 89:1641–1646

    Article  CAS  Google Scholar 

  120. Knez Z, Laudani CG, Habulin M, Reverchon E (2007) Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnol Bioeng 97:1366–1375

    Article  CAS  PubMed  Google Scholar 

  121. Laudani CG, Habulin M, Knez Z, Della Porta G, Reverchon E (2007) Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: kinetics and thermodynamics. J Supercrit Fluids 41:92–101

    Article  CAS  Google Scholar 

  122. Varma MN, Madras G (2007) Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotechnol 141:139–147

    Article  CAS  PubMed  Google Scholar 

  123. Ghaziaskar HS, Daneshfar A, Calvo L (2006) Continuous esterification or dehydration in supercritical carbon dioxide. Green Chem 8:576–581

    Article  CAS  Google Scholar 

  124. Rios APDL, Hernandez-Fernandez FJ, Gomez D, Rubio M, Tomas-Alonso F, Villora G (2007) Understanding the chemical reaction and mass-transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. J Supercrit Fluids 43:303–309

    Article  CAS  Google Scholar 

  125. Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226

    Article  CAS  Google Scholar 

  126. Polloni AE, Veneral JG, Rebelatto EA, de Oliveira D, Oliveira JV, Araujo PHH, Sayer C (2017) Enzymatic ring opening polymerization of omega-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 119:221–228

    Article  CAS  Google Scholar 

  127. Rosso SRC, Bianchin E, de Oliveira D, Oliveira JV, Ferreira SRS (2013) Enzymatic synthesis of poly(epsilon-caprolactone) in supercritical carbon dioxide medium by means of a variable-volume view reactor. J Supercrit Fluids 79:133–141

    Article  CAS  Google Scholar 

  128. Guzman-Lagunes F, Lopez-Luna A, Gimeno M, Barzana E (2013) Enzymatic synthesis of poly-l-lactide in supercritical R134a. J Supercrit Fluids 72:186–190

    Article  CAS  Google Scholar 

  129. Lopez-Luna A, Gallegos JL, Gimeno M, Vivaldo-Lima E, Barzana E (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67:143–149

    Article  CAS  Google Scholar 

  130. Osanai Y, Toshima K, Matsumura S (2006) Enzymatic transformation of aliphatic polyesters into cyclic oligomers using enzyme packed column under continuous flow of supercritical carbon dioxide with toluene. Sci Technol Adv Mater 7:202–208

    Article  CAS  Google Scholar 

  131. Taher H, Al-Zuhair S (2017) The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels Bioprod Biorefin 11:168–194

    Article  CAS  Google Scholar 

  132. Gutierrez-Arnillas E, Alvarez MS, Deive FJ, Rodriguez A, Sanroman MA (2016) New horizons in the enzymatic production of biodiesel using neoteric solvents. Renew Energy 98:92–100

    Article  CAS  Google Scholar 

  133. Ciftci ON, Temelli F (2013) Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modelling. J Supercrit Fluids 75:172–180

    Article  CAS  Google Scholar 

  134. Taher H, Al-Zuhair S, Almarzouqui A, Hashim I (2011) Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochem Eng J 55:23–31

    Article  CAS  Google Scholar 

  135. Lee JH, Kwon CH, Kang JW, Park C, Tae B, Kim SW (2009) Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. Appl Biochem Biotechnol 156:454–464

    Article  CAS  Google Scholar 

  136. Varma MN, Madras G (2007) Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind Eng Chem Res 46:1–6

    Article  CAS  Google Scholar 

  137. Gameiro M, Lisboa P, Paiva A, Barreiros S, Simoes P (2015) Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel 153:135–142

    Article  CAS  Google Scholar 

  138. Colombo TS, Mazutti MA, Di Luccio M, de Oliveira D, Oliveira JV (2015) Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. J Supercrit Fluids 97:16–21

    Article  CAS  Google Scholar 

  139. Ciftci ON, Temelli F (2011) Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor. J Supercrit Fluids 58:79–87

    Article  CAS  Google Scholar 

  140. Varma MN, Madras G (2010) Kinetics of enzymatic synthesis of geranyl butyrate by transesterification in various supercritical fluids. Biochem Eng J 49:250–255

    Article  CAS  Google Scholar 

  141. Dalla Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2009) Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. Bioresour Technol 100:5818–5826

    Article  CAS  PubMed  Google Scholar 

  142. Senyay-Oncel D, Yesil-Celiktas O (2015) Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2. Cellulose 22:3619–3631

    Article  CAS  Google Scholar 

  143. Senyay-Oncel D, Yesil-Celiktas O (2013) Treatment of immobilized alpha-amylase under supercritical CO2 conditions: can activity be enhanced after consecutive enzymatic reactions? J Mol Catal B Enzym 91:72–76

    Article  CAS  Google Scholar 

  144. Matsuda T (2013) Recent progress in biocatalysis using supercritical carbon dioxide. J Biosci Bioeng 115:233–241

    Article  CAS  PubMed  Google Scholar 

  145. Peng YK, Sun LL, Shi W, Long JJ (2016) Investigation of enzymatic activity, stability and structure changes of pectinase treated in supercritical carbon dioxide. J Clean Prod 125:331–340

    Article  CAS  Google Scholar 

  146. Carvalho NB, Silva MAD, Fricks AT, Franceschi E, Dariva C, Zanin GM, Lima AS, Soares CMF (2014) Evaluation of activity of Bacillus lipase (free and immobilized) treated with compressed propane. J Mol Catal B Enzym 99:130–135

    Article  CAS  Google Scholar 

  147. Housaindokht MR, Monhemi H (2013) The open lid conformation of the lipase is explored in the compressed gas: new insights from molecular dynamic simulation. J Mol Catal B Enzym 87:135–138

    Article  CAS  Google Scholar 

  148. Kuhn GD, Coghetto C, Treichel H, de Oliveira D, Oliveira JV (2011) Effect of compressed fluids treatment on the activity of inulinase from Kluyveromyces marxianus NRRL Y-7571 immobilized in montmorillonite. Process Biochem 46:2286–2290

    Article  CAS  Google Scholar 

  149. Manera AP, Kuhn G, Polloni A, Marangoni M, Zabot G, Kalil SJ, de Oliveira D, Treichel H, Oliveira JV, Mazutti MA, Maugeri F (2011) Effect of compressed fluids treatment on the activity, stability and enzymatic reaction performance of beta-galactosidase. Food Chem 125:1235–1240

    Article  CAS  Google Scholar 

  150. Senyay-Oncel D, Yesil-Celiktas O (2011) Activity and stability enhancement of alpha-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 112:435–440

    Article  CAS  PubMed  Google Scholar 

  151. Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3:511–520

    Article  CAS  Google Scholar 

  152. Fricks AT, Oestreicher EG, Cardozo L, Feihrmann AC, Cordeiro Y, Dariva C, Antunes OAC (2009) Effects of compressed fluids on the activity and structure of horseradish peroxidase. J Supercrit Fluids 50:162–168

    Article  CAS  Google Scholar 

  153. Yu G, Xue Y, Xu W, Zhang J, Xue CH (2008) Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a). J Ind Microbiol Biotechnol 34:793–798

    Article  CAS  Google Scholar 

  154. Oliveira D, Feihrmann AC, Rubira AF, Kunita MH, Dariva C, Oliveira JV (2006) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38:373–382

    Article  CAS  Google Scholar 

  155. De Oliveira D, Feihrmann AC, Dariva C, Cunha AG, Bevilaqua JV, Destain J, Oliveir JV, Freire DMG (2006) Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. J Mol Catal B Enzym 39:117–123

    Article  CAS  Google Scholar 

  156. Bermejo MD, Kotlewska AJ, Florusse LJ, Cocero MJ, van Rantwijk F, Peters CJ (2008) Influence of the enzyme concentration on the phase behaviour for developing a homogeneous enzymatic reaction in ionic liquid-CO2 media. Green Chem 10:1049–1054

    Article  CAS  Google Scholar 

  157. Lozano P, Nieto S, Serrano JL, Perez J, Sanchez-Gomez G, Garcia-Verdugo E, Luis SV (2017) Flow biocatalytic processes in ionic liquids and supercritical fluids. Mini Rev Org Chem 14:65–74

    Article  CAS  Google Scholar 

  158. Lozano P, Garcia-Verdugo E, Luis SV, Pucheault M, Vaultier M (2011) (Bio) Catalytic continuous flow processes in scCO2 and/or ILs: towards sustainable (Bio) catalytic synthetic platforms. Curr Org Chem 8:810–823

    CAS  Google Scholar 

  159. Lozano P, Bernal JM, Vaultier M (2011) Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel 90:3461–3467

    Article  CAS  Google Scholar 

  160. Lozano P, De Diego T, Vaultier M, Iborra JL (2009) Dynamic kinetic resolution of sec-alcohols in ionic liquids/supercritical carbon dioxide biphasic systems. Int J Chem React Eng 7:A79

    Google Scholar 

  161. Hernandez FJ, de los Rios AP, Gomez D, Rubio M, Villora G (2006) A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B 67:121–126

    Article  CAS  Google Scholar 

  162. Mena M, Shirai K, Tecante A, Barzana E, Gimeno M (2015) Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a-ionic liquid media. J Supercrit Fluids 103:77–82

    Article  CAS  Google Scholar 

  163. Hooley RJ (2016) Biomimetic catalysis: taking on the turnover challenge. Nat Chem 8:202–204

    Article  CAS  PubMed  Google Scholar 

  164. Shen F, Smith RL, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5:2421–2427

    Article  CAS  Google Scholar 

  165. Chen H, Wang Y, Wang Q, Li J, Yang S, Zhu Z (2014) Bifunctional organic polymeric catalysts with a tunable acid-base distance and framework flexibility. Sci Rep 4:6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Books and Reviews

  • Brunner G (2004) Supercritical fluids as solvents and reaction media. Elsevier B.V, Amsterdam

    Google Scholar 

  • Jessop PG, Leitner W (2007) Chemical synthesis using supercritical fluids. WILEY-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Kiran E, Debenedetti PG, Peters CJ (2000) Supercritical fluids: fundamentals and applications. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Knez .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Knez, Ž., Leitgeb, M., Primožič, M. (2019). Chemical Reactions in Subcritical Supercritical Fluids. In: Han, B., Wu, T. (eds) Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9060-3_1004

Download citation

Publish with us

Policies and ethics