Skip to main content

Microcomputed Tomography Imaging in Odontogenesis Studies

  • Protocol
  • First Online:
Odontogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1922))

Abstract

3D analysis of animal or human whole teeth and alveolar bone can be performed with high sensitivity in a nondestructive manner by microcomputed tomography. Here we describe the protocols to be followed for the most common applications in the developmental studies of dental and craniofacial tissues. Emphasis is placed on the basis of choosing settings for image acquisition, such as voxel resolution (Fig. 1), or beam energy (Fig. 2) and for processing, such as segmentation method (Fig. 3), parameters. The limitations to take into account for optimal efficiency and image quality are also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53(19):R319–R350

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8(6):833–842

    CAS  PubMed  Google Scholar 

  3. Faot F, Chatterjee M, de Camargos GV, Duyck J, Vandamme K (2015) Micro-CT analysis of the rodent jaw bone micro-architecture: a systematic review. Bone Rep 2:14–24

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Swain MV, Xue J (2009) State of the art of Micro-CT applications in dental research. Int J Oral Sci 1(4):177–188

    PubMed  PubMed Central  Google Scholar 

  5. Parkinson CR, Sasov A (2008) High-resolution non-destructive 3D interrogation of dentin using X-ray nanotomography. Dent Mater 24(6):773–777

    PubMed  Google Scholar 

  6. Zanette I, Enders B, Dierolf M et al (2015) Ptychographic X-ray nanotomography quantifies mineral distributions in human dentine. Sci Rep 5:9210

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Naveh GR, Brumfeld V, Shahar R, Weiner S (2013) Tooth periodontal ligament: direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded. J Struct Biol 181(2):108–115

    PubMed  Google Scholar 

  8. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11

    PubMed  PubMed Central  Google Scholar 

  9. Verdelis K, Szabo-Rogers HL, Xu Y et al (2016) Accelerated enamel mineralization in Dspp mutant mice. Matrix Biol 52-54:246–259

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salmon PL, Liu X (2014) MicroCT bone densitometry: context sensitivity, beam hardening correction and the effect of surrounding media. The Open Access Journal of Science and Technology 2, Article ID 101142, 25 pages. https://doi.org/10.11131/2014/101142

    Google Scholar 

  11. Zhao N, Liu Y, Kanzaki H, Liang W, Ni J, Lin J (2012) Effects of local osteoprotegerin gene transfection on orthodontic root resorption during retention: an in vivo micro-CT analysis. Orthod Craniofac Res 15:10–20

    Google Scholar 

  12. Nan Ru, Sean Shih-Yao Liu, Li Zhuang, Song Li, Yuxing Bai (2013) In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement. The Angle Orthodontist 83(3):402–409

    Google Scholar 

  13. Furfaro F, Ang ESM, Lareu RR, Murray K, Goonewardene M (2014) A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study. Progress in Orthodontics 15:2. https://doi.org/10.1186/2196-1042-15-2

  14. Soundia A, Hadaya D, Esfandi N, de Molon RS, Bezouglaia O, Dry SM, Pirih FQ, Aghaloo T, Tetradis S (2016) Osteonecrosis of the jaws (ONJ) in mice after extraction of teeth with periradicular disease. Bone 90:133–141

    Google Scholar 

  15. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486

    PubMed  Google Scholar 

  16. Ding M, Odgaard A, Hvid I (1999) Accuracy of cancellous bone volume fraction measured by micro-CT scanning. J Biomech 32(3):323–326

    CAS  PubMed  Google Scholar 

  17. Hara T, Tanck E, Homminga J, Huiskes R (2002) The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31(1):107–109

    CAS  PubMed  Google Scholar 

  18. Verdelis K, Lukashova L, Atti E et al (2011) MicroCT morphometry analysis of mouse cancellous bone: intra- and inter-system reproducibility. Bone 49(3):580–587

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks RA, Di Chiro G (1976) Beam hardening in x-ray reconstructive tomography. Phys Med Biol 21(3):390–398

    CAS  PubMed  Google Scholar 

  20. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29(11):2672–2681

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Verdelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Verdelis, K., Salmon, P. (2019). Microcomputed Tomography Imaging in Odontogenesis Studies. In: Papagerakis, P. (eds) Odontogenesis. Methods in Molecular Biology, vol 1922. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9012-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9012-2_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9011-5

  • Online ISBN: 978-1-4939-9012-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics