Skip to main content

Ex-Vivo Model Systems of Cancer-Bone Cell Interactions

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

This chapter elaborates on the state-of-the-art experimental procedures utilized in ex-vivo model systems of cancer-bone cell interactions under “static and dynamic” culture conditions and their potential use to understand cellular and molecular mechanisms as well as drug testing and discovery. An additional focus of this chapter is to provide details of how to incorporate varying oxygen tension, viz., hypoxic, normoxic, and hyperoxic, in such studies and regulate the bone biology toward dissociation of the bone remodeling stages to achieve only “bone resorption” or “bone formation” individually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orr FW, Sanchez-Sweatman OH, Kostenuik P, Singh G (1995) Tumor-bone interactions in skeletal metastasis. Clin Orthop Relat Res 312:19–33

    Google Scholar 

  2. Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–153

    Article  CAS  PubMed  Google Scholar 

  3. Casimiro S, Gruise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310:71–81

    Article  CAS  PubMed  Google Scholar 

  4. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10:169–180

    Article  PubMed  Google Scholar 

  5. Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone cancer metastasis. Biochem Biophys Res Commun 328:679–687

    Article  CAS  PubMed  Google Scholar 

  6. Curtin P, Youm H, Salih E (2012) Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials 33:1065–1078

    Article  CAS  PubMed  Google Scholar 

  7. Alasmari A, Lin S-C, Dibart S, Salih E (2016) Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes//stem cells. Clin Exp Metastasis 33(6):563–588

    Article  CAS  PubMed  Google Scholar 

  8. Birgersdotter A, Sandgerg R, Ernberg I (2005) Gene expression perturbation in vitro-A growing case for three-dimensional(3D) culture system. Semin Cancer Biol 15:405–412

    Article  PubMed  Google Scholar 

  9. Weigelt B, Bissel ML (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4:855–860

    Article  CAS  PubMed  Google Scholar 

  11. Chu JH, Yu S, Hayward SW, Chan FL (2008) Development of a three-dimensional culture model of prostatic epitheial cells and its use for the study of epithelial-mesenchymal transition and inhibition of P13K pathway in prostate cancer. Prostate 69:428–442

    Article  Google Scholar 

  12. Fischbach C, Kong HJ, Hsiong SX, Evangelista MB, Yuen W, Mooney DJ (2009) Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci 106:399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sieh S, Lubik AA, Clements JA, Nelson CC, Hutmacher DW (2010) Interaction between osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis 6:181–188

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krishnan V, Shuman LA, Sosnoski DM, Dhurjati R, Vogler EA, Mastro AM (2010) Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol 226:2150–2158

    Article  Google Scholar 

  15. Reichert JC, Quent VMC, Burke LJ, Stansfield SH, Clements JA, Hutmacher DW (2010) Mineralizing human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials 31:7928–7936

    Article  CAS  PubMed  Google Scholar 

  16. Ohshiba T, Miyaura C, Ito A (2003) Role of prostaglanding E produced by osteoblasts in osteolysis due to bone metastasis. Biochem Biophys Res Commun 300:957–964

    Article  CAS  PubMed  Google Scholar 

  17. Nordstrand A, Nilsson J, Tieva A, Wikström P, Lerner UH, Widmark A (2009) Establishment and validation of an in vitro co-culture model to study the interactions between bone and prostate cancer cells. Clin Exp Metastasis 26:945–953

    Article  CAS  PubMed  Google Scholar 

  18. Logan JG, Sophocleous A, Marino S, Muir M, Brunton VG, Idris AI (2013) Selective tyrosine kinase inhibition of insulin-like growth factor-1 receptor inhibits human and mouse breast cancer-induced bone cell activity, bone remodeling, and osteolysis. J Bone Miner Res 28(5):1229–1242

    Article  CAS  PubMed  Google Scholar 

  19. Sophocleous A, Marino S, Logan JG, Mollat P, Ralston SH, Idris AI (2015) Bone cell-autonomous contribution of type 2 cannabinoid receptor to breast cancer-induced osteolysis. J Biol Chem 290(36):22049–22060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holen I, Nutter F, Wilkinson JM, Evans CA, Avgoustou P, Ottewell PD (2015) Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions. Clin Exp Metastasis 32(7):689–702

    Article  CAS  PubMed  Google Scholar 

  21. Curtin P, McHugh PK, Zhou H-Y, Flückiger R, Goldhaber P, Oppenheim FG, Salih E (2009) Modulation of bone resorption by phosphorylation state of bone sialoprotein. Biochemistry 48:6876–6886

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Czernick D, Lin S-C, Alasmari A, Dibart S, Salih E (2013) Novel bioactivity of phosvitin in connective tissue and bone organogenesis revealed by live calvarial bone organ culture models. Dev Biol 381:256–275

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

Download references

Funding

The author acknowledges the support of the Department of Periodontology Henry M. Goldman School of Dental Medicine Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdjan Salih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salih, E. (2019). Ex-Vivo Model Systems of Cancer-Bone Cell Interactions. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics