Skip to main content

Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1909))

Abstract

Aberrant DNA methylation of cell-free circulating DNA (cfDNA) has recently gained attention for its use as biomarker in cancer diagnosis, prognosis, and prediction of therapeutic response. Quantification of cfDNA methylation levels requires methods with high sensitivity and specificity due to low amounts of cfDNA available in plasma, high degradation of cfDNA, and/or contamination with genomic DNA. To date, several approaches for measuring cfDNA methylation have been established, including quantitative methylation-specific PCR (qMSP), which represents a simple, fast, and cost-effective technique that can be easily implemented into clinical practice. In this chapter, we provide a detailed protocol for SYBR Green qMSP analysis which is currently used in our laboratory for cfDNA methylation detection. Useful information regarding successful qMSP primers design are also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Salvi S, Gurioli G, De Giorgi U, Conteduca V, Tedaldi G, Calistri D, Casadio V (2016) Cell-free DNA as a diagnostic marker for cancer: current insights. Onco Targets Ther 9:6549–6559. https://doi.org/10.2147/OTT.S100901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen K, Zhang H, Zhang L-N, Ju S-Q, Qi J, Huang D-F, Li F, Wei Q, Zhang J (2013) Value of circulating cell-free DNA in diagnosis of hepatocellular carcinoma. World J Gastroenterol 19(20):3143–3149. https://doi.org/10.3748/wjg.v19.i20.3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheuk IWY, Shin VY, Kwong A (2017) Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis. J Breast Cancer 20(1):12–19. https://doi.org/10.4048/jbc.2017.20.1.12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958. https://doi.org/10.3390/ijms140918925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwarzenbach H, Pantel K (2015) Circulating DNA as biomarker in breast cancer. Breast Cancer Res 17:136. https://doi.org/10.1186/s13058-015-0645-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586. https://doi.org/10.1200/jco.2012.45.2011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437. https://doi.org/10.1038/nrc3066

    Article  CAS  PubMed  Google Scholar 

  8. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775(1):181–232. https://doi.org/10.1016/j.bbcan.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  9. Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E (2017) Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics 9:124. https://doi.org/10.1186/s13148-017-0424-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fratta E, Montico B, Rizzo A, Colizzi F, Sigalotti L, Dolcetti R (2016) Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 7(35):57327–57350. https://doi.org/10.18632/oncotarget.10033

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fujiwara K, Fujimoto N, Tabata M, Nishii K, Matsuo K, Hotta K, Kozuki T, Aoe M, Kiura K, Ueoka H, Tanimoto M (2005) Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 11(3):1219–1225

    CAS  PubMed  Google Scholar 

  12. Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD (2015) Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? a report of the Association for Molecular Pathology. J Mol Diagn 17(3):209–224. https://doi.org/10.1016/j.jmoldx.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perrone F, Lampis A, Bertan C, Verderio P, Ciniselli CM, Pizzamiglio S, Frattini M, Nucifora M, Molinari F, Gallino G, Gariboldi M, Meroni E, Leo E, Pierotti MA, Pilotti S (2014) Circulating free DNA in a screening program for early colorectal cancer detection. Tumori 100(2):115–121. https://doi.org/10.1700/1491.16389

    Article  CAS  PubMed  Google Scholar 

  14. Madhavan D, Wallwiener M, Bents K, Zucknick M, Nees J, Schott S, Cuk K, Riethdorf S, Trumpp A, Pantel K, Sohn C, Schneeweiss A, Surowy H, Burwinkel B (2014) Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res Treat 146(1):163–174. https://doi.org/10.1007/s10549-014-2946-2

    Article  CAS  PubMed  Google Scholar 

  15. Xia S, Huang CC, Le M, Dittmar R, Du M, Yuan T, Guo Y, Wang Y, Wang X, Tsai S, Suster S, Mackinnon AC, Wang L (2015) Genomic variations in plasma cell free DNA differentiate early stage lung cancers from normal controls. Lung Cancer 90(1):78–84. https://doi.org/10.1016/j.lungcan.2015.07.002

    Article  PubMed  Google Scholar 

  16. Li Z, Guo X, Tang L, Peng L, Chen M, Luo X, Wang S, Xiao Z, Deng Z, Dai L, Xia K, Wang J (2016) Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing. Tumour Biol 37(10):13111–13119. https://doi.org/10.1007/s13277-016-5190-z

    Article  CAS  PubMed  Google Scholar 

  17. Barault L, Amatu A, Siravegna G, Ponzetti A, Moran S, Cassingena A, Mussolin B, Falcomata C, Binder AM, Cristiano C, Oddo D, Guarrera S, Cancelliere C, Bustreo S, Bencardino K, Maden S, Vanzati A, Zavattari P, Matullo G, Truini M, Grady WM, Racca P, Michels KB, Siena S, Esteller M, Bardelli A, Sartore-Bianchi A, Di Nicolantonio F (2017) Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut. https://doi.org/10.1136/gutjnl-2016-313372

    Article  PubMed  Google Scholar 

  18. Horning AM, Awe JA, Wang CM, Liu J, Lai Z, Wang VY, Jadhav RR, Louie AD, Lin CL, Kroczak T, Chen Y, Jin VX, Abboud-Werner SL, Leach RJ, Hernandez J, Thompson IM, Saranchuk J, Drachenberg D, Chen CL, Mai S, Huang TH (2015) DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence. Prostate 75(15):1790–1801. https://doi.org/10.1002/pros.23052

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Han X, Sun Y (2017) DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. Sci China Life Sci 60(4):356–362. https://doi.org/10.1007/s11427-016-0253-7

    Article  CAS  PubMed  Google Scholar 

  20. Warton K, Samimi G (2015) Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci 2:13. https://doi.org/10.3389/fmolb.2015.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Issa J-P (2012) DNA methylation as a clinical marker in oncology. J Clin Oncol 30(20):2566–2568. https://doi.org/10.1200/jco.2012.42.1016

    Article  CAS  PubMed  Google Scholar 

  22. Decock A, Ongenaert M, Cannoodt R, Verniers K, De Wilde B, Laureys G, Van Roy N, Berbegall AP, Bienertova-Vasku J, Bown N, Clement N, Combaret V, Haber M, Hoyoux C, Murray J, Noguera R, Pierron G, Schleiermacher G, Schulte JH, Stallings RL, Tweddle DA, De Preter K, Speleman F, Vandesompele J (2016) Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma. Oncotarget 7(2):1960–1972. https://doi.org/10.18632/oncotarget.6477

    Article  PubMed  Google Scholar 

  23. Exner R, Pulverer W, Diem M, Spaller L, Woltering L, Schreiber M, Wolf B, Sonntagbauer M, Schröder F, Stift J, Wrba F, Bergmann M, Weinhäusel A, Egger G (2015) Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers. Br J Cancer 113(7):1035–1045. https://doi.org/10.1038/bjc.2015.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, Zhang H, Yi S, Jafari M, Lin D, Chung C, Caughey BA, Li G, Dhar D, Shi W, Zheng L, Hou R, Zhu J, Zhao L, Fu X, Zhang E, Zhang C, Zhu J-K, Karin M, Xu R-H, Zhang K (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1703577114

    Article  CAS  Google Scholar 

  25. Jeschke J, Bizet M, Desmedt C, Calonne E, Dedeurwaerder S, Garaud S, Koch A, Larsimont D, Salgado R, Van den Eynden G, Willard Gallo K, Bontempi G, Defrance M, Sotiriou C, Fuks F (2017) DNA methylation-based immune response signature improves patient diagnosis in multiple cancers. J Clin Invest 127(8):3090–3102. https://doi.org/10.1172/jci91095

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pineda B, Diaz-Lagares A, Perez-Fidalgo JA, Alonso E, Sandoval J, Gonzalez I, Crujeiras A-B, Burgues O, Esteller M, Lluch A, Eroles P (2015) DNA methylation signature to identify treatment response in triple negative breast cancer. J Clin Oncol 33(15_Suppl):1079. https://doi.org/10.1200/jco.2015.33.15_suppl.1079

    Article  Google Scholar 

  27. Shen S, Wang G, Shi Q, Zhang R, Zhao Y, Wei Y, Chen F, Christiani DC (2017) Seven-CpG-based prognostic signature coupled with gene expression predicts survival of oral squamous cell carcinoma. Clin Epigenetics 9:88. https://doi.org/10.1186/s13148-017-0392-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strand SH, Orntoft TF, Sorensen KD (2014) Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci 15(9):16544–16576. https://doi.org/10.3390/ijms150916544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sigalotti L, Covre A, Fratta E, Parisi G, Sonego P, Colizzi F, Coral S, Massarut S, Kirkwood JM, Maio M (2012) Whole genome methylation profiles as independent markers of survival in stage IIIC melanoma patients. J Transl Med 10:185. https://doi.org/10.1186/1479-5876-10-185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VW-S, Wong GLH, Chan SL, Mok TSK, Chan HLY, Lai PBS, Chiu RWK, Lo YMD (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci 112(11):E1317–E1325. https://doi.org/10.1073/pnas.1500076112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, Steinberg R, Georgiadis A, Phallen J, Brahmer J, Azad N, Browner I, Laheru D, Velculescu VE, Sausen M, Diaz LA Jr (2017) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23(10):2471–2477. https://doi.org/10.1158/1078-0432.ccr-16-1691

    Article  CAS  PubMed  Google Scholar 

  32. Sherwood JL, Corcoran C, Brown H, Sharpe AD, Musilova M, Kohlmann A (2016) Optimised pre-analytical methods improve KRAS mutation detection in circulating tumour DNA (ctDNA) from patients with non-small cell lung cancer (NSCLC). PLoS One 11(2):e0150197. https://doi.org/10.1371/journal.pone.0150197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang Q, Henry NL, Paoletti C, Jiang H, Vats P, Chinnaiyan AM, Hayes DF, Merajver SD, Rae JM, Tewari M (2016) Comparative analysis of circulating tumor DNA stability in K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem 49(18):1354–1360. https://doi.org/10.1016/j.clinbiochem.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  34. Toro PV, Erlanger B, Beaver JA, Cochran RL, VanDenBerg DA, Yakim E, Cravero K, Chu D, Zabransky DJ, Wong HY, Croessmann S, Parsons H, Hurley PJ, Lauring J, Park BH (2015) Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem 48(15):993–998. https://doi.org/10.1016/j.clinbiochem.2015.07.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, Makrigiorgos GM, Weisenberger DJ, Laird PW, Loda M, Fuchs CS (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8(2):209–217. https://doi.org/10.2353/jmoldx.2006.050135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sepulveda AR, Jones D, Ogino S, Samowitz W, Gulley ML, Edwards R, Levenson V, Pratt VM, Yang B, Nafa K, Yan L, Vitazka P (2009) CpG methylation analysis—current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology. J Mol Diagn 11(4):266–278. https://doi.org/10.2353/jmoldx.2009.080125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F, Fonsatti E, Traversari C, Altomonte M, Maio M (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64(24):9167–9171. https://doi.org/10.1158/0008-5472.can-04-1442

    Article  CAS  PubMed  Google Scholar 

  38. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. In: Ausubel FM et al (eds) Current protocols in molecular biology. Chapter 7, Unit 7.9:1–17. https://doi.org/10.1002/0471142727.mb0709s91

    Article  Google Scholar 

  40. Snyder Matthew W, Kircher M, Hill Andrew J, Daza Riza M, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164(1):57–68. https://doi.org/10.1016/j.cell.2015.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yi S, Long F, Cheng J, Huang D (2017) An optimized rapid bisulfite conversion method with high recovery of cell-free DNA. BMC Mol Biol 18(1):24. https://doi.org/10.1186/s12867-017-0101-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holmes EE, Jung M, Meller S, Leisse A, Sailer V, Zech J, Mengdehl M, Garbe L-A, Uhl B, Kristiansen G, Dietrich D (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS One 9(4):e93933. https://doi.org/10.1371/journal.pone.0093933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology 5(1):3. https://doi.org/10.3390/biology5010003

    Article  CAS  PubMed Central  Google Scholar 

  44. Bryzgunova OE, Laktionov PP (2017) [Current methods of extracellular DNA methylation analysis]. Mol Biol (Mosk) 51(2):195–214. https://doi.org/10.7868/s0026898417010074

  45. Olek A, Oswald J, Walter J (1996) A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 24(24):5064–5066. https://doi.org/10.1093/nar/24.24.5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delpu Y, Cordelier P, Cho W, Torrisani J (2013) DNA methylation and cancer diagnosis. Int J Mol Sci 14(7):15029

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mazurek AM, Fiszer-Kierzkowska A, Rutkowski T, Skladowski K, Pierzyna M, Scieglinska D, Wozniak G, Glowacki G, Kawczynski R, Malusecka E (2013) Optimization of circulating cell-free DNA recovery for KRAS mutation and HPV detection in plasma. Cancer Biomark 13(5):385–394. https://doi.org/10.3233/cbm-130371

    Article  CAS  PubMed  Google Scholar 

  49. Maggi EC, Gravina S, Cheng H, Piperdi B, Yuan Z, Dong X, Libutti SK, Vijg J, Montagna C (2018) Development of a method to implement whole-genome bisulfite sequencing of cfDNA from cancer patients and a mouse tumor model. Front Genet 9:6. https://doi.org/10.3389/fgene.2018.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skrypkina I, Tsyba L, Onyshchenko K, Morderer D, Kashparova O, Nikolaienko O, Panasenko G, Vozianov S, Romanenko A, Rynditch A (2016) Concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Dis Markers 2016:10. https://doi.org/10.1155/2016/3693096

    Article  CAS  Google Scholar 

  51. Vizza E, Corrado G, De Angeli M, Carosi M, Mancini E, Baiocco E, Chiofalo B, Patrizi L, Zampa A, Piaggio G, Cicchillitti L (2018) Serum DNA integrity index as a potential molecular biomarker in endometrial cancer. J Exp Clin Cancer Res 37(1):16. https://doi.org/10.1186/s13046-018-0688-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davidović RS, Božović AM, Mandušić VL, Krajnović MM (2014) Methylation-specific PCR: four steps in primer design. Cent Eur J Biol 9(12):1127–1139. https://doi.org/10.2478/s11535-014-0324-z

    Article  CAS  Google Scholar 

  53. Illingworth RS, Bird AP (2009) CpG islands—‘A rough guide’. FEBS Lett 583(11):1713–1720. https://doi.org/10.1016/j.febslet.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  54. Asmar F, Søgaard A, Grønbæk K (2015) Chapter 2—DNA methylation and hydroxymethylation in cancer A2. In: Gray SG (ed) Epigenetic cancer therapy. Academic Press, Boston, MA, pp 9–30. https://doi.org/10.1016/B978-0-12-800206-3.00002-1

    Chapter  Google Scholar 

  55. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. https://doi.org/10.1016/j.plantsci.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  56. Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427

    Article  CAS  PubMed  Google Scholar 

  57. Levin JD, Fiala D, Samala MF, Kahn JD, Peterson RJ (2006) Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res 34(20):e142. https://doi.org/10.1093/nar/gkl756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gustafson KS (2008) Locked nucleic acids can enhance the analytical performance of quantitative methylation-specific polymerase chain reaction. J Mol Diagn 10(1):33–42. https://doi.org/10.2353/jmoldx.2008.070076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hattori N, Ushijima T (2011) Chapter 8—Analysis of gene-specific DNA methylation A2. In: Tollefsbol T (ed) Handbook of epigenetics. Academic Press, San Diego, CA, pp 125–134. https://doi.org/10.1016/B978-0-12-375709-8.00008-3

    Chapter  Google Scholar 

  60. Sorber L, Zwaenepoel K, Deschoolmeester V, Roeyen G, Lardon F, Rolfo C, Pauwels P (2017) A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn 19(1):162–168. https://doi.org/10.1016/j.jmoldx.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  61. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DSB (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24(26):4270–4276. https://doi.org/10.1200/jco.2006.05.9493

    Article  CAS  PubMed  Google Scholar 

  62. Furlan C, Polesel J, Barzan L, Franchin G, Sulfaro S, Romeo S, Colizzi F, Rizzo A, Baggio V, Giacomarra V, Dei Tos AP, Boscolo-Rizzo P, Vaccher E, Dolcetti R, Sigalotti L, Fratta E (2017) Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clin Epigenetics 9:58. https://doi.org/10.1186/s13148-017-0357-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Fratta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sigalotti, L., Covre, A., Colizzi, F., Fratta, E. (2019). Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA. In: Casadio, V., Salvi, S. (eds) Cell-free DNA as Diagnostic Markers. Methods in Molecular Biology, vol 1909. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8973-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8973-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8972-0

  • Online ISBN: 978-1-4939-8973-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics