Skip to main content

Contrast Agents in Cardiovascular Magnetic Resonance Imaging

  • Chapter
  • First Online:
Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Magnetic resonance imaging (MRI) is a powerful noninvasive cardiovascular imaging modality providing excellent soft tissue contrast. Tissue contrast can be further enhanced by the use of contrast agents, enhancing MRI’s diagnostic capabilities. Paramagnetic metals are ideal MRI contrast agents, with the lanthanide metal gadolinium preeminent in clinical cardiovascular MRI. Gadolinium-based contrast agents (GBCAs) increase image signal intensity by shortening T1 relaxation time, improving image contrast. GBCAs consist of free gadolinium ion, which is attached to a chelator to reduce toxicity. There are currently nine approved GBCAs, which can be categorized as linear or macrocyclic, depending on the chemical structure of the chelate. GBCA administration can be associated with adverse effects such as allergic-like reactions, nephrogenic systemic fibrosis, and neuronal deposition. There are non-gadolinium-based contrast agents with potential cardiovascular MRI applications, such as the iron-based agent ferumoxytol and manganese-based contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys. 1977;9(1):97–100, 108.

    CAS  PubMed  Google Scholar 

  2. Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4485–97.

    Article  CAS  PubMed  Google Scholar 

  3. Bottrill M, Kwok L, Long NJ. Lanthanides in magnetic resonance imaging. Chem Soc Rev. 2006;35(6):557–71.

    Article  CAS  PubMed  Google Scholar 

  4. Brady TJ, Goldman MR, Pykett IL, Buonanno FS, Kistler JP, Newhouse JH, et al. Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effect of paramagnetic proton signal enhancement. Radiology. 1982;44(2):343–7.

    Article  Google Scholar 

  5. Young IR, Clarke GJ, Bailes DR, Pennock JM, Doyle FH, Bydder GM. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr. 1981;5(6):543–7.

    Article  CAS  PubMed  Google Scholar 

  6. Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol. 1984;142(3):619–24.

    Article  CAS  Google Scholar 

  7. Laniado M, Weinmann HJ, Schörner W, Felix R, Speck U. First use of GdDTPA/dimeglumine in man. Physiol Chem Phys Med NMR. 1984;16(2):157–65.

    CAS  PubMed  Google Scholar 

  8. Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 2016;33(1):1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sherry AD, Caravan P, Lenkinski RE. Primer on gadolinium chemistry. J Magn Reson Imaging. 2009;30(6):1240–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Port M, Idée J-M, Medina C, Robic C, Sabatou M, Corot C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals. 2008;21(4):469–90.

    Article  CAS  PubMed  Google Scholar 

  11. Oksendal AN, Hals PA. Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging. 1993;3(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  12. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H-J. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Investig Radiol. 2008;43(12):817–28.

    Article  CAS  Google Scholar 

  13. Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36(5):1060–71.

    Article  PubMed  Google Scholar 

  14. Laurent S, Elst LV, Muller RN. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging. 2006;1(3):128–37.

    Article  CAS  PubMed  Google Scholar 

  15. Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA. Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging. 1991;9(3):409–15.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitt-Willich H. Stability of linear and macrocyclic gadolinium based contrast agents. Br J Radiol. 2007;80(955):581–2.

    Article  CAS  PubMed  Google Scholar 

  17. Runge VM, Dickey KM, Williams NM, Peng X. Local tissue toxicity in response to extravascular extravasation of magnetic resonance contrast media. Investig Radiol. 2002;37(7):393–8.

    Article  CAS  Google Scholar 

  18. Rose TA, Choi JW. Intravenous imaging contrast media complications: the basics that every clinician needs to know. Am J Med. 2015;128(9):943–9.

    Article  PubMed  Google Scholar 

  19. Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging. 2009;30(6):1259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seale MK, Catalano OA, Saini S, Hahn PF, Sahani DV. Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics. 2009;29(6):1725–48.

    Article  PubMed  Google Scholar 

  21. Tombach B, Bremer C, Reimer P, Schaefer RM, Ebert W, Geens V, et al. Pharmacokinetics of 1M gadobutrol in patients with chronic renal failure. Investig Radiol. 2000;35(1):35–40.

    Article  CAS  Google Scholar 

  22. Schuhmann-Giampieri G, Krestin G. Pharmacokinetics of Gd-DTPA in patients with chronic renal failure. Investig Radiol. 1991;26(11):975–9.

    Article  CAS  Google Scholar 

  23. de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L. Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr. 1999;23(Suppl 1):S161–8.

    Article  PubMed  Google Scholar 

  24. Huppertz A, Balzer T, Blakeborough A, Breuer J, Giovagnoni A, Heinz-Peer G, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology. 2004;230(1):266–75.

    Article  PubMed  Google Scholar 

  25. Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JWM, et al. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124(12):3152–62.

    Article  CAS  PubMed  Google Scholar 

  26. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, et al. MS-325: albumin-targeted contrast agent for MR angiography. Radiology. 1998;2:529–38.

    Article  Google Scholar 

  27. Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, et al. Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology. 1998;207(2):539–44.

    Article  CAS  PubMed  Google Scholar 

  28. Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Investig Radiol. 1997;32(12):741–7.

    Article  CAS  Google Scholar 

  29. Sabach AS, Bruno M, Kim D, Mulholland T, Lee L, Kaura S, et al. Gadofosveset trisodium: abdominal and peripheral vascular applications. Am J Roentgenol. 2013;200(6):1378–86.

    Article  Google Scholar 

  30. Spanakis M, Marias K. In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp simulator platform. In Silico Pharmacol. 2014 Dec;2(1):1–9.

    Article  Google Scholar 

  31. Caravan P, Comuzzi C, Crooks W, McMurry TJ, Choppin GR, Woulfe SR. Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. Inorg Chem. 2001;40(9):2170–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wendland MF, Saeed M, Masui T, Derugin N, Higgins CB. First pass of an MR susceptibility contrast agent through normal and ischemic heart: gradient-recalled echo-planar imaging. J Magn Reson Imaging. 1993;3(5):755–60.

    Article  CAS  PubMed  Google Scholar 

  33. Sakuma H, O’Sullivan M, Lucas J, Wendland MF, Saeed M, Dulce MC, et al. Effect of magnetic susceptibility contrast medium on myocardial signal intensity with fast gradient-recalled echo and spin-echo MR imaging: initial experience in humans. Radiology. 1994;190(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  34. Dumas S, Jacques V, Sun W-C, Troughton JS, Welch JT, Chasse JM, et al. High relaxivity magnetic resonance imaging contrast agents. Part 1. Impact of single donor atom substitution on relaxivity of serum albumin-bound gadolinium complexes. Investig Radiol. 2010;45(10):600–12.

    Article  CAS  Google Scholar 

  35. Varga-Szemes A, Kiss P, Rab A, Suranyi P, Lenkey Z, Simor T, et al. In vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an investigational magnetic resonance imaging contrast agent. Radiographics. 2016;11(2):e0149260.

    Google Scholar 

  36. Brockow K, Ring J. Anaphylaxis to radiographic contrast media. Curr Opin Allergy Clin Immunol. 2011;11(4):326–31.

    Article  CAS  PubMed  Google Scholar 

  37. American College of Radiology (ACR). ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media Version 10.1 2015. Available from: http://www.acr.org/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdf. Last accessed 26 Feb 2017.

  38. Prince MR, Zhang H, Zou Z, Staron RB, Brill PW. Incidence of immediate gadolinium contrast media reactions. Am J Roentgenol. 2011;196(2):W138–43.

    Article  Google Scholar 

  39. Dillman JR, Ellis JH, Cohan RH, Strouse PJ, Jan SC. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. Am J Roentgenol. 2007;189(6):1533–8.

    Article  Google Scholar 

  40. Aran S, Shaqdan KW, Abujudeh HH. Adverse allergic reactions to linear ionic gadolinium-based contrast agents: experience with 194, 400 injections. Clin Radiol. 2015;70(5):466–75.

    Article  CAS  PubMed  Google Scholar 

  41. Bruder O, Schneider S, Pilz G, van Rossum AC, Schwitter J, Nothnagel D, et al. Update on acute adverse reactions to gadolinium based contrast agents in cardiovascular MR. large multi-national and multi-ethnical population experience with 37788 patients from the EuroCMR registry. J Cardiovasc Magn Reson. 2015;17:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palkowitsch PK, Bostelmann S, Lengsfeld P. Safety and tolerability of iopromide intravascular use: a pooled analysis of three non-interventional studies in 132,012 patients. Acta Radiol. 2014;55(6):707–14.

    Article  PubMed  Google Scholar 

  43. Raisch DW, Garg V, Arabyat R, Shen X, Edwards BJ, Miller FH, et al. Anaphylaxis associated with gadolinium-based contrast agents: data from the Food and Drug Administration’s adverse event reporting system and review of case reports in the literature. Expert Opin Drug Saf. 2014;13(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  44. Beckett KR, Moriarity AK, Langer JM. Safe use of contrast media: what the radiologist needs to know. Radiographics. 2015;35(6):1738–50.

    Article  PubMed  Google Scholar 

  45. Jung J-W, Kang H-R, Kim M-H, Lee W, Min K-U, Han M-H, et al. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology. 2012;264(2):414–22.

    Article  PubMed  Google Scholar 

  46. The Royal College of Radiologists. Standards for intravascular contrast agent administration to adult patients. 3rd ed. London: Royal College of Radiologists; 2015. p. 1–22. Available from: https://www.rcr.ac.uk/sites/default/files/Intravasc_contrast_web.pdf. Last accessed 26 Feb 2017.

  47. Jingu A, Fukuda J, Taketomi-Takahashi A, Tsushima Y. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol. BMC Med Imaging. 2014;14:34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kribben A, Witzke O, Hillen U, Barkhausen J, Daul AE, Erbel R. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J Am Coll Cardiol. 2009;53(18):1621–8.

    Article  CAS  PubMed  Google Scholar 

  49. Thomsen HS. Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium – 1997–2006–2016. Part 1. Acta Radiol. 2016;57(5):515–20.

    Article  PubMed  Google Scholar 

  50. Girardi M, Kay J, Elston DM, Leboit PE, Abu-Alfa A, Cowper SE. Nephrogenic systemic fibrosis: clinicopathological definition and workup recommendations. J Am Acad Dermatol. 2011;65(6):1095–7.

    Article  PubMed  Google Scholar 

  51. Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.

    Article  CAS  PubMed  Google Scholar 

  52. U.S. Food and Drug Administration. A Public Health Advisory. Gadolinium-containing contrast agents for magnetic resonance imaging (MRI). 2006. Available from: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/PublicHealthAdvisories/ucm053112.htm. Last accessed 26 Feb 2017.

  53. European Medicines Agency. Vasovist and nephrogenic systemic fibrosis (NSF). 2009. Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2009/11/news_detail_000418.jsp&mid=WC0b01ac058004d5c1. Last accessed 26 Feb 2017.

  54. Abujudeh HH, Kaewlai R, Kagan A, Chibnik LB, Nazarian RM, High WA, et al. Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology. 2009;253(1):81–9.

    Article  PubMed  Google Scholar 

  55. Larson KN, Gagnon AL, Darling MD, Patterson JW, Cropley TG. Nephrogenic systemic fibrosis manifesting a decade after exposure to gadolinium. JAMA Dermatol. 2015;151(10):1117–20.

    Article  PubMed  Google Scholar 

  56. Daftari Besheli L, Aran S, Shaqdan K, Kay J, Abujudeh H. Current status of nephrogenic systemic fibrosis. Clin Radiol. 2014;69(7):661–8.

    Article  CAS  PubMed  Google Scholar 

  57. Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Investig Radiol. 2008;43(2):141–4.

    Article  CAS  Google Scholar 

  58. Shabana WM, Cohan RH, Ellis JH, Hussain HK, Francis IR, Su LD, et al. Nephrogenic systemic fibrosis: a report of 29 cases. Am J Roentgenol. 2008 Mar;190(3):736–41.

    Article  Google Scholar 

  59. Edwards BJ, Laumann AE, Nardone B, Miller FH, Restaino J, Raisch DW, et al. Advancing pharmacovigilance through academic-legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis-a research on adverse drug events and reports (RADAR) report. Br J Radiol. 2014;87(1042):20140307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomsen HS, Marckmann P. Extracellular Gd-CA: differences in prevalence of NSF. Eur J Radiol. 2008;66(2):180–3.

    Article  PubMed  Google Scholar 

  61. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. Am J Roentgenol. 2007;188(2):586–92.

    Article  Google Scholar 

  62. Swaminathan S, Horn TD, Pellowski D, Abul-Ezz S, Bornhorst JA, Viswamitra S, et al. Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med. 2007;357(7):720–2.

    Article  CAS  PubMed  Google Scholar 

  63. Kimura J, Ishiguchi T, Matsuda J, Ohno R, Nakamura A, Kamei S, et al. Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiat Med. 2005;23(5):322–6.

    PubMed  Google Scholar 

  64. High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56(1):21–6.

    Article  PubMed  Google Scholar 

  65. Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cuffy MC, Singh M, Formica R, Simmons E, Abu Alfa AK, Carlson K, et al. Renal transplantation for nephrogenic systemic fibrosis: a case report and review of the literature. Nephrol Dial Transplant. 2011;26(3):1099–101.

    Article  PubMed  Google Scholar 

  67. Thomsen HS. Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium – 1997–2006–2016. Part 2. Acta Radiol. 2016;57(6):643–8.

    Article  PubMed  Google Scholar 

  68. Reilly RF. Risk for nephrogenic systemic fibrosis with gadoteridol (ProHance) in patients who are on long-term hemodialysis. Am Heart J. 2008;3(3):747–51.

    CAS  Google Scholar 

  69. Amet S, Launay-Vacher V, Clément O, Frances C, Tricotel A, Stengel B, et al. Incidence of nephrogenic systemic fibrosis in patients undergoing dialysis after contrast-enhanced magnetic resonance imaging with gadolinium-based contrast agents: the prospective Fibrose Nephrogénique Systémique study. Investig Radiol. 2014;49(2):109–15.

    Article  CAS  Google Scholar 

  70. Khawaja AZ, Cassidy DB, Shakarchi Al J, McGrogan DG, Inston NG, Jones RG. Revisiting the risks of MRI with gadolinium based contrast agents-review of literature and guidelines. Insights Imaging. 2015;6(5):553–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. European Society of Urogenital Radiology (ESUR). ESUR Contrast Media Safety Committee. ESUR Guidelines on Contrast Media 9.0. 2014. Available from: http://www.esur.org/esur-guidelines/. Last accessed 26 Feb 2017.

  72. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82.

    Article  PubMed  Google Scholar 

  73. Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol. 2016;26(3):807–15.

    Article  PubMed  Google Scholar 

  74. Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. Am J Neuroradiol. 2016;37(7):1192–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275(3):803–9.

    Article  PubMed  Google Scholar 

  76. Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idée J-M, et al. T1-weighted Hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Investig Radiol. 2015;50(8):473–80.

    Article  CAS  Google Scholar 

  77. Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol. 2016;51(7):447–53.

    Article  CAS  Google Scholar 

  78. Roberts DR, Lindhorst SM, Welsh CT, Maravilla KR, Herring MN, Braun KA, et al. High levels of gadolinium deposition in the skin of a patient with normal renal function. Investig Radiol. 2016;51(5):280–9.

    CAS  Google Scholar 

  79. Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics. 2009;1(6):479–88.

    Article  CAS  PubMed  Google Scholar 

  80. Food and Drug Administration (FDA). FDA Drug Safety Communication (2015) FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI). Available from: http://www.fda.gov/Drugs/DrugSafety/ucm455386.htm. Last accessed 26 Feb 2017.

  81. Brody AS, Sorette MP, Gooding CA, Listerud J, Clark MR, Mentzer WC, et al. AUR memorial Award. Induced alignment of flowing sickle erythrocytes in a magnetic field. A preliminary report. Investig Radiol. 1985;20(6):560–6.

    Article  CAS  Google Scholar 

  82. Dillman JR, Ellis JH, Cohan RH, Caoili EM, Hussain HK, Campbell AD, et al. Safety of gadolinium-based contrast material in sickle cell disease. J Magn Reson Imaging. 2011;34(4):917–20.

    Article  PubMed  Google Scholar 

  83. Hatje V, Bruland KW, Flegal AR. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ Sci Technol. 2016;50(8):4159–68.

    Article  CAS  PubMed  Google Scholar 

  84. Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F. Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere. 2009;75(8):1057–64.

    Article  CAS  PubMed  Google Scholar 

  85. Kulaksız S, Bau M. Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int. 2011;37(5):973–9.

    Article  PubMed  CAS  Google Scholar 

  86. Telgmann L, Wehe CA, Birka M, Künnemeyer J, Nowak S, Sperling M, et al. Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environ Sci Technol. 2012;46(21):11929–36.

    Article  CAS  PubMed  Google Scholar 

  87. Bietenbeck M, Florian A, Sechtem U, Yilmaz A. The diagnostic value of iron oxide nanoparticles for imaging of myocardial inflammation – quo vadis? J Cardiovasc Magn Reson. 2015;17:54.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Prince MR, Zhang HL, Chabra SG, Jacobs P, Wang Y. A pilot investigation of new superparamagnetic iron oxide (ferumoxytol) as a contrast agent for cardiovascular MRI. J Xray Sci Technol. 2003;11(4):231–40.

    CAS  PubMed  Google Scholar 

  89. Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.

    CAS  PubMed  Google Scholar 

  90. Hope MD, Hope TA, Zhu C, Faraji F, Haraldsson H, Ordovas KG, et al. Vascular imaging with Ferumoxytol as a contrast agent. Am J Roentgenol. 2015;205(3):W366–73.

    Article  Google Scholar 

  91. Gkagkanasiou M, Ploussi A, Gazouli M, Efstathopoulos EP. USPIO-enhanced MRI neuroimaging: a review. J Neuroimaging. 2016;26(2):161–8.

    Article  PubMed  Google Scholar 

  92. Vasanawala SS, Nguyen K-L, Hope MD, Bridges MD, Hope TA, Reeder SB, et al. Safety and technique of ferumoxytol administration for MRI. Magn Reson Med. 2016;75(5):2107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Food and Drug Administration (FDA). FDA Drug Safety Communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol) 2015. Available from: http://www.fda.gov/Drugs/DrugSafety/ucm440138.htm. Last accessed 26 Feb 2017.

  94. Bircher AJ, Auerbach M. Hypersensitivity from intravenous iron products. Immunol Allergy Clin North Am. 2014;34(3):707–23.

    Article  PubMed  Google Scholar 

  95. Mukundan S, Steigner ML, Hsiao L-L, Malek SK, Tullius SG, Chin MS, et al. Ferumoxytol-enhanced magnetic resonance imaging in late-stage CKD. Am J Kidney Dis. 2016;67(6):984–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fananapazir G, Marin D, Suhocki PV, Kim CY, Bashir MR. Vascular artifact mimicking thrombosis on MR imaging using ferumoxytol as a contrast agent in abdominal vascular assessment. J Vasc Interv Radiol. 2014;25(6):969–76.

    Article  PubMed  Google Scholar 

  97. Hanneman K, Kino A, Cheng JY, Alley MT, Vasanawala SS. Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI. J Magn Reson Imaging. 2016;44(2):383–92.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J. 2013;34(6):462–75.

    Article  CAS  PubMed  Google Scholar 

  99. Alam SR, Shah ASV, Richards J, Lang NN, Barnes G, Joshi N, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5(5):559–65.

    Article  PubMed  Google Scholar 

  100. Alam SR, Stirrat C, Richards J, Mirsadraee S, Semple SIK, Tse G, et al. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J Cardiovasc Magn Reson. 2015;17:83.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Burke C, Alexander Grant L, Goh V, Griffin N. The role of hepatocyte-specific contrast agents in hepatobiliary magnetic resonance imaging. Semin Ultrasound CT MR. 2013;34(1):44–53.

    Article  PubMed  Google Scholar 

  102. Fernandes JL, Storey P, da Silva JA, de Figueiredo GS, Kalaf JM, Coelho OR. Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans. J Cardiovasc Magn Reson. 2011;13:6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Thurnher S, Miller S, Schneider G, Ballarati C, Bongartz G, Herborn CU, et al. Diagnostic performance of gadobenate dimeglumine enhanced MR angiography of the iliofemoral and calf arteries: a large-scale multicenter trial. Am J Roentgenol. 2007;189(5):1223–37.

    Article  Google Scholar 

  104. Camren GP, Wilson GJ, Bamra VR, Nguyen KQ, Hippe DS, Maki JH. A comparison between gadofosveset trisodium and gadobenate dimeglumine for steady state MRA of the thoracic vasculature. Biomed Res Int. 2014;2014:Article ID 625614, 6 pages.

    Article  Google Scholar 

  105. Christie A, Chandramohan S, Roditi G. Comprehensive MRA of the lower limbs including high-resolution extended-phase infra-inguinal imaging with gadobenate dimeglumine: initial experience with inter-individual comparison to the blood-pool contrast agent gadofosveset trisodium. Clin Radiol. 2013;68(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  106. Frydrychowicz A, Russe MF, Bock J, Stalder AF, Bley TA, Harloff A, et al. Comparison of gadofosveset trisodium and gadobenate dimeglumine during time-resolved thoracic MR angiography at 3T. Acad Radiol. 2010;17(11):1394–400.

    Article  PubMed  Google Scholar 

  107. Erb-Eigner K, Taupitz M, Asbach P. Equilibrium-phase MR angiography: comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality. Contrast Media Mol Imaging. 2016;11(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  108. Deray G, Rouviere O, Bacigalupo L, Maes B, Hannedouche T, Vrtovsnik F, et al. Safety of meglumine gadoterate (Gd-DOTA)-enhanced MRI compared to unenhanced MRI in patients with chronic kidney disease (RESCUE study). Eur Radiol. 2013;23(5):1250–9.

    Article  PubMed  Google Scholar 

  109. Ishiguchi T, Takahashi S. Safety of gadoterate meglumine (Gd-DOTA) as a contrast agent for magnetic resonance imaging: results of a post-marketing surveillance study in Japan. Drugs R D. 2010;10(3):133–45.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  PubMed  Google Scholar 

  111. Jerosch-Herold M, Kwong RY. Magnetic resonance imaging in the assessment of ventricular remodeling and viability. Radiographics. 2008;5(1):5–10.

    Google Scholar 

  112. Rudolph A, Messroghli D, Knobelsdorff-Brenkenhoff von F, Traber J, Schüler J, Wassmuth R, et al. Prospective, randomized comparison of gadopentetate and gadobutrol to assess chronic myocardial infarction applying cardiovascular magnetic resonance. BMC Med Imaging. 2015;15:55.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Heydari B, Jerosch-Herold M, Kwong RY. Assessment of myocardial ischemia with cardiovascular magnetic resonance. Prog Cardiovasc Dis. 2011;54(3):191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;108(4):432–7.

    Article  PubMed  Google Scholar 

  115. Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI. Prog Cardiovasc Dis. 2015;57(6):615–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Y. Kwong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, D.J., Kwong, R.Y. (2019). Contrast Agents in Cardiovascular Magnetic Resonance Imaging. In: Kwong, R., Jerosch-Herold, M., Heydari, B. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8841-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8841-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8839-6

  • Online ISBN: 978-1-4939-8841-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics