Skip to main content

Molecular Aspects of Zinc Finger Nucleases (ZFNs)-Mediated Gene Editing in Rat Embryos

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

This chapter contains a collection of protocols involved in using ZFNs to create rat models with various types of genome editing, including simple knockout, point mutation, large deletions, floxing, and insertions. The protocols cover ZFN and donor design criteria, in vitro transcription of ZFNs, validation of ZFNs activity in cultured cells, RNA stability test, microinjection sample preparation, genotyping and in vitro confirmation of floxed alleles, and Southern blot analysis, most of which are not limited to using ZFNs. Instead they apply to model creation in general. When appropriate, a comparison between ZFNs and CRISPR is provided. Standard pronuclear microinjection per se is not discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448

    Article  CAS  Google Scholar 

  2. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting fin mouse embryo-derived stem cells. Cell 51:503–512

    Article  CAS  Google Scholar 

  3. Doetschman T, Gregg RG, Maeda N et al (1987) Targetted correction of a mutant TPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  CAS  Google Scholar 

  4. Buehr M, Meek S, Blair K et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  CAS  Google Scholar 

  5. Li P, Tong C, Mehrian-Shai R et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  CAS  Google Scholar 

  6. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    Article  CAS  Google Scholar 

  7. Gunn A, Stark JM (2012) I-SceI-based assays to examine distince repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol 920:379–391

    Article  CAS  Google Scholar 

  8. Epinat JC, Arnould S, Chames P et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962

    Article  CAS  Google Scholar 

  9. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    Article  CAS  Google Scholar 

  10. Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428:963–989

    Article  CAS  Google Scholar 

  11. Carroll D, Moron JJ, Beumer KJ et al (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341

    Article  CAS  Google Scholar 

  12. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  Google Scholar 

  13. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zince-finger nucleases. Nature 435:646–651

    Article  CAS  Google Scholar 

  14. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  Google Scholar 

  15. Doyon Y, Vo TD, Mendel MC et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  Google Scholar 

  16. Santiago Y, Chan E, Liu PQ et al (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105:5809–5814

    Article  CAS  Google Scholar 

  17. Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger uncleases. Nat Biotechnol 26:702–708

    Article  CAS  Google Scholar 

  18. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  Google Scholar 

  19. Carbery ID, Ji D, Harrington A et al (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459

    Article  CAS  Google Scholar 

  20. Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108:12013–12017

    Article  CAS  Google Scholar 

  21. Flisilowska T, Thorey IS, Offner S et al (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045

    Article  Google Scholar 

  22. Dong Z, Ge J, Li K et al (2011) Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS One 6:e28897

    Article  CAS  Google Scholar 

  23. Cui X, Ji D, Fisher DA et al (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  CAS  Google Scholar 

  24. Brown AJ, Fisher DA, Kouranova E et al (2013) Whole-rat conditional gene knockout via genome editing. Nat Methods 10:638–640

    Article  CAS  Google Scholar 

  25. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  Google Scholar 

  26. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  Google Scholar 

  27. Tesson L, Usal C, Menoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  CAS  Google Scholar 

  28. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  Google Scholar 

  29. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  Google Scholar 

  30. Kaneko T, Sakuma T, Yamamoto T et al (2014) Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep 4:6382

    Article  CAS  Google Scholar 

  31. Qin W, Dion SL, Kutny PM et al (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430

    Article  CAS  Google Scholar 

  32. Kaneko T, Mashimo T (2015) Simple genome editing of rodent intact embryos by electroporation. PLoS One 10:e0142755

    Article  Google Scholar 

  33. Chen S, Lee B, Lee AY et al (2016) Highly efficient mouse genome editing by CRISOR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    Article  CAS  Google Scholar 

  34. Zschemisch NH, Glage S, Wedekind D (2012) Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 13:60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cui, X. (2019). Molecular Aspects of Zinc Finger Nucleases (ZFNs)-Mediated Gene Editing in Rat Embryos. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics