Skip to main content
Book cover

SNAREs pp 277–288Cite as

An In Vitro Assay of Trans-SNARE Complex Formation During Yeast Vacuole Fusion Using Epitope Tag-Free SNAREs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

SNARE complexes assembled between fusing membranes (in trans) are the core machinery driving lipid bilayer merger. Thus, an assay monitoring the formation of these trans-SNARE complexes is essential for SNARE-mediated membrane fusion studies. Homotypic yeast vacuole fusion is an important model system for such studies. Although several assays measuring trans-SNARE complex formation are available to study yeast vacuole fusion, most use SNAREs conjugated with epitope tags, which may affect the function of SNAREs or even the formation of trans-SNARE complexes. Here, I describe an assay for trans-SNARE complex formation during yeast vacuole fusion that does not require epitope-tagged SNAREs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  CAS  Google Scholar 

  2. Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664

    Article  CAS  Google Scholar 

  3. Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643. https://doi.org/10.1038/nrm2002

    Article  CAS  PubMed  Google Scholar 

  4. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95:15781–15786

    Article  CAS  Google Scholar 

  5. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353. https://doi.org/10.1038/26412

    Article  CAS  PubMed  Google Scholar 

  6. Weber T, Zemelman BV, McNew JA et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  Google Scholar 

  7. Ungermann C, Sato K, Wickner W (1998) Defining the functions of trans-SNARE pairs. Nature 396:543–548. https://doi.org/10.1038/25069

    Article  CAS  PubMed  Google Scholar 

  8. Nichols BJ, Ungermann C, Pelham HR et al (1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387:199–202. https://doi.org/10.1038/387199a0

    Article  CAS  PubMed  Google Scholar 

  9. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136. https://doi.org/10.1146/annurev-cellbio-100109-104131

    Article  CAS  PubMed  Google Scholar 

  10. Wickner W, Haas A (2000) Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu Rev Biochem 69:247–275. https://doi.org/10.1146/annurev.biochem.69.1.247

    Article  CAS  PubMed  Google Scholar 

  11. Ostrowicz CW, Meiringer CTA, Ungermann C (2008) Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics. Autophagy 4:5–19

    Article  CAS  Google Scholar 

  12. Wickner W (2002) Yeast vacuoles and membrane fusion pathways. EMBO J 21:1241–1247. https://doi.org/10.1093/emboj/21.6.1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haas A, Conradt B, Wickner W (1994) G-protein ligands inhibit in vitro reactions of vacuole inheritance. J Cell Biol 126:87–97

    Article  CAS  Google Scholar 

  14. Jun Y, Wickner W (2007) Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci U S A 104:13010–13015. https://doi.org/10.1073/pnas.0700970104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Collins KM, Wickner WT (2007) Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc Natl Acad Sci U S A 104:8755–8760. https://doi.org/10.1073/pnas.0702290104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jun Y, Xu H, Thorngren N, Wickner W (2007) Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J 26:4935–4945. https://doi.org/10.1038/sj.emboj.7601915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pieren M, Schmidt A, Mayer A (2010) The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nat Struct Mol Biol 17:710–717. https://doi.org/10.1038/nsmb.1809

    Article  CAS  PubMed  Google Scholar 

  18. Wada Y, Nakamura N, Ohsumi Y, Hirata A (1997) Vam3p, a new member of syntaxin related protein, is required for vacuolar assembly in the yeast Saccharomyces cerevisiae. J Cell Sci 110(Pt 11):1299–1306

    CAS  PubMed  Google Scholar 

  19. Darsow T, Rieder SE, Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517–529

    Article  CAS  Google Scholar 

  20. Daniel Gietz R, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Meth Enzymol 350:87–96. https://doi.org/10.1016/S0076-6879(02)50957-5

    Article  PubMed  Google Scholar 

  21. Scott JH, Schekman R (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414–423

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen SH, Chrétien P, Bastien L, Slilaty SN (1991) Primary sequence of the glucanase gene from Oerskovia xanthineolytica. Expression and purification of the enzyme from Escherichia coli. J Biol Chem 266:1058–1063

    CAS  PubMed  Google Scholar 

  23. Slusarewicz P, Xu Z, Seefeld K et al (1997) I2B is a small cytosolic protein that participates in vacuole fusion. Proc Natl Acad Sci U S A 94:5582–5587

    Article  CAS  Google Scholar 

  24. Starai VJ, Jun Y, Wickner W (2007) Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc Natl Acad Sci U S A 104:13551–13558. https://doi.org/10.1073/pnas.0704741104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rak A, Fedorov R, Alexandrov K et al (2000) Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. EMBO J 19:5105–5113. https://doi.org/10.1093/emboj/19.19.5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorngren N, Collins KM, Fratti RA et al (2004) A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J 23:2765–2776. https://doi.org/10.1038/sj.emboj.7600286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ko Y-J, Lee M, Kang K et al (2014) In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion. Proc Natl Acad Sci U S A 111:7677–7682. https://doi.org/10.1073/pnas.1400036111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas A (1995) A quantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci 17:283–294. https://doi.org/10.1007/BF00986234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsoo Jun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jun, Y. (2019). An In Vitro Assay of Trans-SNARE Complex Formation During Yeast Vacuole Fusion Using Epitope Tag-Free SNAREs. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics