Skip to main content

Real-Time Endocytosis Measurements by Membrane Capacitance Recording at Central Nerve Terminals

  • Protocol
  • First Online:
Clathrin-Mediated Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1847))

Abstract

Endocytosis is fundamental to cell function. It can be monitored by capacitance measurements under patch-clamp recordings. Membrane capacitance recording measures the cell membrane surface area and its changes at high temporal-resolution and sensitivity, and it is a powerful biophysical approach in the field of exocytosis and endocytosis. A popular one is the frequency domain method that entails processing passive sinusoidal membrane currents induced by a sinusoidal voltage. This technique requires a phase-sensitive detector or “lock-in amplifier” implemented in hardware or software during patch-clamp recordings. It has been widely used in many secretory cells, but its application directly at central presynaptic terminals is technically challenging. We have applied this technique to study synaptic endocytosis in the calyx of Held, a large glutamatergic synaptic terminal, as well as mouse pancreatic β-cells. The presynaptic capacitance measurements provide a unique alternative to measuring transmitter release and presynaptic endocytosis. Here, we describe this method at the calyx of Held in acute brain slices and provide a practical guide to obtaining high quality capacitance measurements at presynaptic terminals.

The original version of this chapter was revised. A correction to this chapter can be found at https://doi.org/10.1007/978-1-4939-8719-1_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 24 October 2018

    This book was inadvertently published with the incorrect title as Clathrin-Mediated Endoytosis: Methods and Protocols. This has now been corrected throughout the book to Clathrin-Mediated Endocytosis: Methods and Protocols.

References

  1. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79(21):6712–6716

    Article  CAS  Google Scholar 

  2. Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320

    Article  CAS  Google Scholar 

  3. Gillis KD (2009) Techniques for membrane capacitance measurements. In: Bert Sakmann EN (ed) Single-Channel Reording, 2nd edn. Springer, pp 155–197

    Google Scholar 

  4. Lindau M, Fernandez JM (1986) IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature 319(6049):150–153

    Article  CAS  Google Scholar 

  5. von Gersdorff H, Matthews G (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367(6465):735–739

    Article  Google Scholar 

  6. Heidelberger R, Heinemann C, Neher E, Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371(6497):513–515

    Article  CAS  Google Scholar 

  7. Rieke F, Schwartz EA (1994) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13(4):863–873

    Article  CAS  Google Scholar 

  8. Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29(3):681–690

    Article  CAS  Google Scholar 

  9. Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13(4):875–883

    Article  CAS  Google Scholar 

  10. Lou X, Paradise S, Ferguson SM, De Camilli P (2008) Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proc Natl Acad Sci U S A

    Google Scholar 

  11. Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25(4):206–212

    Article  CAS  Google Scholar 

  12. Sun JY, Wu LG (2001) Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30(1):171–182

    Article  CAS  Google Scholar 

  13. Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435(7041):497–501

    Article  CAS  Google Scholar 

  14. Hosoi N, Holt M, Sakaba T (2009) Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63(2):216–229

    Article  CAS  Google Scholar 

  15. Lin KH, Oleskevich S, Taschenberger H (2011) Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of Held: a comparison of two auditory nerve terminals. J Physiol 589(Pt 17):4301–4320

    Article  CAS  Google Scholar 

  16. Hsu SF, Jackson MB (1996) Rapid exocytosis and endocytosis in nerve terminals of the rat posterior pituitary. J Physiol 494(Pt 2):539–553

    Article  CAS  Google Scholar 

  17. Hallermann S, Pawlu C, Jonas P, Heckmann MCP (2003) A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc Natl Acad Sci U S A 100(15):8975–8980

    Article  CAS  Google Scholar 

  18. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch 411(2):137–146

    Article  CAS  Google Scholar 

  19. Sakmann B, Neher E (2009) Single-channel recording, 2nd edn. Springer, New York, NY, p xxii, 700

    Google Scholar 

  20. Gillis KD (2000) Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pflugers Arch 439(5):655–664

    Article  CAS  Google Scholar 

  21. Fan F et al (2015) Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. J Clin Invest 125(11):4026–4041

    Article  Google Scholar 

  22. Forsythe ID (1994) Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol 479(Pt 3):381–387

    Article  Google Scholar 

  23. Borst JG, Helmchen F, Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489(Pt 3):825–840

    Article  CAS  Google Scholar 

  24. Kochubey O, Lou X, Schneggenburger R (2011) Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse. Trends Neurosci 34(5):237–246

    Article  CAS  Google Scholar 

  25. Borst JG, Soria van Hoeve J (2011) The calyx of Held synapse: from model synapse to auditory relay. Annu Rev Physiol

    Google Scholar 

  26. Korogod N, Lou X, Schneggenburger R (2007) Posttetanic potentiation critically depends on an enhanced Ca(2+) sensitivity of vesicle fusion mediated by presynaptic PKC. Proc Natl Acad Sci U S A 104(40):15923–15928

    Article  CAS  Google Scholar 

  27. Wolfel M, Lou X, Schneggenburger R (2007) A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J Neurosci 27(12):3198–3210

    Article  Google Scholar 

  28. Korogod N, Lou X, Schneggenburger R (2005) Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J Neurosci 25(21):5127–5137

    Article  CAS  Google Scholar 

  29. Lou X, Korogod N, Brose N, Schneggenburger R (2008) Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C. J Neurosci 28(33):8257–8267

    Article  CAS  Google Scholar 

  30. Dulubova I et al (2005) A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J 24(16):2839–2850

    Article  CAS  Google Scholar 

  31. Mahapatra S, Fan F, Lou X (2016) Tissue-specific dynamin-1 deletion at the calyx of Held decreases short-term depression through a mechanism distinct from vesicle resupply. Proc Natl Acad Sci U S A 113(22):E3150–E3158

    Article  CAS  Google Scholar 

  32. Mahapatra S, Lou X (2016) Dynamin-1 deletion enhances post-tetanic potentiation and quantal size after tetanic stimulation at the calyx of Held. J Physiol

    Google Scholar 

  33. Fan F, Funk L, Lou X (2016) Dynamin 1- and 3-mediated endocytosis is essential for the development of a large central synapse in vivo. J Neurosci 36(22):6097–6115

    Article  CAS  Google Scholar 

  34. Debus K, Hartmann J, Kilic G, Lindau M (1995) Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique. Biophys J 69(6):2808–2822

    Article  CAS  Google Scholar 

  35. Horrigan FT, Bookman RJ (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13(5):1119–1129

    Article  CAS  Google Scholar 

  36. Kilic G, Lindau M (2001) Voltage-dependent membrane capacitance in rat pituitary nerve terminals due to gating currents. Biophys J 80(3):1220–1229

    Article  CAS  Google Scholar 

  37. Wolfel M, Schneggenburger R (2003) Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J Neurosci 23(18):7059–7068

    Article  Google Scholar 

  38. Sun JY et al (2004) Capacitance measurements at the calyx of Held in the medial nucleus of the trapezoid body. J Neurosci Methods 134(2):121–131

    Article  Google Scholar 

  39. Saheki Y, De Camilli P (2012) Synaptic vesicle endocytosis. Cold Spring Harb Perspect Biol 4(9):a005645

    Article  Google Scholar 

  40. Yamashita T, Hige T, Takahashi T (2005) Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307(5706):124–127

    Article  CAS  Google Scholar 

  41. Wu W, Xu J, Wu XS, Wu LG (2005) Activity-dependent acceleration of endocytosis at a central synapse. J Neurosci 25(50):11676–11683

    Article  CAS  Google Scholar 

  42. Delvendahl I, Vyleta NP, von Gersdorff H, Hallermann S (2016) Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90(3):492–498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Institutes of Health (NIH) grants R01DK093953 (X.L.), 1R21NS101584-01 (X.L.), and the grant AAB1425-135-A5362 (X.L.). I thank Meyer Jackson for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lou, X. (2018). Real-Time Endocytosis Measurements by Membrane Capacitance Recording at Central Nerve Terminals. In: Swan, L. (eds) Clathrin-Mediated Endocytosis. Methods in Molecular Biology, vol 1847. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8719-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8719-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8717-7

  • Online ISBN: 978-1-4939-8719-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics